浏览全部资源
扫码关注微信
1.青岛科技大学 橡塑材料与工程省部共建教育部重点实验室 青岛 266042
2.北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室 北京 100029
[ "辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究." ]
[ "闫寿科,男,1963年生. 1996年中国科学院长春应用化学研究所获得博士学位. 1997~2001年德国多特蒙德大学从事科研工作. 2001~2008年中国科学院化学研究所,研究员. 2008年至今北京化工大学,教授. 2018年至今青岛科技大学,教授. 曾获“中国科学院百人计划”、“国家杰出青年科学基金”资助. 主要研究方向是高分子材料多层次结构和结构调控及其结构-性能关系." ]
纸质出版日期:2022-03-20,
收稿日期:2021-08-28,
录用日期:2021-10-26
移动端阅览
王绍娟,辛瑞,扈健等.透射电子显微镜在聚合物不同层次结构研究中的应用[J].高分子学报,2022,53(03):289-306.
Wang Shao-juan,Xin Rui,Hu Jian,et al.Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers[J].ACTA POLYMERICA SINICA,2022,53(03):289-306.
王绍娟,辛瑞,扈健等.透射电子显微镜在聚合物不同层次结构研究中的应用[J].高分子学报,2022,53(03):289-306. DOI: 10.11777/j.issn1000-3304.2021.21251.
Wang Shao-juan,Xin Rui,Hu Jian,et al.Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers[J].ACTA POLYMERICA SINICA,2022,53(03):289-306. DOI: 10.11777/j.issn1000-3304.2021.21251.
聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的
β
和
γ
结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.
The performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality
the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example
the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride)
special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the
β
and
γ
crystal modifications. Therefore
it is of great significance to disclose the structure formation mechanism of polymers at all levels
to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper
we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers
including a brief introduction of the working principle of transmission electron microscopy
special techniques used for sample preparation and for instrument operation to get high-quality experimental data
analysis of the results and correlation of them to different structures.
聚合物透射电子显微镜样品制备仪器操作结构解释
PolymerTransmission electron microscopySample preparationInstrument operationStructure explanation
Liu Y, Li C, Ren Z, Yan S, Bryce M R. Nat Rev Mater, 2018, 3(4): 18020. doi:10.1038/natrevmats.2018.20http://dx.doi.org/10.1038/natrevmats.2018.20
Memon W A, Li J, Fang Q, Ren Z, Yan S, Sun X. J Phys Chem B, 2019, 123(33): 7233-7239. doi:10.1021/acs.jpcb.9b03522http://dx.doi.org/10.1021/acs.jpcb.9b03522
Wang J, Liu Y, Hua L, Wang T, Dong H, Li H, Sun X, Ren Z, Yan S. ACS Appl Polym Mater, 2021, 3(4): 2098-2108. doi:10.1021/acsapm.1c00144http://dx.doi.org/10.1021/acsapm.1c00144
Deng, L F, Zhang X X, Zhou D, Tang J H, Lei J, Li J F, Li Z M. Chinese J Polym Sci, 2020, 38(7): 715-729. doi:10.1007/s10118-020-2397-7http://dx.doi.org/10.1007/s10118-020-2397-7
Hua Lei(华磊), Yan Shouke(闫寿科), Ren Zhongjie(任忠杰). Acta Polymerica Sinica(高分子学报), 2020, 51(5): 457-468. doi:10.11777/j.issn1000-3304.2020.19224http://dx.doi.org/10.11777/j.issn1000-3304.2020.19224
Smith P, Lemstra P J. Mater Sci, 1980, 15(2): 505-514. doi:10.1007/bf02396802http://dx.doi.org/10.1007/bf02396802
Lovinger A J. Science, 1983, 220(4602): 1115-1121. doi:10.1126/science.220.4602.1115http://dx.doi.org/10.1126/science.220.4602.1115
Dong H, Li H, Wang E, Yan S, Zhang J, Yang C, Takahashi I, Nakashima H, Torimitsu K, Hu W. J Phys Chem B, 2009, 113(13): 4176-4180. doi:10.1021/jp811374hhttp://dx.doi.org/10.1021/jp811374h
Dong H, Li H, Wang E, Wei Z, Xu W, Hu W, Yan S. Langmuir, 2008, 24(23): 13241-13244. doi:10.1021/la8026094http://dx.doi.org/10.1021/la8026094
Liu L, Ren Z, Xiao C, Dong D, Yan S, Hu W, Wang Z. Org Electron, 2016, 35: 186-192. doi:10.1016/j.orgel.2016.05.017http://dx.doi.org/10.1016/j.orgel.2016.05.017
Liu L, Ren Z, Xiao C, He B, Dong H, Yan S, Hu W, Wang Z. Chem Commun, 2016, 52(27): 4902-4905. doi:10.1039/c6cc01148ahttp://dx.doi.org/10.1039/c6cc01148a
Sun D, Li Y, Ren Z, Bryce M R, Li H, Yan S. Chem Sci, 2014, 5(8): 3240-3245. doi:10.1039/c4sc01068jhttp://dx.doi.org/10.1039/c4sc01068j
Zhao C, Hong Y, Chu X, Dong Y, Hu Z, Sun X, Yan S. Mater Today Energy, 2021, 20(2): 100678. doi:10.1016/j.mtener.2021.100678http://dx.doi.org/10.1016/j.mtener.2021.100678
Wang M, Wang S, Hu J, Li H, Ren Z, Sun X, Wang H, Yan S. Macromolecules, 2020, 53(14): 5971-5979. doi:10.1021/acs.macromol.0c01106http://dx.doi.org/10.1021/acs.macromol.0c01106
Liu J, Zhao Q, Dong Y, Sun X, Hu Z, Dong H, Hu W, Yan S. ACS Appl Mater Interfaces, 2020: 12(26): 29818-29825
Tang Z, Yang S, Wang H, Sun X, Ren Z, Li H, Yan S. Polymer, 2020, 194(24): 122409. doi:10.1016/j.polymer.2020.122409http://dx.doi.org/10.1016/j.polymer.2020.122409
Song T, Wang S, Wang H, Sun X, Li H, Yan S. Ind Eng Chem Res, 2020, 59(8): 3438-3445. doi:10.1021/acs.iecr.9b06432http://dx.doi.org/10.1021/acs.iecr.9b06432
Mi C, Gao N, Li H, Liu J, Sun X, Yan S. ACS Appl Polym Mater, 2019, 1(8): 1971-1978. doi:10.1021/acsapm.9b00060http://dx.doi.org/10.1021/acsapm.9b00060
Mi C, Ren Z, Li H, Yan S, Sun X. Ind Eng Chem Res, 2019, 58(17): 7389-7396. doi:10.1021/acs.iecr.8b05545http://dx.doi.org/10.1021/acs.iecr.8b05545
Elyashevich G K, Kuryndin I S, Dmitriev I Y, Lavrentyev V K, Saprykina N N, Bukošek V. Chinese J Polym Sci, 2019, 37(12): 1283-1289. doi:10.1007/s10118-019-2284-2http://dx.doi.org/10.1007/s10118-019-2284-2
Men Y, Rieger J, Homeyer J. Macromolecules, 2004, 37(25): 9481-9488. doi:10.1021/ma048274khttp://dx.doi.org/10.1021/ma048274k
Duan Y, Zhang J, Shen D, Yan S. Macromolecules, 2003, 36(13): 4874-4879. doi:10.1021/ma034008fhttp://dx.doi.org/10.1021/ma034008f
Zhang Y, Lu Y, Duan Y, Zhang J, Yan S, Shen D. J Polym Sci Phys Ed, 2004, 42(24): 4440-4447. doi:10.1002/polb.20306http://dx.doi.org/10.1002/polb.20306
Zhang J, Duan Y, Shen D, Yan S, Noda I, Ozaki Y. Macromolecules, 2004, 37(9): 3292-3298. doi:10.1021/ma049910hhttp://dx.doi.org/10.1021/ma049910h
Sun X, Pi F, Zhang J, Takahashi I, Wang, F, Yan S, Ozaki Y. J Phys Chem B, 2011, 115(9): 1950-1957. doi:10.1021/jp110003mhttp://dx.doi.org/10.1021/jp110003m
Hu J, Han L, Zhang T, Duan Y, Zhang J. Chinese J Polym Sci, 2019, 37(3): 253-257. doi:10.1007/s10118-019-2184-5http://dx.doi.org/10.1007/s10118-019-2184-5
Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6http://dx.doi.org/10.1007/s10118-021-2571-6
Li H, Russell T, Wang D. Chinese J Polym Sci, 2021, 39(6): 651-658. doi:10.1007/s10118-021-2567-2http://dx.doi.org/10.1007/s10118-021-2567-2
Wang Y, Jiang Z, Fu L, Lu Y, Men Y. Macromolecules, 2013, 46(19): 7874-7879. doi:10.1021/ma401326ghttp://dx.doi.org/10.1021/ma401326g
Lin Y, Li X, Meng L, Chen X, Lv F, Zhang Q, Zhang R, Li L. Macromolecules, 2018, 51(7): 2690-2705. doi:10.1021/acs.macromol.8b00255http://dx.doi.org/10.1021/acs.macromol.8b00255
Wan R, Sun X, Ren Z, Li H, Yan S. Materials, 2020, 13(24): 5655. doi:10.3390/ma13245655http://dx.doi.org/10.3390/ma13245655
Sun X, Guo L, Sato H, Ozaki Y, Yan S, Takahashi I. Polymer, 2011, 52(17): 3865-3870. doi:10.1016/j.polymer.2011.06.024http://dx.doi.org/10.1016/j.polymer.2011.06.024
Su R, Wang K, Zhao P, Zhang Q, Du R, Fu Q, Li L, Li L. Polymer, 2007, 48(15): 4529-4536. doi:10.1016/j.polymer.2007.06.001http://dx.doi.org/10.1016/j.polymer.2007.06.001
Zhu H, Lv Y, Shi D, Li Y G, Miao W J, Wang Z B. Chinese J Polym Sci, 2020, 38(9): 1015-1024. doi:10.1007/s10118-020-2427-5http://dx.doi.org/10.1007/s10118-020-2427-5
Kang X W, Liu D, Zhang P, Kang M, Chen F, Yuan Q X, Zhao X L, Song Y Z, Song L X. Chinese J Polym Sci, 2020, 38(9): 1006-1014. doi:10.1007/s10118-020-2402-1http://dx.doi.org/10.1007/s10118-020-2402-1
Chen P, Zhao H, Xia Z, Zhang Q, Wang D, Meng L, Chen W. Chinese J Polym Sci, 2021, 39(1): 102-112. doi:10.1007/s10118-020-2458-yhttp://dx.doi.org/10.1007/s10118-020-2458-y
Aleksandrov A I, Aleksandrov I A, Shevchenko V G, Ozerin A N. Chinese J Polym Sci, 2021, 39(5): 601-609. doi:10.1007/s10118-021-2511-5http://dx.doi.org/10.1007/s10118-021-2511-5
Gao M, Ren Z, Yan S, Sun J, Chen X. J Phys Chem B, 2012, 116(32): 9832-9837. doi:10.1021/jp3041378http://dx.doi.org/10.1021/jp3041378
Li L, Zhang S, Xue M, Sun X, Ren Z, Li H, Huang Q, Yan S. Langmuir, 2019, 35(34): 11167-11174. doi:10.1021/acs.langmuir.9b01814http://dx.doi.org/10.1021/acs.langmuir.9b01814
Hu J, Xin R, Hou C, Yan S, Liu J. Chinese J Polym Sci, 2019, 37(7): 693-699. doi:10.1007/s10118-019-2226-zhttp://dx.doi.org/10.1007/s10118-019-2226-z
Sun X, Li H, Zhang X, Wang D, Schultz J M, Yan S. Macromolecules, 2010, 43(1): 561-564. doi:10.1021/ma9019784http://dx.doi.org/10.1021/ma9019784
Stocker W, Schumacher M, Graff S, Lang J, Wittmann J C, Lovinger A J, Lotz B. Macromolecules, 1994, 27(23): 6948-6955. doi:10.1021/ma00101a036http://dx.doi.org/10.1021/ma00101a036
Jiang S, Duan Y, Li L, Yan D, Yan S. Polymer, 2004, 45(18): 6365-6374. doi:10.1016/j.polymer.2004.07.010http://dx.doi.org/10.1016/j.polymer.2004.07.010
Li H, Liu D, Bu X, Zhou Z, Ren Z, Sun X, Reiter R, Yan S, Reiter G. Macromolecules, 2020, 53(1): 346-354. doi:10.1021/acs.macromol.9b02021http://dx.doi.org/10.1021/acs.macromol.9b02021
Li L, Hu J, Li Y, Huang Q, Sun X, Yan S. Macromolecules, 2020, 53(5): 1745-1751. doi:10.1021/acs.macromol.9b02598http://dx.doi.org/10.1021/acs.macromol.9b02598
Wang H, Schultz J M, Yan S. Polymer, 2007, 48(12): 3530-3539. doi:10.1016/j.polymer.2007.03.079http://dx.doi.org/10.1016/j.polymer.2007.03.079
Li L, Xin R, Li H, Sun X, Ren Z, Huang Q, Yan S. Macromolecules, 2020, 53(19): 8487-8493. doi:10.1021/acs.macromol.0c01456http://dx.doi.org/10.1021/acs.macromol.0c01456
Hou C, Wan R, Sun X, Ren Z, Li H, Yan S. Polym Cryst, 2020, 3(5): e10157. doi:10.1002/pcr2.10157http://dx.doi.org/10.1002/pcr2.10157
Li H, Sun X, Yan S, Schultz J M. Macromolecules, 2008, 41(13): 5062-5064. doi:10.1021/ma702725ghttp://dx.doi.org/10.1021/ma702725g
Zhang L L, Miao W K, Ren L J, Yan Y K, Wang W. Chinese J Polym Sci, 2021, 39(6): 716-724
Nie Y, Gao H, Yu M, Hu Z, Reiter G, Hu W. Polymer, 54(13): 2013, 3402-3407. doi:10.1016/j.polymer.2013.04.047http://dx.doi.org/10.1016/j.polymer.2013.04.047
Li J, Li H, Yan S, Sun X. ACS Appl Mater Interfaces, 2021, 13(2): 2944-2951. doi:10.1021/acsami.0c19199http://dx.doi.org/10.1021/acsami.0c19199
Duan Y, Liu J, Sato H, Zhang J, Tsuji H, Ozaki Y, Yan S. Biomacromolecules, 2006, 7(10): 2728-2735. doi:10.1021/bm060043thttp://dx.doi.org/10.1021/bm060043t
Zhou H, Jiang S, Yan S. J Phys Chem B, 2011, 115(46): 13449-13454. doi:10.1021/jp205755rhttp://dx.doi.org/10.1021/jp205755r
Chang H, Zhang J, Li L, Wang Z, Yang C, Takahashi I, Ozaki Y, Yan S. Macromolecules, 2010, 43(1): 362-366. doi:10.1021/ma902235fhttp://dx.doi.org/10.1021/ma902235f
Xin R, Wang S, Zeng C, Ji A, Zhang J, Ren Z, Jiang W, Wang Z, Yan S. ACS Omega, 2020, 5(1): 843-850. doi:10.1021/acsomega.9b03675http://dx.doi.org/10.1021/acsomega.9b03675
Jiang T, Wan P, Ren Z, Yan S. ACS Appl Mater Interfaces, 2019, 11(41): 38169-38176. doi:10.1021/acsami.9b13336http://dx.doi.org/10.1021/acsami.9b13336
Liu J, Wang J, Li H, Shen D, Zhang J, Ozaki Y, Yan S. J Phys Chem B, 2006, 110(2): 738-742. doi:10.1021/jp053369phttp://dx.doi.org/10.1021/jp053369p
Chu Xiao(初笑), Yan Shouke(闫寿科), Sun Xiaoli(孙晓丽). Acta Polymerica Sinica(高分子学报), 2021, 52(6): 634-646. doi:10.11777/j.issn1000-3304.2021.21036http://dx.doi.org/10.11777/j.issn1000-3304.2021.21036
Zhou W, Weng X, Jin S, Rastogi S, Lovinger A J, Lotz B, Cheng S Z D. Macromolecules, 2003, 36(25): 9485-9491. doi:10.1021/ma030312xhttp://dx.doi.org/10.1021/ma030312x
Keller A. Philosophical Magazine, 1957, 2(21): 1171-1175. doi:10.1080/14786435708242746http://dx.doi.org/10.1080/14786435708242746
Fischer E W Z. Naturforsch, 1957, 12a: 753-754. doi:10.1021/ac60131a710http://dx.doi.org/10.1021/ac60131a710
Till P H J. J Polym Sci, 1957, 24(106): 301-306. doi:10.1002/pol.1957.1202410616http://dx.doi.org/10.1002/pol.1957.1202410616
Yan S. Macromolecules, 2003, 36(2): 339-345. doi:10.1021/ma021387ohttp://dx.doi.org/10.1021/ma021387o
Ma L, Zhou Z, Zhang J, Sun X, Li H, Zhang J, Yan S. Macromolecules, 2017, 50(9): 3582-3589. doi:10.1021/acs.macromol.7b00299http://dx.doi.org/10.1021/acs.macromol.7b00299
Ma L, Zhang J, Memon M A, Sun X, Li H, Yan S. Polym Chem, 2015, 6(43): 7524-7532. doi:10.1039/c5py01083ghttp://dx.doi.org/10.1039/c5py01083g
Yan S, Petermann J. Polymer, 2000, 41(17): 6679-668163. doi:10.1016/s0032-3861(00)00109-9http://dx.doi.org/10.1016/s0032-3861(00)00109-9
Liu X, Wei Q S, Chai L G, Zhou J J, Huo H, Yan D D, Yan S K, Xu J, Li L. Chinese J Polym Sci, 2017, 35(1): 78-86. doi:10.1007/s10118-017-1872-2http://dx.doi.org/10.1007/s10118-017-1872-2
Chai L G, Liu X, Sun X L, Li L, Yan S K. Polym Chem, 2016, 7(10): 1892-1898. doi:10.1039/c5py02037ahttp://dx.doi.org/10.1039/c5py02037a
Liu Q, Sun X, Li H, Yan S. Polymer, 2013, 54(17): 4404-4421. doi:10.1016/j.polymer.2013.04.066http://dx.doi.org/10.1016/j.polymer.2013.04.066
Hu J, Xin R, Hou C, Yan S. Macromol Chem Phys, 2019, 220(5): 1800478. doi:10.1002/macp.201800478http://dx.doi.org/10.1002/macp.201800478
Wittmann J C, Smith P. Nature, 1991, 352(6334): 414-417. doi:10.1038/352414a0http://dx.doi.org/10.1038/352414a0
Chai L, Zhou H, Sun X, Li H, Yan S. Chinese J Polym Sci, 2016, 34(4): 513-522. doi:10.1007/s10118-016-1770-zhttp://dx.doi.org/10.1007/s10118-016-1770-z
Bonnet M, Yan S, Petermann J, Zhang B, Yang D. J Mater Sci, 2001, 36(2): 635-641. doi:10.1023/a:1004868320287http://dx.doi.org/10.1023/a:1004868320287
Loos J, Schauwienold A M, Yan S, Petermann J. Polym Bull, 1997, 38(2): 185-189. doi:10.1007/s002890050036http://dx.doi.org/10.1007/s002890050036
Zhang B, Yang D, De Rosa C, Yan S. Petermann J. Macromolecules, 2001, 34(15): 5221-5223. doi:10.1021/ma010036rhttp://dx.doi.org/10.1021/ma010036r
Zhang B, Yang D, De Rosa C, Yan S. Macromolecules, 2002, 35(12): 4646-4652. doi:10.1021/ma011975mhttp://dx.doi.org/10.1021/ma011975m
Jiang S, Li H, De Rosa C, Auriemma F, Yan S. Macromolecules, 2010, 43(3): 1449-1454. doi:10.1021/ma9023894http://dx.doi.org/10.1021/ma9023894
Hu Jian(扈健), Wang Mengfan(王梦梵), Wu Jinghua(吴婧华). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1390-1405. doi:10.11777/j.issn1000-3304.2020.20258http://dx.doi.org/10.11777/j.issn1000-3304.2020.20258
Qiao Y, Men Y. Macromolecules, 2017, 50(14): 5490-5497. doi:10.1021/acs.macromol.7b00771http://dx.doi.org/10.1021/acs.macromol.7b00771
Qiao Y, Wang Q, Men Y. Macromolecules, 2016, 49(14): 5126-5136. doi:10.1021/acs.macromol.6b00862http://dx.doi.org/10.1021/acs.macromol.6b00862
Qiao Y, Wang H, Men Y. Macromolecules, 2018, 51(6): 2232-2239. doi:10.1021/acs.macromol.7b02481http://dx.doi.org/10.1021/acs.macromol.7b02481
Liu P, Men Y. Macromolecules, 2021, 54(2): 858-865. doi:10.1021/acs.macromol.0c02171http://dx.doi.org/10.1021/acs.macromol.0c02171
Xin R, Wang S, Guo Z, Li Y, Hu J, Sun X, Xue M, Zhang J, Yan S. Macromolecules, 2020, 53(8): 3090-3096. doi:10.1021/acs.macromol.0c00414http://dx.doi.org/10.1021/acs.macromol.0c00414
Xin R, Guo Z, Li Y, Sun X, Xue M, Zhang J, Yan S. Macromolecules, 2019, 52(19): 7175-7182. doi:10.1021/acs.macromol.9b01574http://dx.doi.org/10.1021/acs.macromol.9b01574
Xin R, Zhang J, Sun X, Li H, Ren Z,Yan S. Polymers, 2018, 10(5): 556. doi:10.3390/polym10050556http://dx.doi.org/10.3390/polym10050556
Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L. Macromolecules, 2013, 46(18): 7399-7405. doi:10.1021/ma400952rhttp://dx.doi.org/10.1021/ma400952r
Zhang B, Yang D, Yan S. J Polym Sci Phys Ed, 2002, 40(23): 2641-2645. doi:10.1002/polb.10327http://dx.doi.org/10.1002/polb.10327
Qiu X, Azhar U, Li J, Huang D, Jiang S. Chinese J Polym Sci, 2019, 37(7): 633-636. doi:10.1007/s10118-019-2273-5http://dx.doi.org/10.1007/s10118-019-2273-5
Ma Y P, Zheng W P, Liu C G, Shao H F, Nie H R, He A H. Chinese J Polym Sci, 2020, 38(2): 164-173. doi:10.1007/s10118-020-2337-6http://dx.doi.org/10.1007/s10118-020-2337-6
Zhang Z, Chen X, Zhang C, Liu, C T, Wang Z, Liu Y P. Chinese J Polym Sci, 2020, 38(8): 888-897. doi:10.1007/s10118-020-2409-7http://dx.doi.org/10.1007/s10118-020-2409-7
Wu J, Zhou H, Liu Q, Yan S. Chinese J Polym Sci, 2013, 31(6): 841-852. doi:10.1007/s10118-013-1269-9http://dx.doi.org/10.1007/s10118-013-1269-9
Wang J, Liu Y, Zou D, Ren Z, Lin J, Liu X, Yan S. Macromolecules, 2021, 54(9): 4342-4350. doi:10.1021/acs.macromol.0c02815http://dx.doi.org/10.1021/acs.macromol.0c02815
Li Y, Guo Z, Xue M, Yan S. Macromolecules, 2019, 52(11): 4232-4239. doi:10.1021/acs.macromol.9b00627http://dx.doi.org/10.1021/acs.macromol.9b00627
Guo Z, Yuan C, Song C, Xin R, Hou C, Hu J, Li H, Sun X, Ren Z, Yan S. Macromolecules, 2021, 54(16): 7564-7571. doi:10.1021/acs.macromol.1c01429http://dx.doi.org/10.1021/acs.macromol.1c01429
Wang J, Liu Y, Li H, Yan S, Sun X, Tu D, Guo X, Ren Z. Mater Chem Front, 2020, 4(2): 661-668. doi:10.1039/c9qm00684bhttp://dx.doi.org/10.1039/c9qm00684b
Guo Z, Xin R, Hu J, Li Y, Sun X, Yan S. Macromolecules, 2019, 52(24): 9657-9664. doi:10.1021/acs.macromol.9b02023http://dx.doi.org/10.1021/acs.macromol.9b02023
Li J, Xue M, Xue N, Li H, Zhang L, Ren Z, Yan S, Sun X. Langmuir, 2019, 35(24): 7841-7847. doi:10.1021/acs.langmuir.9b00402http://dx.doi.org/10.1021/acs.langmuir.9b00402
Guo Z, Li S, Liu X, Zhang J, Li H, Sun X, Ren Z, Yan S. J Phys Chem B, 2018, 122(40): 9425-9433. doi:10.1021/acs.jpcb.8b08193http://dx.doi.org/10.1021/acs.jpcb.8b08193
Lotz B. Macromolecules, 2014, 47(21): 7612-7624. doi:10.1021/ma5009868http://dx.doi.org/10.1021/ma5009868
Li C, Jin S, Weng X, Ge J, Zhang D, Bai F, Harris F, Cheng S, Yan D, He T, Lotz B, Chien L. Macromolecules, 2002, 35(14): 5475-5482. doi:10.1021/ma0204453http://dx.doi.org/10.1021/ma0204453
Guan G, Zhang J, Sun X, Li H, Yan S, Lotz B. Macromol Rapid Commun, 2018, 39(20): 1800353. doi:10.1002/marc.201800353http://dx.doi.org/10.1002/marc.201800353
Lovinger A J, Davis D D, Lotz B. Macromolecules, 1991, 24(2): 552-560. doi:10.1021/ma00002a033http://dx.doi.org/10.1021/ma00002a033
Lovinger A J. J Appl Phys, 1981, 52(10): 5934-5938. doi:10.1063/1.328522http://dx.doi.org/10.1063/1.328522
Brinkmann M, Rannou P. Macromolecules, 2009, 42(4): 1125-1130. doi:10.1021/ma8023415http://dx.doi.org/10.1021/ma8023415
Tosaka M, Kamijo T, Tsuji M, Kohjiya S, Ogawa T, Isoda S, Kobayashi T. Macromolecules, 2000, 33(26): 9666-9672. doi:10.1021/ma001495fhttp://dx.doi.org/10.1021/ma001495f
Jinnai H, Spontak R J, Nishi T. Macromolecules, 2010, 43(4): 1675-1688. doi:10.1021/ma902035phttp://dx.doi.org/10.1021/ma902035p
Jinnai H, Nishikawa Y, Ikehara T, Toshio N. Adv Polym Sci, 2004, 170: 115-167
0
浏览量
908
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构