浏览全部资源
扫码关注微信
1.大连理工大学高分子材料系
2.辽宁省高性能树脂工程技术研究中心 大连 116024
Yue-zhen Bin, E-mail: binyz@dlut.edu.cn
纸质出版日期:2022-03-20,
网络出版日期:2021-12-23,
收稿日期:2021-09-02,
录用日期:2021-11-26
移动端阅览
董大林,宾月珍.氟取代聚芳醚酮低温合成及其结构研究[J].高分子学报,2022,53(03):261-272.
Dong Da-lin,Bin Yue-zhen.Synthesis of Fluorine-substituted Poly(aryl ether ketone)s under Low Temperature and Its Structure[J].ACTA POLYMERICA SINICA,2022,53(03):261-272.
董大林,宾月珍.氟取代聚芳醚酮低温合成及其结构研究[J].高分子学报,2022,53(03):261-272. DOI: 10.11777/j.issn1000-3304.2021.21260.
Dong Da-lin,Bin Yue-zhen.Synthesis of Fluorine-substituted Poly(aryl ether ketone)s under Low Temperature and Its Structure[J].ACTA POLYMERICA SINICA,2022,53(03):261-272. DOI: 10.11777/j.issn1000-3304.2021.21260.
通过傅克酰基化反应合成4
4'-二(4-氟苯甲酰基)二苯醚、4
4'-二(五氟苯甲酰基)二苯醚、4
4'-二(4-氟苯甲酰基)二苯硫醚以及4
4'-二(五氟苯甲酰基)二苯醚4种长链双卤单体,并进一步制备了含二氮杂萘酮聚芳醚酮聚合物. 通过多氟取代双卤单体在含二氮杂萘酮聚芳醚酮聚合物主链中引入氟原子. 多氟取代双卤单体具有多个反应位点,低温反应以及两步投料的聚合路线保证了溶液缩聚反应在多氟取代双卤单体的指定位点进行,保证了氟取代含二氮杂萘酮聚芳醚酮聚合物的线形结构并具有一定的分子量. 讨论了氟原子的引入对于含二氮杂萘酮聚芳醚酮聚合物合成路线、分子结构、数均分子量、热性能以及序列结构的影响.
Poly(aryl ether ketone)s are high performance engineering plastics with excellent comprehensive performance. They are usually prepared by solution polycondensation at high temperature with bisphenol monomers and dihalogen monomer. Polycondensation at high temperature makes it difficult to prepare and raises production costs. As a result
preparation of poly(aryl ether ketone)s at low temperature is significant in scientific research and industrial production. On the other hand
introduction of fluorine atoms into poly(aryl ether ketone)s with phthalazinone can optimize comprehensive properties. Here
fluorine atoms are introduced in dihalogen monomers to prepare fluorine substituted poly(aryl ether ketone)s at low temperature. Long-chain dihalogenated monomers are obtained by Friedel-Crafts acylation reaction with pentafluorobenzoic acid instead of p-fluorobenzoic acid. Fluorine substituted long-chain dihalogenated monomers are used in preparation of poly(aryl ether ketone)s with phthalazinone at low temperature. Fluorine atoms were introduced into main chain of poly(aryl ether ketone)s containing phthalazinone. Polyfluorosubstituted dihalogenated monomers have multiple reaction sites. Low temperature reaction and two-step feeding polymerization route ensure that solution polycondensation reaction is carried out at certain position of polyfluorosubstituted dihalogenated monomers and that fluorine substituted poly(aryl ether ketone)s with phthalazinone are linear polymers. The introduction of fluorine atoms has an impact on synthetic route
molecular structure
number average molecular weight
thermal properties and sequence structure of poly(aryl ether ketone)s with phthalazinone. Two kinds of fluorine substituted poly(aryl ether ketone)s with phthalazinone synthesised with long-chain dihalogenated monomers are amorphous polymers. With the introduction of fluorine atoms
glass transition temperatures of the corresponding poly(aryl ether ketone)s with phthalazinone are improved; while number-average molecule weight and thermal decomposition temperature of fluorine substituted poly(aryl ether ketone)s with phthalazinone are reduced
due to the low-temperature reaction. Otherwise
fluorine substituted poly(aryl ether ketone)s with phthalazinone have potential for further post functionalization. It's expected that this study could provide reference for other researchers.
二氮杂萘酮聚芳醚酮氟取代序列结构
PhthalazinonePoly(aryl ether ketone)Fluoro-substitutionSequence structure
Chen G, Chen P, Zeng L X, Xu J J, Liu P Q. J Macromol Sci B, 2019, 58(12): 934-946. doi:10.1080/00222348.2019.1677298http://dx.doi.org/10.1080/00222348.2019.1677298
Dong Dalin(董大林), Bin Yuezhen(宾月珍), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2020, 51(12): 1321-1334. doi:10.11777/j.issn1000-3304.2020.20130http://dx.doi.org/10.11777/j.issn1000-3304.2020.20130
Luan J S, Zhang S L, Geng Z, Wang G B. Polym Eng Sci, 2013, 53(10): 2254-2260. doi:10.1002/pen.23613http://dx.doi.org/10.1002/pen.23613
Wu T, Liu P Q, Wang X, Zeng L X, Ye G D, Xu J J. J Appl Polym Sci, 2013, 128(2): 1110-1116. doi:10.1002/app.38338http://dx.doi.org/10.1002/app.38338
Li R S, Wu T, Zeng L X, Xu J J, Liu P Q. J Appl Polym Sci, 2014, 131(16): 40595. doi:10.1002/app.40595http://dx.doi.org/10.1002/app.40595
Zeng L X, Li R S, Chen P, Xu J J, Liu P Q. J Appl Polym Sci, 2016, 133(32): 43800. doi:10.1002/app.43800http://dx.doi.org/10.1002/app.43800
Dong D L, Bin Y Z, Jian X G. High Perform Polym, 2021, 33(3): 276-284. doi:10.1177/0954008320958048http://dx.doi.org/10.1177/0954008320958048
Bao Feng(鲍锋), Liu Cheng(刘程), Song Yuanyuan(宋媛媛), Wu Zuoqiang(邬祚强), Wang Jinyan(王锦艳), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2018, (6): 692-699. doi:10.11777/j.issn1000-3304.2017.17http://dx.doi.org/10.11777/j.issn1000-3304.2017.17
Scholes C A, Kanehashi S, Stevens G W, Kentish S E. Sep Purif Technol, 2015, 147: 203-209. doi:10.1016/j.seppur.2015.04.023http://dx.doi.org/10.1016/j.seppur.2015.04.023
Fang M F, Okamoto Y, Koike Y, He Z J, Merkel T C. J Fluorine Chem, 2016, 188: 18-22. doi:10.1016/j.jfluchem.2016.05.013http://dx.doi.org/10.1016/j.jfluchem.2016.05.013
Mirchandani G, Samanta S, Raghavendra V B, Chaudhary S, Baustkar S, Shyamroy S, Singha N K. Prog Org Coat, 2021, 152: 1-12. doi:10.1016/j.porgcoat.2020.106106http://dx.doi.org/10.1016/j.porgcoat.2020.106106
Han D J, Kim S, Heo H J, Park I J, Kang H S, Lee S G, Lee J C, Sohn E H. ACS Appl Polym Mater, 2020, 2(9): 3957-3965. doi:10.1021/acsapm.0c00625http://dx.doi.org/10.1021/acsapm.0c00625
Liu J C, Wang K, Xie Y Z, Gao F, Zeng Q T, Yuan Y, Liu R, Liu X Y. J Coat Technol Res, 2017, 14(6): 1325-1334. doi:10.1007/s11998-017-9931-8http://dx.doi.org/10.1007/s11998-017-9931-8
Hajdok I, Bona A, Werner H J, Kerres J. Eur Polym J, 2014, 52: 76-87. doi:10.1016/j.eurpolymj.2013.12.003http://dx.doi.org/10.1016/j.eurpolymj.2013.12.003
Zhao Z H, Ma X H, Zhang A X, Song N H. J Polym Sci, Part A: Polym Chem, 2011, 49(11): 2423-2433. doi:10.1002/pola.24673http://dx.doi.org/10.1002/pola.24673
Ding J F, Qi Y H. Macromolecules, 2008, 41(3): 751-757. doi:10.1021/ma071669uhttp://dx.doi.org/10.1021/ma071669u
Kimura K, Tabuchi Y, Yamashita Y, Cassidy P E, Fitch J W, Okumura Y. Polym Adv Technol, 2000, 11(8-12): 757-765. doi:10.1002/1099-1581(200008/12)11:8/12<757::aid-pat54>3.0.co;2-zhttp://dx.doi.org/10.1002/1099-1581(200008/12)11:8/12<757::aid-pat54>3.0.co;2-z
Kimura K, Nishichi A, Yamashita Y. Polym Adv Technol, 2004, 15(6): 313-319. doi:10.1002/pat.476http://dx.doi.org/10.1002/pat.476
Ding J F, Liu F T, Li M, Day M, Zhou M. J Polym Sci, Part A: Polym Chem, 2002, 40(23): 4205-4216. doi:10.1002/pola.10504http://dx.doi.org/10.1002/pola.10504
Ding J F, Day M, Robertson G P, Roovers J. Macromol Chem Phys, 2004, 205(8): 1070-1079. doi:10.1002/macp.200400016http://dx.doi.org/10.1002/macp.200400016
Schonberger F, Chromik A, Kerres J. Polymer, 2010, 51(19): 4299-4313. doi:10.1016/j.polymer.2010.07.022http://dx.doi.org/10.1016/j.polymer.2010.07.022
Li W W, Wang S B, Zhang X F, Wang W P, Xie X F, Pei P C. Int J Hydrogen Energy, 2014, 39(25): 13710-13717. doi:10.1016/j.ijhydene.2014.03.133http://dx.doi.org/10.1016/j.ijhydene.2014.03.133
Guo H X, Wang Z F, Liu Y, Huo P F, Gu J Y, Zhao F B. J Membr Sci, 2020, 611: 118337. doi:10.1016/j.memsci.2020.118337http://dx.doi.org/10.1016/j.memsci.2020.118337
Liu G S, Shang Y M, Xie X F, Wang S B, Wang J H, Wang Y W, Mao Z Q. Int J Hydrogen Energy, 2012, 37(1): 848-853. doi:10.1016/j.ijhydene.2011.04.047http://dx.doi.org/10.1016/j.ijhydene.2011.04.047
Li C P, Zhang S M, Wang S B, Xie X F, Deng C S, Pei P C. Int J Hydrogen Energy, 2014, 39(26): 14362-14369. doi:10.1016/j.ijhydene.2014.03.049http://dx.doi.org/10.1016/j.ijhydene.2014.03.049
Liu Q, Zhang S H, Wang Z Q, Chen Y N, Jian X G. Polymer, 2020, 198: 122525. doi:10.1016/j.polymer.2020.122525http://dx.doi.org/10.1016/j.polymer.2020.122525
Hoque M E, Hassan M M M, Chattopadhyay B. J Am Chem Soc, 2021, 143(13): 5022-5037. doi:10.1021/jacs.0c13415http://dx.doi.org/10.1021/jacs.0c13415
Chauveau E, Marestin C, Mercier R, Espuche E, Morin A. J Polym Sci, Part B: Polym Phys, 2017, 55(10): 771-777. doi:10.1002/polb.24330http://dx.doi.org/10.1002/polb.24330
Lee S C, Guo L, Yue H F, Liao H H, Rueping M. Synlett, 2017, 28(19): 2594-2598
Ge X C, Xu Y, Xiao M, Meng Y Z, Hay A S. Eur Polym J, 2005, 42(5): 1206-1214. doi:10.1016/j.eurpolymj.2005.11.013http://dx.doi.org/10.1016/j.eurpolymj.2005.11.013
Liu Qian(刘乾), Yang Yuxue(杨玉雪), Zhang Shouhai(张守海), Xue Rendong(薛仁东), Jian Xigao(蹇锡高). Acta Polymerica Sinica(高分子学报), 2018, (5): 581-587. doi:10.11777/j.issn1000-3004.2017.17211http://dx.doi.org/10.11777/j.issn1000-3004.2017.17211
Li X, Jiang J W, Yu L M, Liu X L, Sheng S R. High Perform Polym, 2015, 27(2): 200-206. doi:10.1177/0954008314543119http://dx.doi.org/10.1177/0954008314543119
Cheng L, Han K, Xu K, Gadinski M R, Wang Q. Polym Chem-UK, 2013, 4(8): 2436-2439. doi:10.1039/c3py00174ahttp://dx.doi.org/10.1039/c3py00174a
0
浏览量
110
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构