浏览全部资源
扫码关注微信
中国科学院宁波材料技术与工程研究所 宁波 315201
[ "刘小青,1980年生. 中国科学院宁波材料技术与工程研究所研究员,博士生导师. 2002年本科毕业于兰州大学化学系;2007年博士毕业于中国科学院化学研究所;2007年9月~2009年10月分别在新加坡南洋理工大学、美国华盛顿州立大学从事博士后研究;2009年11月到中国科学院宁波材料技术与工程研究所工作. 获浙江省杰出青年科学基金支持. 近几年负责或核心参与国家973课题、国家自然科学基金、国家重点研发计划、中国科学院专项课题等20多项科研任务. 在《Progress in Polymer Science》《Green Chemistry》《Macromolecules》等期刊上发表SCI研究论文80余篇,H-因子41,论文他引4500余次,获授权发明专利60余件. 历获中国产学研合作创新奖一等奖、中国科学院先进科技特派员一等奖、中国科学院院地合作一等奖等荣誉. 主要从事生物基高分子材料、高性能热固性树脂、环保胶黏剂的研究和开发." ]
纸质出版日期:2022-02-20,
网络出版日期:2021-12-01,
收稿日期:2021-09-04,
修回日期:2021-10-27,
移动端阅览
刘敬楷,代金月,赵伟伟等.可持续热固性树脂的高性能和功能化设计合成[J].高分子学报,2022,53(02):107-119.
Liu Jing-kai,Dai Jin-yue,Zhao Wei-wei,et al.Synthesis of Sustainable Thermosetting Resins: High Performance and Functionalization[J].ACTA POLYMERICA SINICA,2022,53(02):107-119.
刘敬楷,代金月,赵伟伟等.可持续热固性树脂的高性能和功能化设计合成[J].高分子学报,2022,53(02):107-119. DOI: 10.11777/j.issn1000-3304.2021.21261.
Liu Jing-kai,Dai Jin-yue,Zhao Wei-wei,et al.Synthesis of Sustainable Thermosetting Resins: High Performance and Functionalization[J].ACTA POLYMERICA SINICA,2022,53(02):107-119. DOI: 10.11777/j.issn1000-3304.2021.21261.
传统热固性树脂的大量使用与石化资源的枯竭和环境恶化之间的矛盾日益突出,使得高性能热固性树脂的可持续发展正面临着严峻的挑战. 以可再生资源替代传统的石油化工产品用于生物基热固性树脂的合成,是实现其绿色化的重要方式之一. 除此以外,如何赋予生物基热固性树脂良好的使役性能、复杂应用环境下的多功能性、高效且高质的可回收再利用性,也是保证其可持续发展的重要内容. 早在10年前,本团队就开始了可持续热固性树脂的高性能与功能化设计合成,并致力于从原料选择、合成过程、树脂功能化、高附加值回收利用等全生命周期实现热固性树脂的可持续发展. 基于多年的研究积累和经验,本文回顾和总结了我们在生物基平台化合物筛选、树脂结构功能一体化设计和高附加值回收利用等方面的工作,展望了可持续热固性树脂的发展前景和未来趋势.
The contradiction between the extensive usage of traditional thermosetting resin and the depletion of petrochemical resources as well as environmental pollution and deterioration has attracted more and more attention
which makes the sustainable development of high-performance thermosets face severe challenges. Taking renewable resources as feedstocks to replace traditional petrochemical products for the synthesis of bio-based thermosetting resin is one of the feasible and significant methods to achieve its green production. Besides
how to endow the bio-based thermosets with satisfied service performance and multi-functionality under different applicated environment as well as high-efficient and high-quality recyclability are also important research topics for increasing sustainability. As early as ten years ago
our team started to design and synthesize sustainable thermosetting resin
of which the high-performance and functionality were successfully realized. Aiming to further achieve the sustainable development of thermosets in the total lifecycle
we dedicated our research focus to the comprehensive improvement of the resins including renewable material selection
green manufacturing process
versatile application
and high value-added recycling. Based on our experiences
this feature article reviewed our work on the selection of bio-based platform compounds
integrative design of resin with high-performance and multi-functionality
and high value-added recycling. In the end
the prospect and future of sustainable thermosetting resins were forecasted.
可持续热固性树脂生物基功能化回收利用
Sustainable thermosetting resinsBio-basedFunctionalizationRecycling
Shen L, Haufe J, Patel M K. Report for European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, 2009, 243: 155-157
Ma S, Li T, Liu X, Zhu J. Polym Int, 2016, 65(2): 164-173. doi:10.1002/pi.5027http://dx.doi.org/10.1002/pi.5027
Ma S, Webster D C. Prog Polym Sci, 2018, 76: 65-110. doi:10.1016/j.progpolymsci.2017.07.008http://dx.doi.org/10.1016/j.progpolymsci.2017.07.008
Liu J, Zhang L, Shun W, Dai J, Peng Y, Liu X. J Polym Sci, 2021, 59(14): 1474-1490. doi:10.1002/pol.20210328http://dx.doi.org/10.1002/pol.20210328
Liu J, Wang S, Peng Y, Zhu J, Zhao W, Liu X. Prog Polym Sci, 2021, 113: 101353. doi:10.1016/j.progpolymsci.2020.101353http://dx.doi.org/10.1016/j.progpolymsci.2020.101353
Saha B C. J Ind Microbiol Biotechnol, 2017, 44(2): 303-315. doi:10.1007/s10295-016-1878-8http://dx.doi.org/10.1007/s10295-016-1878-8
Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J. Green Chem, 2013, 15(1): 245-254. doi:10.1039/c2gc36715ghttp://dx.doi.org/10.1039/c2gc36715g
Ma S, Liu X, Fan L, Jiang Y, Cao L, Tang Z, Zhu J. ChemSusChem, 2014, 7(2): 555-562. doi:10.1002/cssc.201300749http://dx.doi.org/10.1002/cssc.201300749
Dai J, Ma S, Wu Y, Zhu J, Liu X. Prog Org Coat, 2015, 87: 197-203. doi:10.1016/j.porgcoat.2015.05.030http://dx.doi.org/10.1016/j.porgcoat.2015.05.030
Dai J, Ma S, Wu Y, Han L, Zhang L, Zhu J, Liu X. Green Chem, 2015, 17(4): 2383-2392. doi:10.1039/c4gc02057jhttp://dx.doi.org/10.1039/c4gc02057j
Dai J, Ma S, Teng N, Dai X, Shen X, Wang S, Liu X, Zhu J. Ind Eng Chem Res, 2017, 56(10): 2650-2657. doi:10.1021/acs.iecr.7b00049http://dx.doi.org/10.1021/acs.iecr.7b00049
Dai J, Liu X, Ma S, Wang J, Shen X, You S, Zhu J. Prog Org Coat, 2016, 97: 210-215. doi:10.1016/j.porgcoat.2016.04.014http://dx.doi.org/10.1016/j.porgcoat.2016.04.014
Brocas A L, Llevot A, Mantzaridis C, Cendejas G, Auvergne R, Caillol S, Carlotti S, Cramail H. Des Monomers Polym, 2014, 17(4): 301-310. doi:10.1080/15685551.2013.840504http://dx.doi.org/10.1080/15685551.2013.840504
Ma Q, Liu X, Zhang R, Zhu J, Jiang Y. Green Chem, 2013, 15(5): 1300-1310. doi:10.1039/c3gc00095hhttp://dx.doi.org/10.1039/c3gc00095h
Liu X, Zhang J. Polym Int, 2010, 59(5): 607-609. doi:10.1002/pi.v59:2http://dx.doi.org/10.1002/pi.v59:2
Liu X, Xin W, Zhang J. Bioresour Technol, 2010, 101(7): 2520-2524. doi:10.1016/j.biortech.2009.11.028http://dx.doi.org/10.1016/j.biortech.2009.11.028
Liu X, Huang W, Jiang Y, Zhu J, Zhang C. Express Polym Lett, 2012, 6(4): 293-298. doi:10.3144/expresspolymlett.2012.32http://dx.doi.org/10.3144/expresspolymlett.2012.32
Li C, Liu X, Zhu J, Zhang C, Guo J. J Macromol Sci Part A-Chem, 2013, 50(3): 321-329. doi:10.1080/10601325.2013.755879http://dx.doi.org/10.1080/10601325.2013.755879
Teng N, Yang S, Dai J, Wang S, Zhao J, Zhu J, Liu X. ACS Sustain Chem Eng, 2019, 7(9): 8715-8723. doi:10.1021/acssuschemeng.9b00607http://dx.doi.org/10.1021/acssuschemeng.9b00607
Dai J, Teng N, Shen X, Liu Y, Cao L, Zhu J, Liu X. Ind Eng Chem Res, 2018, 57(8): 3091-3102. doi:10.1021/acs.iecr.7b04716http://dx.doi.org/10.1021/acs.iecr.7b04716
Liu J, Wuliu Y, Dai J, Hu J, Liu X. Eur Polym J, 2021, 157: 110671. doi:10.1016/j.eurpolymj.2021.110671http://dx.doi.org/10.1016/j.eurpolymj.2021.110671
Shen X, Liu X, Wang J, Dai J, Zhu J. Ind Eng Chem Res, 2017, 56(30): 8508-8516. doi:10.1021/acs.iecr.7b01624http://dx.doi.org/10.1021/acs.iecr.7b01624
Shen X, Liu X, Dai J, Liu Y, Zhang Y, Zhu J. Ind Eng Chem Res, 2017, 56(38): 10929-10938. doi:10.1021/acs.iecr.7b02901http://dx.doi.org/10.1021/acs.iecr.7b02901
Liu Y, Zhao J, Peng Y, Luo J, Cao L, Liu X. Ind Eng Chem Res, 2020, 59(5): 1914-1924. doi:10.1021/acs.iecr.9b05904http://dx.doi.org/10.1021/acs.iecr.9b05904
Deng J, Liu X, Li C, Jiang Y, Zhu J. RSC Adv, 2015, 5(21): 15930-15939. doi:10.1039/c5ra00242ghttp://dx.doi.org/10.1039/c5ra00242g
Shen X, Dai J, Liu Y, Liu X, Zhu J. Polymer, 2017, 122: 258-269. doi:10.1016/j.polymer.2017.06.075http://dx.doi.org/10.1016/j.polymer.2017.06.075
Shen X, Cao L, Liu Y, Dai J, Liu X, Zhu J, Du S. Macromolecules, 2018, 51(13): 4782-4799. doi:10.1021/acs.macromol.8b00741http://dx.doi.org/10.1021/acs.macromol.8b00741
Ellzey K A, Ranganathan T, Zilberman J, Coughlin E B, Farris R J, Emrick T. Macromolecules, 2006, 39(10): 3553-3558. doi:10.1021/ma052777ohttp://dx.doi.org/10.1021/ma052777o
Dai J, Teng N, Liu J, Feng J, Zhu J, Liu X. Compos Part B-Eng, 2019, 179: 107523. doi:10.1016/j.compositesb.2019.107523http://dx.doi.org/10.1016/j.compositesb.2019.107523
Dai J, Teng N, Peng Y, Liu Y, Cao L, Zhu J, Liu X. ChemSusChem, 2018, 11(18): 3175-3183. doi:10.1002/cssc.201801404http://dx.doi.org/10.1002/cssc.201801404
Dai J, Peng Y, Teng N, Liu Y, Liu C, Shen X, Mahmud S, Zhu J, Liu X. ACS Sustain Chem Eng, 2018, 6(6): 7589-7599. doi:10.1021/acssuschemeng.8b00439http://dx.doi.org/10.1021/acssuschemeng.8b00439
Liu J, Dai J, Wang S, Peng Y, Cao L, Liu X. Compos Part B-Eng, 2020, 190: 107926. doi:10.1016/j.compositesb.2020.107926http://dx.doi.org/10.1016/j.compositesb.2020.107926
Teng N, Dai J, Wang S, Hu J, Liu X. Chem Eng J, 2022, 428: 131226. doi:10.1016/j.cej.2021.131226http://dx.doi.org/10.1016/j.cej.2021.131226
Teng N, Dai J, Wang S, Liu X, Hu J, Yi X, Liu X. Eur Polym J, 2021, 157: 110638. doi:10.1016/j.eurpolymj.2021.110638http://dx.doi.org/10.1016/j.eurpolymj.2021.110638
Cao L, Liu X, Na H, Wu Y, Zheng W, Zhu J. J Mater Chem A, 2013, 1(16): 5081-5088. doi:10.1039/c3ta01700ahttp://dx.doi.org/10.1039/c3ta01700a
Li C, Dai J, Liu X, Jiang Y, Ma S, Zhu J. Macromol Chem Phys, 2016, 217(13): 1439-1447. doi:10.1002/macp.201670041http://dx.doi.org/10.1002/macp.201670041
Li T, Liu X, Jiang Y, Ma S, Zhu J. J Appl Polym Sci, 2016, 133(46): 44219. doi:10.1002/app.44219http://dx.doi.org/10.1002/app.44219
Lu G, Dai J, Liu J, Tian S, Xu Y, Teng N, Liu X. ACS Omega, 2020, 5(7): 3763-3773. doi:10.1021/acsomega.0c00025http://dx.doi.org/10.1021/acsomega.0c00025
Dai J, Ma S, Zhu L, Wang S, Yang L, Song Z, Liu X, Zhu J. Polymer, 2017, 108: 215-222. doi:10.1016/j.polymer.2016.11.068http://dx.doi.org/10.1016/j.polymer.2016.11.068
Gao S, Liu Y, Feng S, Lu Z. J Mater Chem A, 2019, 7(29): 17498-17504. doi:10.1039/c9ta04951ghttp://dx.doi.org/10.1039/c9ta04951g
Ma S, Webster D C. Macromolecules, 2015, 48(19): 7127-7137. doi:10.1021/acs.macromol.5b01923http://dx.doi.org/10.1021/acs.macromol.5b01923
Wang S, Ma S, Li Q, Xu X, Wang B, Yuan W, Zhou S, You S, Zhu J. Green Chem, 2019, 21(6): 1484-1497. doi:10.1039/c8gc03477jhttp://dx.doi.org/10.1039/c8gc03477j
You S, Ma S, Dai J, Jia Z, Liu X, Zhu J. ACS Sustain Chem Eng, 2017, 5(6): 4683-4689. doi:10.1021/acssuschemeng.7b00030http://dx.doi.org/10.1021/acssuschemeng.7b00030
Zhang L, Zhao Z, Dai Z, Xu L, Fu F, Endo T, Liu X. ACS Macro Lett, 2019, 8(5): 506-511. doi:10.1021/acsmacrolett.9b00083http://dx.doi.org/10.1021/acsmacrolett.9b00083
Lo J N, Nutt S R, Williams T J. ACS Sustain Chem Eng, 2018, 6(6): 7227-7231. doi:10.1021/acssuschemeng.8b01790http://dx.doi.org/10.1021/acssuschemeng.8b01790
Guo B, Chen Y, Lei Y, Zhang L, Zhou W Y, Rabie A B M, Zhao J. Biomacromolecules, 2011, 12(4): 1312-1321. doi:10.1021/bm2000378http://dx.doi.org/10.1021/bm2000378
Wang Y, Cui X, Yang Q, Deng T, Wang Y, Yang Y, Jia S, Qin Z, Hou X. Green Chem, 2015, 17(9): 4527-4532. doi:10.1039/c5gc01048ahttp://dx.doi.org/10.1039/c5gc01048a
Han J, Liu T, Hao C, Zhang S, Guo B, Zhang J. Macromolecules, 2018, 51(17): 6789-6799. doi:10.1021/acs.macromol.8b01424http://dx.doi.org/10.1021/acs.macromol.8b01424
Wang S, Wu Y, Dai J, Teng N, Peng Y, Cao L, Liu X. Eur Polym J, 2020, 123: 109439. doi:10.1016/j.eurpolymj.2019.109439http://dx.doi.org/10.1016/j.eurpolymj.2019.109439
Wang S, Dai J, Teng N, Hu J, Zhao W, Liu X. ACS Sustain Chem Eng, 2020, 8(45): 16842-16852. doi:10.1021/acssuschemeng.0c05501http://dx.doi.org/10.1021/acssuschemeng.0c05501
Wang S, Teng N, Dai J, Liu J, Cao L, Zhao W, Liu X. Polymer, 2020, 210: 123004. doi:10.1016/j.polymer.2020.123004http://dx.doi.org/10.1016/j.polymer.2020.123004
Cao L, Zhu S, Pan B, Dai X, Zhao W, Liu Y, Xie W, Kuang Y, Liu X. Carbon, 2020, 163: 85-94. doi:10.1016/j.carbon.2020.03.015http://dx.doi.org/10.1016/j.carbon.2020.03.015
Yu W, Peng Y, Cao L, Zhao W, Liu X. Carbon, 2021, 183: 600-611. doi:10.1016/j.carbon.2021.07.055http://dx.doi.org/10.1016/j.carbon.2021.07.055
0
浏览量
380
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构