浏览全部资源
扫码关注微信
1.泉州师范学院化工与材料学院 泉州 362000
2.集美大学海洋装备与机械工程学院 厦门 361021
E-mail: pengxinyan@qztc.edu.cn
hcwang@jmu.edu.cn
纸质出版日期:2022-03-20,
网络出版日期:2021-12-23,
收稿日期:2021-09-14,
录用日期:2021-11-02
移动端阅览
刘云鸿,彭新艳,徐文涛等.基于聚琥珀酰亚胺衍生物仿生超亲水表面的制备及性能[J].高分子学报,2022,53(03):279-288.
Liu Yun-hong,Peng Xin-yan,Xu Wen-tao,et al.Preparation and Characterization of Biomimetic Superhydrophilic Surface Based on Polysuccinimide Derivatives[J].ACTA POLYMERICA SINICA,2022,53(03):279-288.
刘云鸿,彭新艳,徐文涛等.基于聚琥珀酰亚胺衍生物仿生超亲水表面的制备及性能[J].高分子学报,2022,53(03):279-288. DOI: 10.11777/j.issn1000-3304.2021.21273.
Liu Yun-hong,Peng Xin-yan,Xu Wen-tao,et al.Preparation and Characterization of Biomimetic Superhydrophilic Surface Based on Polysuccinimide Derivatives[J].ACTA POLYMERICA SINICA,2022,53(03):279-288. DOI: 10.11777/j.issn1000-3304.2021.21273.
利用对聚琥珀酰亚胺(PSI)的亲核加成反应,仿生设计合成侧基带有多巴胺和磺酸甜菜碱两性离子基团的新型聚琥珀酰亚胺衍生物(PSI-DA-ZW);通过聚琥珀酰亚胺衍生物中多巴邻苯二酚基团的氧化自聚和沉积,制备了仿生超亲水功能涂层表面(PSI-DA-ZW/glass). 利用X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、接触角测量仪及紫外可见分光光度计等分别表征了其化学结构、形态、润湿性和透光性等. 研究结果表明,两性离子基团成功引入到PSI-DA-ZW/glass样品表面,所制备的仿生功能涂层表面具有纳米级自组装微结构,其表面水滴接触角接近0°、水下油滴接触角接近180°,具有优异的超亲水和水下防油污特性;涂层具有较好的透光性,在550 nm波长处的透光率可达到90.4%,与空白玻璃相比,展示出增透效果;抗细菌黏附实验结果显示,所制备的PSI-DA-ZW/glass功能涂层表面对金黄色葡萄球菌和大肠杆菌均具有明显的抗黏附性能. 本文仿生超亲水功能涂层表面的制备方法简单有效,对不同基材适用性强,赋予了该功能涂层在卫浴材料、生物医用涂层、油水分离、防污涂料等领域的潜在应用价值.
In this work
a novel type of polysuccinimide (PSI) derivative with dopamine and zwitterionic sulfobetaine groups in the side chain was designed and synthesized
via
nucleophilic ring-opening reaction on polysuccinimide. Then
a biomimetic superhydrophilic coating (PSI-DA-ZW/glass) was prepared through the oxidative self-polymerization and deposition of the pendant catechol anchor group in PSI-DA-ZW on the surface of glass. The micro-chemical structure
wettability and transmittance of the functional coatings were characterized by Fourier transform infrared spectrometer (FTIR)
X-ray photoelectron spectroscopy (XPS)
scanning electron microscope (SEM)
contact angle measuring instrument
and UV-visible spectroscopy (UV-Vis)
respectively. The research results showed that the zwitterionic group was successfully introduced to the surface of the PSI-DA-ZW/glass sample. Compared with the original surfaces
the obtained biomimetic functional surface had self-assembly into nanoscale microstructures
with a water contact angle (WCA) close to 0° and an underwater-oil contact angle (UWOCA) close to 180°
presenting excellent superhydrophilic and underwater oil-repellent properties. Meanwhile
the functional surface had a light transmittance of 90.4% at 550 nm
showing good antireflection effect compared with that of the blank glass. Moreover
the bacterial adhesion experiments demonstrated that PSI-DA-ZW/glass surface exhibited obvious anti-adhesion properties for
S. aureus
and
E. coli
. The simple and effective method for preparing biomimetic functional surface proposed in this study is suitable for different substrates and thus had potential application in the fields of sanitary materials
biomedical coatings
oil-
water separation
antifouling coatings and so on.
超亲水表面两性离子多巴胺聚琥珀酰亚胺衍生物仿生改性
Superhydrophilic surfaceZwitterionicDopaminePolysuccinimide derivativesBiomimetic modification
Yang Wolong(杨卧龙), Ji Xianbing(纪献兵), Xu Jinliang(徐进良). Prog Chem(化学进展), 2016, 28(6): 763-772. doi:10.7536/PC160106http://dx.doi.org/10.7536/PC160106
Banerjee S, Dionysiou D D, Pillai S C. Appl Catal B-Envirol, 2015, 176: 396-428. doi:10.1016/j.apcatb.2015.03.058http://dx.doi.org/10.1016/j.apcatb.2015.03.058
Permpoon S, Houmard M, Riassetto D, Rapenne L, Berthomé G, Barouxa B, Joud J C, Langlet M. Thin Solid Films, 2008, 516(6): 957-966. doi:10.1016/j.tsf.2007.06.005http://dx.doi.org/10.1016/j.tsf.2007.06.005
Guan K. Surf Coat Tech, 2005, 191(2-3): 155-160. doi:10.1016/j.surfcoat.2004.02.022http://dx.doi.org/10.1016/j.surfcoat.2004.02.022
Takata Y, Hidaka S, Masuda M, Ito T. Int J Energy Res, 2003, 27(2): 111-119. doi:10.1002/er.861http://dx.doi.org/10.1002/er.861
Aghaei R, Eshaghi A, Aghaei A A. Mater Chem Phys, 2018, 219: 347-360. doi:10.1016/j.matchemphys.2018.08.039http://dx.doi.org/10.1016/j.matchemphys.2018.08.039
Drelich J, Chibowski E, Meng D D, Terpilowskic K. Soft Matter, 2011, 7(21): 9804-9828. doi:10.1039/c1sm05849ehttp://dx.doi.org/10.1039/c1sm05849e
Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A. Langmuir, 2012, 28(18): 7212-7222. doi:10.1021/la301033hhttp://dx.doi.org/10.1021/la301033h
Shao Q, He Y, White AD, Jiang S. J Phys Chem B, 2010, 114: 16625-16631. doi:10.1021/jp107272nhttp://dx.doi.org/10.1021/jp107272n
Liu Yunhong(刘云鸿), Li Guangji(李光吉), Luo Xiwen(罗熙雯), Peng Xinyan(彭新艳), Wang Liying(王立莹). Chem J Chinese U(高等学校化学学报), 2013, 34(6): 1527-1535. doi:10.7503/cjcu20130010http://dx.doi.org/10.7503/cjcu20130010
Wu Yalu(吴雅露), Li Guangji(李光吉), Liu Yunhong(刘云鸿), Chen Dayang(陈达杨). Chem J Chinese U(高等学校化学学报), 2014, 35(7): 1484-1491. doi:10.7503/cjcu20140160http://dx.doi.org/10.7503/cjcu20140160
Zhang Z, Chen S, Chang Y, Jiang S. J Phys Chem B, 2006, 110: 10799-804. doi:10.1021/jp057266ihttp://dx.doi.org/10.1021/jp057266i
Yuan J, Chen L, Jiang X, Shen J, Lin S. Colloid Surface B, 2004, 39: 87-94. doi:10.1016/j.colsurfb.2004.08.019http://dx.doi.org/10.1016/j.colsurfb.2004.08.019
Ma C, Zhou H, Wu B, Zhang G. ACS Appl Mater Interfaces, 2011, 3: 455-61. doi:10.1021/am101039qhttp://dx.doi.org/10.1021/am101039q
Sun Q, Su Y, Ma X, Wang Y, Jiang S. J Membr Sci, 2006, 285(1-2): 299-305. doi:10.1016/j.memsci.2006.08.035http://dx.doi.org/10.1016/j.memsci.2006.08.035
Lu C, Wang X, Wu G, Wang J, Wang Y, Gao H, Ma J. J Biomed Mater Res A, 2014, 102(3): 628-38. doi:10.1002/jbm.a.34725http://dx.doi.org/10.1002/jbm.a.34725
Zhou W, Li G, Wang L, Chen Z, Lin Y. Appl Surf Sci, 2017, 413: 140-148. doi:10.1016/j.apsusc.2017.04.004http://dx.doi.org/10.1016/j.apsusc.2017.04.004
Chen Lijuan(陈丽娟),Wang Jun(汪君),Yan Yehan(闫叶寒), Tang Gang(唐刚). Polym Bull(高分子通报), 2018, (7): 42-49
Wang B, Jeon Y S, Park H S, Kim Y J, Kim J H. Express Polym Lett, 2015, 9: 799-808. doi:10.3144/expresspolymlett.2015.75http://dx.doi.org/10.3144/expresspolymlett.2015.75
Lu C, Liu N, Gu X, Li B, Wang Y, Gao H, Ma J, Wu G. J Polym Res, 2014, 21(11): 1-8. doi:10.1007/s10965-014-0578-1http://dx.doi.org/10.1007/s10965-014-0578-1
Hong S, Na Y S, Choi S, Song I T, Kim W Y, Lee H. Adv Funct Mater, 2012, 22(22): 4711-4717. doi:10.1002/adfm.201201156http://dx.doi.org/10.1002/adfm.201201156
Xu Youyi(徐又一), Jiang Jinhong(蒋金泓), Zhu Liping(朱利平), Zhu Baoku(朱宝库). Membrane Science and Technology(膜科学与技术), 2011, 31(3): 32-38. doi:10.3969/j.issn.1007-8924.2011.03.006http://dx.doi.org/10.3969/j.issn.1007-8924.2011.03.006
Tang Zuwu(汤祖武), Lu Shengchang(卢生昌), Lin Xinxing(林新兴), Wu Hui(吴慧), Huang Liulian(黄六莲),Chen Lihui(陈礼辉). Chinese J Appl Chem(应用化学), 2018, 35(12): 1399-1410
Liu Zongguang(刘宗光), Qu Shuxin(屈树新), Weng Jie(翁杰). Prog Chem(化学进展), 2015, 27(2-3): 212-219. doi:10.7536/PC140921http://dx.doi.org/10.7536/PC140921
Si Fangfang(斯芳芳), Zhang Liang(张靓), Zhao Ning(赵宁), Chen Li(陈莉), Xu Jian(徐坚). Prog Chem(化学进展), 2011, 23(9): 1831-1840
Peng Xinyan(彭新艳), Liu Yunhong(刘云鸿), Li Jiawen(李嘉文), Feng Yilong(冯乙胧), Wang Hanchun(王汉春). Chem J Chinese U(高等学校化学学报), 2020, 41(6): 1337-1344. doi:10.7503/cjcu20190706http://dx.doi.org/10.7503/cjcu20190706
0
浏览量
136
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构