浏览全部资源
扫码关注微信
东华大学 纤维材料改性国家重点实验室 上海 201620
E-mail: LiXiuting@dhu.edu.cn;
E-mail:gjh@dhu.edu.cn
纸质出版日期:2022-06-20,
网络出版日期:2022-03-18,
收稿日期:2021-11-03,
录用日期:2021-12-31
移动端阅览
杨晨,李琇廷,董杰等.基于金属配位作用制备高性能聚酰亚胺[J].高分子学报,2022,53(06):663-672.
Yang Chen,Li Xiu-ting,Dong Jie,et al.Preparation of High Performance Polyimide Based on Metal Coordination Bond[J].ACTA POLYMERICA SINICA,2022,53(06):663-672.
杨晨,李琇廷,董杰等.基于金属配位作用制备高性能聚酰亚胺[J].高分子学报,2022,53(06):663-672. DOI: 10.11777/j.issn1000-3304.2021.21336.
Yang Chen,Li Xiu-ting,Dong Jie,et al.Preparation of High Performance Polyimide Based on Metal Coordination Bond[J].ACTA POLYMERICA SINICA,2022,53(06):663-672. DOI: 10.11777/j.issn1000-3304.2021.21336.
通过分子结构设计合成了含金属配位交联网络的可溶性聚酰亚胺,由于Cu
2+
与聚酰亚胺侧链羧基之间的配位交联作用限制了聚酰亚胺分子链的运动,使材料的
T
g
得到显著提升. 同时,由于Cu
2+
具有非球面对称的电子云结构,导致Cu
2+
在与有机配体配位时存在额外的晶体场稳定能(CFSE)以及较强Jahn-Teller效应(JTE),使配位键能够在有机溶剂中稳定存在,极大地提高了薄膜的抗溶剂性能,制备的聚酰亚胺膜在DMF、DMAc等强极性溶剂中室温下浸泡48 h后质量残留率仍可高达80%. 此外,在聚酰亚胺分子结构中引入金属离子配位作用使其力学性能明显提升,拉伸强度从93 MPa提高到128 MPa. 研究结果为开发高性能可溶性聚酰亚胺材料提供新途径.
Soluble polyimide containing metal coordination crosslinking network was synthesized through molecular structure design. Based on the coordination crosslinking between Cu
2+
and the lateral carboxyl group of polyimide
the mobility of polyimide chain in solid state was limited and the
T
g
of the material was significantly improved. The
T
g
of the original polyimide is about 320 ℃
while the
T
g
of coordination crosslinked polyimide PI-Cu50% can reach about 362 ℃. After coordination with Cu
2+
the initial "push-pull" electronic mode of polyimide is destroyed
the existing state of electrons in the main chain was changed
and the fluorescence intensity of polyimide was weakened. Meanwhile
Cu
2+
has an aspherical symmetrical electron cloud structure
resulting in additional crystal field stability energy (CFSE) and strong Jahn teller effect (JTE) when Cu
2+
coordinates with organic ligands
so that the coordination bond can exist stably in organic solvents
After the introduction of copper chloride
crosslinking network based on Cu
2+
coordination was formed in the molecular structure of polyimide which greatly improves the solvent corrosion resistance of the films. The original polyimide film can be completely dissolved after soaking in strong polar solvents such as
N
N
-dimethylformamide (DMF)
N
-methylacetamide (DMAc) and
N
-methylpyrrolidone (NMP) and standing at room temperature for two days
while the mass residue rate of the coordination crosslinked polyimide film PI-Cu50% can still be as high as 80% after soaking in strong polar solvents such as DMF and DMAc at room temperature for 48 h. Due to the decarboxylation crosslinking reaction of carboxy
l group at about 400 ℃
the
T
d5
of polyimide containing carboxyl group is low
and the thermal stability of carboxyl group was significantly improved when coordinated with Cu
2+
so the
T
d5
of polyimide was improved. Moreover
the introduction of metal ion coordination into the polyimide molecular structure also improved its mechanical properties
and the tensile strength of film increased from 93 MPa to 128 MPa. This study provides a new way to develop high-performance soluble polyimide materials.
聚酰亚胺金属-配体配位交联聚合物抗溶剂腐蚀性机械性能
PolyimideMetal ligand coordinationCrosslinked polymerSolvent resistanceMechanical property
Ding Mengxian(丁孟贤). Polyimide: Relationship between Chemistry, Structure and Properties and Materials(聚酰亚胺: 化学、结构与性能的关系及材料). 2nd ed(第二版). Beijing(北京): Science Press(科学出版社), 2012. 1-4. doi:10.1109/icmse.2012.6414309http://dx.doi.org/10.1109/icmse.2012.6414309
Srinivas S, Graham M, Brink M H, Gardner S, Davis R M, Mcgrath J E, Wilkes G L. Polym Eng Sci, 1996, 36(14): 1928-1940. doi:10.1002/pen.10589http://dx.doi.org/10.1002/pen.10589
Dong J, Yin C Q, Luo W Q, Zhang Q H. J Mater Sci, 2013, 48(21): 7594-7602. doi:10.1007/s10853-013-7576-2http://dx.doi.org/10.1007/s10853-013-7576-2
Choi H, Chung I S, Hong K, Park C E, Kim S Y. Polymer, 2008, 49: 2644-2649. doi:10.1016/j.polymer.2008.04.019http://dx.doi.org/10.1016/j.polymer.2008.04.019
Zhao Rui(赵蕊), Fang Yuting(方玉婷), Dong Jie(董杰), Zhao Xin(赵昕), Zhang Qinghua(张清华). Acta Polymerica Sinica(高分子学报), 2021, 52(4): 371-380. doi:10.11777/j.issn1000-3304.2020.20244http://dx.doi.org/10.11777/j.issn1000-3304.2020.20244
Montarnal D, Capelot M, Tournilhac F, Leibler L. Science, 2011, 334(6058): 965-968. doi:10.1126/science.1212648http://dx.doi.org/10.1126/science.1212648
Zou Z A, Zhu C P, Li Y, Lei X F, Zhang W, Xiao J L. Sci Adv, 2018, 4(2): eaaq0508. doi:10.1126/sciadv.aaq0508http://dx.doi.org/10.1126/sciadv.aaq0508
Zou W K, Dong J T, Luo Y W, Zhao Q, Xie T. Adv Mater, 2017, 29: 1606100. doi:10.1002/adma.201606100http://dx.doi.org/10.1002/adma.201606100
Chen Xingxing(陈兴幸), Zhong Qianyun(钟倩云), Wang Shujuan(王淑娟), Wu Youshen(吴宥伸), Tan Jidong(谭继东), Lei Hengxin(雷恒鑫), Huang Shaoyong(黄绍永), Zhang Yanfeng(张彦峰). Acta Polymerica Sinica(高分子学报), 2019, 50(5): 469-484. doi:10.11777/j.issn1000-3304.2019.18277http://dx.doi.org/10.11777/j.issn1000-3304.2019.18277
Luo Longbo(罗龙波), Ye Xinhe(叶信合), Yi Jiang(易江), Li Ke(李科), Liu Xiangyang(刘向阳). Acta Polymerica Sinica(高分子学报), 2021, 52(4): 363-370. doi:10.11777/j.issn1000-3304.2020.20222http://dx.doi.org/10.11777/j.issn1000-3304.2020.20222
S-iNoro, Kitagawa S, Akutagawa T, Nakamura T. Prog Polym Sci, 2009, 34(3): 240-279. doi:10.1016/j.progpolymsci.2008.09.002http://dx.doi.org/10.1016/j.progpolymsci.2008.09.002
Yin Q, Hu Y Y, Qin Y T, Cheng Z, Luo L B, Liu X Y. Compos B Eng, 2020, 208: 108566. doi:10.1016/j.compositesb.2020.108566http://dx.doi.org/10.1016/j.compositesb.2020.108566
Peng X W, Xu W H, Chen L L, Ding Y C, Chen S L, Wang X Y, Hou H Q. J Mater Chem C, 2016, 4: 6452-6456. doi:10.1039/c6tc01304jhttp://dx.doi.org/10.1039/c6tc01304j
Luo X F, Wang Z G, Wu S S, Fang W X, Jin J. J Membr Sci, 2020, 621: 119002. doi:10.1016/j.memsci.2020.119002http://dx.doi.org/10.1016/j.memsci.2020.119002
Zhan S N, Wang X H, Sun J Q. Macromol Rapid Commun, 2020, 41: e2000097. doi:10.1002/marc.202000097http://dx.doi.org/10.1002/marc.202000097
Liang N Q, Fujiwara E, Nara M, Ishige R, Ando S. ACS Appl Polym Mater, 2021, 3: 3911-3921. doi:10.1021/acsapm.1c00474http://dx.doi.org/10.1021/acsapm.1c00474
Chang G J, Wang C, Du M Q, Liu S Y, Yang L. Chem Commun, 2018, 54: 2906-2909. doi:10.1039/c7cc08510ahttp://dx.doi.org/10.1039/c7cc08510a
Bianchi R, Gervasio G, Marabello D. Inorg Chem, 2000, 39(11): 2360-2366. doi:10.1021/ic991316ehttp://dx.doi.org/10.1021/ic991316e
Zhang C L, Li P, Cao B. J Membr Sci, 2017, 528(15): 206-216. doi:10.1016/j.memsci.2017.01.008http://dx.doi.org/10.1016/j.memsci.2017.01.008
Guan Y, Wang C B, Wang D M, Dang G D, Chen C H, Zhou H W, Zhao X G. Polymer, 2015, 62: 1-10. doi:10.1016/j.polymer.2015.02.009http://dx.doi.org/10.1016/j.polymer.2015.02.009
0
浏览量
259
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构