浏览全部资源
扫码关注微信
中国科学院化学研究所 北京 100190
[ "朱晓张,男,1978年生. 2001年6月毕业于吉林大学化学系,获得学士学位,2006年6月毕业于中国科学院化学研究所所获得博士学位,2006~2012年先后在德国乌尔姆大学和日本东京大学从事博士后研究,2012年回国加入中国科学院化学研究所有机固体院重点实验室,任研究员,研究方向为有机光电功能材料与器件." ]
纸质出版日期:2022-04-20,
网络出版日期:2022-02-16,
收稿日期:2021-11-04,
修回日期:2021-12-22,
移动端阅览
郑英琦,陈勇杰,朱晓张.近红外光伏型有机光探测器研究进展[J].高分子学报,2022,53(04):354-373.
Zheng Ying-qi,Chen Yong-jie,Zhu Xiao-zhang.Research Progress of Near-infrared Organic Photovoltaic Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(04):354-373.
郑英琦,陈勇杰,朱晓张.近红外光伏型有机光探测器研究进展[J].高分子学报,2022,53(04):354-373. DOI: 10.11777/j.issn1000-3304.2021.21338.
Zheng Ying-qi,Chen Yong-jie,Zhu Xiao-zhang.Research Progress of Near-infrared Organic Photovoltaic Photodetectors[J].ACTA POLYMERICA SINICA,2022,53(04):354-373. DOI: 10.11777/j.issn1000-3304.2021.21338.
光探测器是现代科学和工业体系的基础. 近红外光伏型有机光探测器因其制造成本低、柔性、质轻和可大面积制备等诸多特性及其在生物成像、质量检测、图像传感、光通信和夜间监控等方面的应用而受到广泛关注. 由于有机半导体材料高度可调的光学和电学特性,已经实现了窄带、低噪声、可见-近红外有机光探测器. 近红外光伏型有机光探测器的研究在国内外引起了广泛兴趣,中国学者对推动此研究领域的发展做出了巨大贡献,并在新型近红外有机材料及近红外有机光伏(光二极管)器件等方面取得了一系列重要的创新成果. 本文总结和评论了近红外光伏型有机光探测器的研究进展,并展望了其在近红外成像、生物医疗、光谱分析测试等领域的应用前景.
Photodetectors are the foundation of modern science and industrial systems. Organic semiconductors have developed rapidly in the past decade due to their appealing properties such as low-cost manufacturing
flexibility
light-weight
and large-area scalability. Near-infrared organic photovoltaic photodetectors have drawn extensive attention because of their wide applications in bioimaging
quality inspection
image sensing
optical communication and night surveillance. Owing to the highly tuneable optical and electrical properties of organic semiconductor materials
narrow-band
low noise
visible-blind near-infrared organic photodetectors have been achieved. The research on near-infrared organic photovoltaic photodetectors has aroused widespread interest at home and abroad. Chinese scholars have made great contributions to the development of this research field
and a series of important innovations have been made in the preparation of near-infrared organic materials and the design of near-infrared organic photodiode devices. This article aims to summarize and review the research progress of near-infrared organic photovoltaic photodetectors and their future development in the fields of imaging sensing
biomedicine and spectral analysis. In the first section
we briefly introduce the basic overview of the device structures
applications and important figures of merit of organic photodetectors. In the second section
we summarized the materials used in the active layer of the near-infrared photovoltaic organic photodetectors in the past decade
which are simply classified into organic near-infrared polymer materials and near-infrared small-molecule materials. In the third section
we reviewed the device optimization and design strategies of near-infrared organic photovoltaic photodetectors
including the adjustment of active layer film thickness
charged carrier blocking layers
the strategies of charge collecting narrowing and exciton dissociation narrowing. In the fourth section
the specific applications and their scientific principles of near-infrared organic photodetectors are introduced
including real-time biological monitoring
spectral analysis and near-infrared imaging applications. In the last section
we briefly summarized the achievements which have been made
the current challenges and the future prospects of near-infrared organic photovoltaic photodetectors.
有机光探测器有机光二极管共轭高分子材料共轭小分子材料近红外响应
Organic photodetectorOrganic photodiodeConjugated polymer materialsConjugated small-molecule materialNear-infrared response
Zhao Chengjie(赵成杰), Li Guohui(李郭辉), Han Yue(韩悦), Wang Wenyan(王文艳), Zhang Ye(张叶), Hao Yuying(郝玉英), Cui Yanxia(崔艳霞). Laser & Optoelectronics Progress(激光与光电子学进展), 2020, 57(13): 130001. doi:10.3788/lop57.130001http://dx.doi.org/10.3788/lop57.130001
Dong H, Zhu H, Meng Q, Gong X, Hu W. Chem Soc Rev, 2012, 41(5): 1754-1808. doi:10.1039/c1cs15205jhttp://dx.doi.org/10.1039/c1cs15205j
García de Arquer F P, Armin A, Meredith P, Sargent E H. Nat Rev Mater, 2017, 2(3): 16100. doi:10.1038/natrevmats.2016.100http://dx.doi.org/10.1038/natrevmats.2016.100
Jansen-van Vuuren R D, Armin A, Pandey A K, Burn P L, Meredith P. Adv Mater, 2016, 28(24): 4766-4802. doi:10.1002/adma.201505405http://dx.doi.org/10.1002/adma.201505405
Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948): 1665-1667. doi:10.1126/science.1176706http://dx.doi.org/10.1126/science.1176706
Xie B, Chen Z, Ying L, Huang F, Cao Y. InfoMat, 2020, 2(1): 57-91. doi:10.1002/inf2.12063http://dx.doi.org/10.1002/inf2.12063
Qin M, Li Q, Guo Y, Liu Y. Semicond Sci Technol, 2020, 35(11): 114001. doi:10.1088/1361-6641/abacdehttp://dx.doi.org/10.1088/1361-6641/abacde
Ren H, Chen J D, Li Y Q, Tang J X. Adv Sci, 2020, 8(1): 2002418. doi:10.1002/advs.202002418http://dx.doi.org/10.1002/advs.202002418
Li Q, Guo Y, Liu Y. Chem Mater, 2019, 31(17): 6359-6379. doi:10.1021/acs.chemmater.9b00966http://dx.doi.org/10.1021/acs.chemmater.9b00966
Wu Z, Zhai Y, Kim H, Azoulay J D, Ng T N. Acc Chem Res, 2018, 51(12): 3144-3153. doi:10.1021/acs.accounts.8b00446http://dx.doi.org/10.1021/acs.accounts.8b00446
Liu X, Lin Y, Liao Y, Wu J, Zheng Y. J Mater Chem C, 2018, 6(14): 3499-3513. doi:10.1039/c7tc05042ahttp://dx.doi.org/10.1039/c7tc05042a
Wang C, Zhang X, Hu W. Chem Soc Rev, 2020, 49(3): 653-670. doi:10.1039/c9cs00431ahttp://dx.doi.org/10.1039/c9cs00431a
Qian G, Wang Z Y. Chem Asian J, 2010, 5(5): 1006-1029. doi:10.1002/asia.200900596http://dx.doi.org/10.1002/asia.200900596
Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Adv Mater, 2013, 25(31): 4267-4295. doi:10.1002/adma.201204979http://dx.doi.org/10.1002/adma.201204979
Geng Yue(耿悦), Gao Hanfei(高寒飞), Wu Yuchen(吴雨辰), Jiang Lei(江雷). Acta Polymerica Sinica(高分子学报), 2020, 51(5): 421-433. doi:10.11777/j.issn1000-3304.2020.19218http://dx.doi.org/10.11777/j.issn1000-3304.2020.19218
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥), Ma Yuguang(马於光), Hou Jianhui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽), Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yongfang(李永舫), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Xue J, Rand B P, Uchida S, Forrest S R. Adv Mater, 2005, 17(1): 66-71. doi:10.1002/adma.200400617http://dx.doi.org/10.1002/adma.200400617
Su Z, Hou F, Wang X, Gao Y, Jin F, Zhang G, Li Y, Zhang L, Chu B, Li W. ACS Appl Mater Interfaces, 2015, 7(4): 2529-2534. doi:10.1021/am5074479http://dx.doi.org/10.1021/am5074479
Fang Y, Armin A, Meredith P, Huang J. Nature Photon, 2018, 13(1): 1-4. doi:10.1038/s41566-018-0288-zhttp://dx.doi.org/10.1038/s41566-018-0288-z
Kitamura C, Tanaka S, Yamashita Y. Chem Mater, 1996, 8(2): 570-578. doi:10.1021/cm950467mhttp://dx.doi.org/10.1021/cm950467m
Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y. Adv Mater, 2007, 19(22): 3979-3983. doi:10.1002/adma.200602670http://dx.doi.org/10.1002/adma.200602670
Perzon E, Zhang F, Andersson M, Mammo W, Inganäs O, Andersson M R. Adv Mater, 2007, 19(20): 3308-3311. doi:10.1002/adma.200700557http://dx.doi.org/10.1002/adma.200700557
Gong X, Tong M H, Park S H, Liu M, Jen A, Heeger A J. Sensors, 2010, 10(7): 6488-6496. doi:10.3390/s100706488http://dx.doi.org/10.3390/s100706488
Hu X, Dong Y, Huang F, Gong X, Cao Y. J Phys Chem C, 2013, 117(13): 6537-6543. doi:10.1021/jp4001237http://dx.doi.org/10.1021/jp4001237
Hu X, Wang K, Liu C, Meng T, Dong Y, Liu S, Huang F, Gong X, Cao Y. J Mater Chem C, 2014, 2(45): 9592-9598. doi:10.1039/c4tc02021ahttp://dx.doi.org/10.1039/c4tc02021a
London A E, Huang L, Zhang B A, Oviedo M B, Tropp J, Yao W, Wu Z, Wong B M, Ng T N, Azoulay J D. Polym Chem, 2017, 8(19): 2922-2930. doi:10.1039/c7py00241fhttp://dx.doi.org/10.1039/c7py00241f
Wu Z, Yao W, London A E, Azoulay J D, Ng T N. Adv Funct Mater, 2018, 28(18): 1800391. doi:10.1002/adfm.201800391http://dx.doi.org/10.1002/adfm.201800391
Wu Z, Zhai Y, Yao W, Eedugurala N, Zhang S, Huang L, Gu X, Azoulay J D, Ng T N. Adv Funct Mater, 2018, 28(50): 1805738. doi:10.1002/adfm.201805738http://dx.doi.org/10.1002/adfm.201805738
Yao W, Wu Z, Huang E, Huang L, London A E, Liu Z, Azoulay J D, Ng T N. ACS Appl Electron Mater, 2019, 1(5): 660-666. doi:10.1021/acsaelm.9b00009http://dx.doi.org/10.1021/acsaelm.9b00009
Verstraeten F, Gielen S, Verstappen P, Kesters J, Georgitzikis E, Raymakers J, Cheyns D, Malinowski P, Daenen M, Lutsen L, Vandewal K, Maes W. J Mater Chem C, 2018, 6(43): 11645-11650. doi:10.1039/c8tc04164dhttp://dx.doi.org/10.1039/c8tc04164d
Qi J, Zhou X, Yang D, Qiao W, Ma D, Wang Z Y. Adv Funct Mater, 2014, 24(48): 7605-7612. doi:10.1002/adfm.201401948http://dx.doi.org/10.1002/adfm.201401948
Zhou X, Yang D, Ma D. Adv Opt Mater, 2015, 3(11): 1570-1576. doi:10.1002/adom.201500224http://dx.doi.org/10.1002/adom.201500224
Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang X F, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28(44): 9811-9818. doi:10.1002/adma.201603178http://dx.doi.org/10.1002/adma.201603178
Zhong Wenkai(钟文楷), Xie Ruihao(谢锐浩), Ying Lei(应磊), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2018, (2): 217-222. doi:10.11777/j.issn1000-3304.2018.17242http://dx.doi.org/10.11777/j.issn1000-3304.2018.17242
Han J, Yang D, Ma D, Qiao W, Wang Z Y. Adv Opt Mater, 2018, 6(15): 1800038. doi:10.1002/adom.201800038http://dx.doi.org/10.1002/adom.201800038
Verstraeten F, Gielen S, Verstappen P, Raymakers J, Penxten H, Lutsen L, Vandewal K, WouterMaes. J Mater Chem C, 2020, 8(29): 10098-10103. doi:10.1039/d0tc01435dhttp://dx.doi.org/10.1039/d0tc01435d
Zhao Z, Liu B, Xu C, Liu M, Yang K, Zhang X, Xu Y, Zhang J, Li W, Zhang F. J Mater Chem C, 2021, 9(16): 5349-5355. doi:10.1039/d1tc00939ghttp://dx.doi.org/10.1039/d1tc00939g
Liu X, Zhou J, Zheng J, Becker M L, Gong X. Nanoscale, 2013, 5(24): 12474-12479. doi:10.1039/c3nr03602bhttp://dx.doi.org/10.1039/c3nr03602b
Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y. Small, 2016, 12(25): 3374-3380. doi:10.1002/smll.201600721http://dx.doi.org/10.1002/smll.201600721
Saracco E, Bouthinon B, Verilhac J M, Celle C, Chevalier N, Mariolle D, Dhez O, Simonato J P. Adv Mater, 2013, 25(45): 6534-6538. doi:10.1002/adma.201302338http://dx.doi.org/10.1002/adma.201302338
Binda M, Iacchetti A, Natali D, Beverina L, Sassi M, Sampietro M. Appl Phys Lett, 2011, 98(7): 073303. doi:10.1063/1.3553767http://dx.doi.org/10.1063/1.3553767
Montenegro Benavides C, Biele M, Schmidt O, Brabec C J, Tedde S F. IEEE T Electron Dev, 2018, 65(4): 1516-1522. doi:10.1109/ted.2018.2799705http://dx.doi.org/10.1109/ted.2018.2799705
Yang T, Sun K, Liu X, Wei W, Yu T, Gong X, Wang D, Cao Y. J Phys Chem C, 2012, 116(25): 13650-13653. doi:10.1021/jp303016fhttp://dx.doi.org/10.1021/jp303016f
Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat Commun, 2015, 6: 6343. doi:10.1038/ncomms7343http://dx.doi.org/10.1038/ncomms7343
Wang J B, Li W L, Chu B, Lee C S, Su Z S, Zhang G, Wu S H, Yan F. Org Electron, 2011, 12(1): 34-38. doi:10.1016/j.orgel.2010.09.015http://dx.doi.org/10.1016/j.orgel.2010.09.015
Wang X, Li H, Su Z, Fang F, Zhang G, Wang J, Chu B, Fang X, Wei Z, Li B, Li W. Org Electron, 2014, 15(10): 2367-2371. doi:10.1016/j.orgel.2014.07.008http://dx.doi.org/10.1016/j.orgel.2014.07.008
Ichikawa M, Takeuchi T, Jeon H G, Jin Y, Lee S, Kim K S. Jpn J Appl Phys, 2012, 51: 034103. doi:10.7567/jjap.51.034103http://dx.doi.org/10.7567/jjap.51.034103
Lv W, Peng Y, Zhong J, Luo X, Li Y, Zheng T, Tang Y, Du L, Peng L. IEEE Photon Technol Lett, 2015, 27(19): 2043-2046. doi:10.1109/lpt.2015.2449631http://dx.doi.org/10.1109/lpt.2015.2449631
Bailey-Salzman R F, Rand B P, Forrest S R. Appl Phys Lett, 2007, 91(1): 013508. doi:10.1063/1.2752992http://dx.doi.org/10.1063/1.2752992
Joo C W, Kim J, Moon J, Lee K M, Pi J E, Kang S Y, Ahn S D, Park Y S, Chung D S. Org Electron, 2019, 70:101-106. doi:10.1016/j.orgel.2019.04.005http://dx.doi.org/10.1016/j.orgel.2019.04.005
Choi M S, Chae S, Kim H J, Kim J J. ACS Appl Mater Interfaces, 2018, 10(30): 25614-25620. doi:10.1021/acsami.8b08803http://dx.doi.org/10.1021/acsami.8b08803
Zimmerman J D, Diev V V, Hanson K, Lunt R R, Yu E K, Thompson M E, Forrest S R. Adv Mater, 2010, 22(25): 2780-2783. doi:10.1002/adma.200904341http://dx.doi.org/10.1002/adma.200904341
Zimmerman J D, Yu E K, Diev V V, Hanson K, Thompson M E, Forrest S R. Org Electron, 2011, 12(5): 869-873. doi:10.1016/j.orgel.2011.02.013http://dx.doi.org/10.1016/j.orgel.2011.02.013
Li L, Huang Y, Peng J, Cao Y, Peng X. J Mater Chem C, 2014, 2(8): 1372. doi:10.1039/c3tc32171ahttp://dx.doi.org/10.1039/c3tc32171a
Xiao L, Chen S, Chen X, Peng X, Cao Y, Zhu X. J Mater Chem C, 2018, 6(13): 3341-3345. doi:10.1039/c8tc00270chttp://dx.doi.org/10.1039/c8tc00270c
Campbell I H, Crone B K. Appl Phys Lett, 2009, 95(26): 263302. doi:10.1063/1.3279133http://dx.doi.org/10.1063/1.3279133
Campbell I H. Appl Phys Lett, 2010, 97(3): 033303. doi:10.1063/1.3464967http://dx.doi.org/10.1063/1.3464967
Arca F, Sramek M, Tedde S F, Lugli P, Hayden O. IEEE J Quantum Electron, 2013, 49(12): 1016-1025. doi:10.1109/jqe.2013.2285158http://dx.doi.org/10.1109/jqe.2013.2285158
Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell T P, Ding L. Sci Bull, 2017, 62(22): 1494-1496. doi:10.1016/j.scib.2017.10.017http://dx.doi.org/10.1016/j.scib.2017.10.017
Li W, Xu Y, Meng X, Xiao Z, Li R, Jiang L, Cui L, Zheng M, Liu C, Ding L, Lin Q. Adv Funct Mater, 2019, 29(20): 1808948. doi:10.1002/adfm.201808948http://dx.doi.org/10.1002/adfm.201808948
Lee J, Ko S J, Seifrid M, Lee H, Luginbuhl B R, Karki A, Ford M, Rosenthal K, Cho K, Nguyen T Q, Bazan G C. Adv Energy Mater, 2018, 8(24): 1801212. doi:10.1002/aenm.201801212http://dx.doi.org/10.1002/aenm.201801212
Lee J, Ko S J, Lee H, Huang J, Zhu Z, Seifrid M, Vollbrecht J, Brus V V, Karki A, Wang H, Cho K, Nguyen T Q, Bazan G C. ACS Energy Lett, 2019, 4(6): 1401-1409. doi:10.1021/acsenergylett.9b00721http://dx.doi.org/10.1021/acsenergylett.9b00721
Huang J, Lee J, Vollbrecht J, Brus V V, Dixon A L, Cao D X, Zhu Z, Du Z, Wang H, Cho K, Bazan G C, Nguyen T Q. Adv Mater, 2019, 32(1): 1906027. doi:10.1002/adma.201906027http://dx.doi.org/10.1002/adma.201906027
Wen T J, Wang D, Tao L, Xiao Y, Tao Y D, Li Y, Lu X, Fang Y, Li C Z, Chen H, Yang D. ACS Appl Mater Interfaces, 2020, 12(35): 39515-39523. doi:10.1021/acsami.0c12100http://dx.doi.org/10.1021/acsami.0c12100
Song Y, Yu G, Xie B, Zhang K, Huang F. Appl Phys Lett, 2020, 117(9): 093302. doi:10.1063/5.0018274http://dx.doi.org/10.1063/5.0018274
Chen Y, Zheng Y, Jiang Y, Fan H, Zhu X. J Am Chem Soc, 2021, 143(11): 4281-4289. doi:10.1021/jacs.0c12818http://dx.doi.org/10.1021/jacs.0c12818
Zhong Z M, Peng F, Ying L, Yu G, Huang F, Cao Y. Sci China Mater, 2021, 64(10): 2430-2438. doi:10.1007/s40843-020-1639-xhttp://dx.doi.org/10.1007/s40843-020-1639-x
Yang W, Qiu W, Georgitzikis E, Simoen E, Serron J, Lee J, Lieberman I, Cheyns D, Malinowski P, Genoe J, Chen H, Heremans P. ACS Appl Mater Interfaces, 2021, 13(14): 16766-16774. doi:10.1021/acsami.1c02080http://dx.doi.org/10.1021/acsami.1c02080
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Nat Commun, 2020, 11(1): 2871. doi:10.1038/s41467-020-16675-xhttp://dx.doi.org/10.1038/s41467-020-16675-x
Gasparini N, Gregori A, Salvador M, Biele M, Wadsworth A, Tedde S, Baran D, McCulloch I, Brabec C J. Adv Mater Technol, 2018, 3(7): 1800104. doi:10.1002/admt.201800104http://dx.doi.org/10.1002/admt.201800104
Liu X, Wang H, Yang T, Zhang W, Gong X. ACS Appl Mater Interfaces, 2012, 4(7): 3701-3705. doi:10.1021/am300787mhttp://dx.doi.org/10.1021/am300787m
Yoon S, Ha J, Sim K M, Cho W, Chung D S. Org Electron, 2016, 35: 17-23. doi:10.1016/j.orgel.2016.04.040http://dx.doi.org/10.1016/j.orgel.2016.04.040
Armin A, Hambsch M, Kim I K, Burn P L, Meredith P, Namdas E B. Laser Photonics Rev, 2014, 8(6): 924-932. doi:10.1002/lpor.201400081http://dx.doi.org/10.1002/lpor.201400081
Gao Shijia(高诗佳), Wang Xin(王鑫), Zhang Yulin(张育林), Zhang Sai(张赛), Qiao Wenqiang(乔文强), Wang Zhiyuan(王植源). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 338-345. doi:10.11777/j.issn1000-3304.2019.19206http://dx.doi.org/10.11777/j.issn1000-3304.2019.19206
Grimoldi A, Colella L, La Monaca L, Azzellino G, Caironi M, Bertarelli C, Natali D, Sampietro M. Org Electron, 2016, 36: 29-34. doi:10.1016/j.orgel.2016.05.021http://dx.doi.org/10.1016/j.orgel.2016.05.021
Lin Q, Armin A, Burn P L, Meredith P. Nat Photonics, 2015, 9(10): 687-694. doi:10.1038/nphoton.2015.175http://dx.doi.org/10.1038/nphoton.2015.175
Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Nat Photonics, 2015, 9(10): 679-686. doi:10.1038/nphoton.2015.156http://dx.doi.org/10.1038/nphoton.2015.156
Yazmaciyan A, Meredith P, Armin A. Adv Opt Mater, 2019, 7(8): 1801543. doi:10.1002/adom.201801543http://dx.doi.org/10.1002/adom.201801543
Simone G, Tordera D, Delvitto E, Peeters B, Breemen A J J M, Meskers S C J, Janssen R A J, Gelinck G H. Adv Optical Mater, 2020, 8(10): 1901989. doi:10.1002/adom.201901989http://dx.doi.org/10.1002/adom.201901989
Kublitski J, Hofacker A, Boroujeni B K, Benduhn J, Nikolis V C, Kaiser C, Spoltore D, Kleemann H, Fischer A, Ellinger F, Vandewal K, Leo K. Nat Commun, 2021, 12(1): 551. doi:10.1038/s41467-020-20856-zhttp://dx.doi.org/10.1038/s41467-020-20856-z
Yokota T, Nakamura T, Kato H, Mochizuki M, Tada M, Uchida M, Lee S, Koizumi M, Yukita W, Takimoto A, Someya T. Nat Electron, 2020, 3(2): 113-121. doi:10.1038/s41928-019-0354-7http://dx.doi.org/10.1038/s41928-019-0354-7
0
浏览量
829
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构