浏览全部资源
扫码关注微信
华南理工大学高分子光电材料与器件研究所 发光材料与器件国家重点实验室 广州 510640
E-mail: msleiying@scut.edu.cn
纸质出版日期:2022-04-20,
网络出版日期:2022-02-22,
收稿日期:2021-11-17,
修回日期:2022-01-06,
移动端阅览
邱红,钟知鸣,李美静等.基于膜厚与分子量优化策略实现高效近红外有机光探测器[J].高分子学报,2022,53(04):433-440.
Qiu Hong,Zhong Zhi-ming,Li Mei-jing,et al.Achieving High-detectivity Near Infrared Organic Photodetectors through Optimizing Film Thickness and Polymer Molecular Weight[J].ACTA POLYMERICA SINICA,2022,53(04):433-440.
邱红,钟知鸣,李美静等.基于膜厚与分子量优化策略实现高效近红外有机光探测器[J].高分子学报,2022,53(04):433-440. DOI: 10.11777/j.issn1000-3304.2021.21350.
Qiu Hong,Zhong Zhi-ming,Li Mei-jing,et al.Achieving High-detectivity Near Infrared Organic Photodetectors through Optimizing Film Thickness and Polymer Molecular Weight[J].ACTA POLYMERICA SINICA,2022,53(04):433-440. DOI: 10.11777/j.issn1000-3304.2021.21350.
利用基于[1
2
3
]
三唑并[4
5-
f
]
异吲哚-5
7(2
H
6
H
)-二酮(TzBI)共轭聚合物PTzBI-Cl为给体,非富勒烯小分子Y6DT为受体,制备基于倒装结构的有机本体异质结光探测器. 基于高分子量聚合物PTzBI-Cl-H制备的器件比低分子量材料制备的器件具有更低的暗电流和更高的光探测性能. 通过对PTzBI-Cl:Y6DT进行薄膜厚度调控,在保持较高的外量子效率的同时显著地降低了暗电流密度,提高了器件探测率. 活性层厚度为330 nm时,光探测器在-0.1 V偏压下的暗电流为2.3×10
-10
A·cm
-2
,在±2 V范围内整流比为10
6
. 在-0.1 V偏压下器件在500~880 nm的工作波段的比探测率均高于10
13
cm·Hz
-1/2
·W
-1
,最大值位于830 nm处达到6.1×10
13
cm·Hz
-1/2
·W
-1
,
R
值为0.52 A·W
-1
,是目前报道的在830 nm波长二极管型倒装有机光探测最高值之一.
The wide-bandgap polymer (PTzBI-Cl) contains an electron-deficient [1
2
3
]
triazolo[4
5-
f
]
isoindole-5
7(2
H
6
H
)-dione (TzBI) unit
which can be used as an electron-donating polymer to combine with a non-fullerene acceptor
namely Y6DT
to fabricate organic photodetectors (OPDs) that bear inverted device structure. The devices based on high molecular weight PTzBI-Cl-H exhibited lower dark current density and thus superior photodetectivity. The dark current density can be significantly suppressed by optimizing the film thickness of active layer
while the external quantum efficiency can be maintained at a relatively high level. The combination of these advantages leads to an obvious increase in the detectivity. When the active layer thickness increased up to 330 nm
the device exhibited a very low dark current density of 2.3×10
-10
A·cm
-2
at -0.1 V
and the rectification ratio is 10
6
in the range of ±2 V. Under -0.1 V bias
the detectivity of the device is higher than 10
13
cm·Hz
-1/2
·W
-1
in the range of 500-880 nm
with a maximum of 6.1×10
13
cm·Hz
-1/2
·W
-1
and a responsivity of 0.52 A·W
-1
at a working wavelength of 830 nm
both of which are among the highest values of thus far reported OPDs based on the inverted structure at the working wavelength of 830 nm without extra gains.
有机光探测器近红外分子量厚膜器件
Organic photodetectorNear infraredMolecular weightThick-film devices
Michel J, Liu J, Kimerling L C. Nat Photon, 2010, 4(8): 527-534. doi:10.1038/nphoton.2010.157http://dx.doi.org/10.1038/nphoton.2010.157
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789-1791. doi:10.1126/science.270.5243.1789http://dx.doi.org/10.1126/science.270.5243.1789
Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948): 1665-1667. doi:10.1126/science.1176706http://dx.doi.org/10.1126/science.1176706
Zhao Z J, Xu C Y, Niu L B, Zhang X L, Zhang F J. Laser Photon Rev, 2020, 14(11): 2000262. doi:10.1002/lpor.202000262http://dx.doi.org/10.1002/lpor.202000262
Yang Peipei(杨佩佩), Dong Lichao(董立超), Li Yuanyuan(李园园), Zhang Longlong(张龙龙), Shi Jianbing(石建兵), Zhi Junge(支俊格), Tong Bin(佟斌), Dong Yuping(董宇平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1285-1293. doi:10.11777/j.issn1000-3304.2017.17001http://dx.doi.org/10.11777/j.issn1000-3304.2017.17001
Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60(5): 571-582. doi:10.1007/s11426-016-0424-9http://dx.doi.org/10.1007/s11426-016-0424-9
Zhong Wenkai(钟文楷), Xie Ruihao(谢锐浩), Ying Lei(应磊), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2018, (2): 217-222. doi:10.11777/j.issn1000-3304.2018.17242http://dx.doi.org/10.11777/j.issn1000-3304.2018.17242
Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223-230. doi:10.11777/j.issn1000-3304.2018.17297http://dx.doi.org/10.11777/j.issn1000-3304.2018.17297
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥), Ma Yuguang(马於光), Hou Jianhui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽),Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yongfang(李永舫), Cao Yong(曹镛) . Acta Polymerica Sinica(高分子学报), 2019, 50(10): 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Zhang Bo(张拨), Yu Yonggao(余永高), Liu Zhitian(刘治田), Liu Xi(刘熙), Duan Chunhui(段春晖), Huang Fei(黄飞). Acta Polymerica Sinica(高分子学报), 2020, 51(6): 620-631. doi:10.11777/j.issn1000-3304.2020.20011http://dx.doi.org/10.11777/j.issn1000-3304.2020.20011
Deng Yanghua(邓阳华), Xiao Haibin(肖海斌), Qiao He(乔贺), Tan Songting(谭松庭). Acta Polymerica Sinica(高分子学报), 2017, (6): 922-929. doi:10.11777/j.issn1000-3304.2017.16314http://dx.doi.org/10.11777/j.issn1000-3304.2017.16314
Lu Junming(卢俊明), Cai Wanqing(蔡万清), Zhang Guichuan(张桂传), Liu Shengjian(刘升建), Ying Lei(应磊), Huang Fei(黄飞). Acta Chimica Sinica(化学学报), 2015, 73: 1153-1160. doi:10.6023/A15080546http://dx.doi.org/10.6023/A15080546
Liu Ye(刘晔), Yuan Jun(袁俊), Zou Yingping(邹应萍), Li Yongfang(李永舫). Acta Chimica Sinica(化学学报), 2017, 75(3): 257-270. doi:10.6023/A16090495http://dx.doi.org/10.6023/A16090495
Wang Jianbin(王建彬), Tang Xiaosheng(唐孝生), Zhou Bi(周笔), Zeng Xiahui(曾夏辉), Yu Hualiang(余华梁), Zhou Yingwu(周赢武). Chinese J Lumin(发光学报), 2021, 42(2): 241-249. doi:10.37188/CJL.20200349http://dx.doi.org/10.37188/CJL.20200349
Zhao Z J, Liu M, Yang K X, Xu C Y, Guan Y X, Ma X L, Wang J, Zhang F J. Adv Funct Mater, 2021, 31(43): 2106009. doi:10.1002/adfm.202106009http://dx.doi.org/10.1002/adfm.202106009
Gong X, Tong M H, Park S H, Liu M, Jen A, Heeger A J. Sensors, 2010, 10(7): 6488-6496. doi:10.3390/s100706488http://dx.doi.org/10.3390/s100706488
Wang Cheng(王成), Zhang Chi(张弛), Chen Qi(陈琪), Chen Lizhi(陈立桅). Acta Chimica Sinica(化学学报), 2021, 79(8): 1030-1036. doi:10.6023/a21040181http://dx.doi.org/10.6023/a21040181
Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y. Small, 2016, 12(25): 3374-3380. doi:10.1002/smll.201600721http://dx.doi.org/10.1002/smll.201600721
Huang Z Q, Zhong Z M, Peng F, Ying L, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2021, 13(1): 1027-1034. doi:10.1021/acsami.0c18260http://dx.doi.org/10.1021/acsami.0c18260
Zhong Z M, Peng F, Ying L, Yu G, Huang F, Cao Y. Sci China-Mater, 2021, 64(10): 2430-2438. doi:10.1007/s40843-020-1639-xhttp://dx.doi.org/10.1007/s40843-020-1639-x
Xu Guiying(许桂英), Xue Rongming(薛荣明), Zhang Moyao(张默瑶), Li Yaowen(李耀文), Li Yongfang(李永舫). Acta Physico Chimica Sinica(物理化学学报), 2021, 37(4): 175-183
Tang Z, Ma Z, Sánchez-Díaz A, Ullbrich S, Liu Y, Siegmund B, Mischok A, Leo K, Campoy-Quiles M, Li W W, Vandewal K. Adv Mater, 2017, 29(33): 1702184. doi:10.1002/adma.201702184http://dx.doi.org/10.1002/adma.201702184
Zeng Z M Y, Zhong Z M, Zhong W K, Zhang J X, Ying L, Yu G, Huang F, Cao Y. J Mater Chem C, 2019, 7(20): 6070-6076. doi:10.1039/c9tc01154dhttp://dx.doi.org/10.1039/c9tc01154d
Gao Shijia(高诗佳), Wang Xin(王鑫), Zhang Yulin(张育林), Zhang Sai(张赛), Qiao Wenqiang(乔文强), Wang Zhiyuan(王植源). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 338-345. doi:10.11777/j.issn1000-3304.2019.19206http://dx.doi.org/10.11777/j.issn1000-3304.2019.19206
Li M J, Zeng Z M Y, Fan B B, Zhong W K, Zhang D F, Zhang X N, Zhang Y, Ying L, Huang F, Cao Y. J Mater Chem A, 2020, 8(44): 23519-23525. doi:10.1039/d0ta08725dhttp://dx.doi.org/10.1039/d0ta08725d
Dong S, Jia T, Zhang K, Jing J H, Huang F. Joule, 2020, 4(9): 2004-2016. doi:10.1016/j.joule.2020.07.028http://dx.doi.org/10.1016/j.joule.2020.07.028
Wang Y W, Lan W X, Li N, Lan Z J, Li Z, Jia J N, Zhu F R. Adv Energy Mater, 2019, 9(19): 1900157. doi:10.1002/aenm.201900157http://dx.doi.org/10.1002/aenm.201900157
Kublitski J, Hofacker A, Boroujeni B K, Benduhn J, Nikolis V C, Kaiser C, Spoltore D, Kleemann H, Fischer A, Ellinger F, Vandewal K, Leo K. Nat Commun, 2021, 12(1): 551. doi:10.1038/s41467-020-20856-zhttp://dx.doi.org/10.1038/s41467-020-20856-z
Samiee M, Joshi P, Aidarkhanov D, Dalal V. Appl Phys Lett, 2014, 105(13): 133511. doi:10.1063/1.4896782http://dx.doi.org/10.1063/1.4896782
Street R A, Yang Y, Thompson B C, McCulloch I. J Phys Chem C, 2016, 120(39): 22169-22178. doi:10.1021/acs.jpcc.6b06561http://dx.doi.org/10.1021/acs.jpcc.6b06561
Walter T, Herberholz R, Müller C, Schock H W. J Appl Phys, 1996, 80(8): 4411-4420. doi:10.1063/1.363401http://dx.doi.org/10.1063/1.363401
Boix P P, Garcia-Belmonte G, Muñecas U, Neophytou M, Waldauf C, Pacios R. Appl Phys Lett, 2009, 95(23): 233302. doi:10.1063/1.3270105http://dx.doi.org/10.1063/1.3270105
Street R A, Yang Y, Thompson B C, McCulloch I. J Phys Chem C, 2016, 120(39): 22169-22178. doi:10.1021/acs.jpcc.6b06561http://dx.doi.org/10.1021/acs.jpcc.6b06561
Wu Z, Yao W, London A E, Azoulay J D, Ng T N. Adv Funct Mater, 2018, 28(18): 1800391. doi:10.1002/adfm.201800391http://dx.doi.org/10.1002/adfm.201800391
Gasparini N, Jiao X C, Heumueller T, Baran D, Matt G J, Fladischer S, Spiecker E, Ade H, Brabec C J, Ameri T. Nat Energy, 2016, (1): 6118. doi:10.1038/nenergy.2016.118http://dx.doi.org/10.1038/nenergy.2016.118
Wu D, Li W H, Liu H C, Xiao X T, Shi K M, Tang H D, Shan C W, Wang K, Sun X W, Kyaw A K. Adv Sci, 2021, 8(18): 2101729. doi:10.1002/advs.202101729http://dx.doi.org/10.1002/advs.202101729
Chen Y J, Zheng Y Q, Jiang Y Y, Fan H J, Zhu X Z. J Am Chem Soc, 2021, 143(11): 4281-42896. doi:10.1021/jacs.0c12818http://dx.doi.org/10.1021/jacs.0c12818
0
浏览量
166
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构