浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子化学与物理国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
[ "李云琦,男,1980年生. 研究员,博士生导师,获中国科学院人才计划支持. 2001年毕业于南京大学化学系,2007年在中国科学院长春应用化学研究所高分子物理与化学国家重点实验室获博士学位,之后在美国堪萨斯大学分子生物中心和应用生物信息实验室、美国罗格斯大学食品系开展了3期博士后研究,2013年回国. 在高分子科学、结构生物学、生物信息学、食品科学及材料信息学等多个领域有深入研究经历,聚焦体系的组成-工艺-结构-性质-性能的多尺度定量关联,研究了蛋白质复合物和高分子凝胶、分离膜、弹性体等体系,将先进材料的基础研究与前沿应用结合起来,探索出了一套理论、模拟、实验与大数据有机结合的多学科交叉方法. 目前主要从事高分子材料的结构与大数据研究." ]
纸质出版日期:2022-06-20,
网络出版日期:2022-03-14,
收稿日期:2021-11-23,
修回日期:2022-01-07,
移动端阅览
刘伦洋,丁芳,李云琦.高分子材料大数据研究:共性基础、进展及挑战[J].高分子学报,2022,53(06):564-580.
Liu Lun-yang,Ding Fang,Li Yun-qi.Big Data Approach on Polymer Materials: Fundamental, Progress and Challenge[J].ACTA POLYMERICA SINICA,2022,53(06):564-580.
刘伦洋,丁芳,李云琦.高分子材料大数据研究:共性基础、进展及挑战[J].高分子学报,2022,53(06):564-580. DOI: 10.11777/j.issn1000-3304.2021.21360.
Liu Lun-yang,Ding Fang,Li Yun-qi.Big Data Approach on Polymer Materials: Fundamental, Progress and Challenge[J].ACTA POLYMERICA SINICA,2022,53(06):564-580. DOI: 10.11777/j.issn1000-3304.2021.21360.
介绍了作为一种新的认知范式,大数据研究常见和前沿算法及其应用在高分子材料研究中的共性基础,围绕材料的基础与应用研究聚焦的定量组成-工艺-结构-性质-性能关系,剖析了该关系中的要素和可数值化、定量化的资源和途径. 进而系统介绍近4年在高分子材料的合成与自组装、机械热性质、光电声磁性质、分离性质和加工性质等方面大数据研究的一些典型进展,梳理了当前高分子材料大数据研究的难题和挑战,对这一新兴快速发展方向和一段时间内可能的突破进行了展望.
Big data approach
a new paradigm for data-driven wisdom paces together with conventional experimental
theoretical and simulation ways. The core in the application of big data study in material researches is at the composition-process-structure-property-performance relationship (CPSPPr). The digitalization and computational efforts
concepts
tools and resources to enable the subterms in the CPSPPr to cover fundamental research and scalable production will be presented. The big data approach can fully utilize the merits for the "black-box" of emerging machine learning algorithms
which allows for the construction of much more quantitative correlations beyond conventional rationality. It provides fantastic wisdom in reward for the discovery and the manufacture of new materials from the inherently frustrated multiple scales
broadly distributed
weak but accumulatively-strong response of polymers. We hereby reviewed such representative progresses in the innovation of polymer materials wholly or partially using big data approach in the last four years. These progresses are grouped as: polymer synthesis and self-assembly
mechanical and thermal properties
optic-electric-magnetic-acoustic properties and membranes for separation. The overall progress for the application of big data approach in the research of polymer materials is lagging in the comparison with that in inorganic or small-molecular materials. We then enumerated a number of challenges and possible short-term breakthroughs before the dawn of burst for big data in the reshape of the research and the production of polymer materials.
高分子材料大数据组成-工艺-结构-性质-性能关系计算辅助材料设计
Polymer materialBig dataComposition-process-structure-property-performance relationshipComputer aided material design
Li Yunqi(李云琦),Liu Lunyang(刘伦洋),Chen Wenduo(陈文多),An Lijia(安立佳). Sci Sin Chim(中国科学:化学), 2018, 48(3): 243-255. doi:10.1360/n032017-00182http://dx.doi.org/10.1360/n032017-00182
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl S A A, Ballard A J, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A W, Kavukcuoglu K, Kohli P, Hassabis D. Nature, 2021, 596: 583-589. doi:10.1038/s41586-021-03819-2http://dx.doi.org/10.1038/s41586-021-03819-2
Kaur G, Homa D, Singh K, Pandey O P, Scott B, Pickrell G. J Power Sources, 2013, 242: 305-313. doi:10.1016/j.jpowsour.2013.05.094http://dx.doi.org/10.1016/j.jpowsour.2013.05.094
Crawford A J, Choi D, Balducci P J, Subramanian V R, Viswanathan V V. J Power Sources, 2021, 501: 230032-230047. doi:10.1016/j.jpowsour.2021.230032http://dx.doi.org/10.1016/j.jpowsour.2021.230032
Ligon S C, Liska R, Stampfl J, Gurr M, Mulhaupt R. Chem Rev, 2017, 117(15): 10212-10290. doi:10.1021/acs.chemrev.7b00074http://dx.doi.org/10.1021/acs.chemrev.7b00074
Krevelen D W V, Nijenhuis K T. Properties of Polymers. 4th ed. Amsterdam: Elsevier, 2009
Shen C, Krenn M, Eppel S, Aspuru-Guzik A. Mach Learn: Sci Technol, 2021, 2(3): 03LT02. doi:10.1088/2632-2153/ac09d6http://dx.doi.org/10.1088/2632-2153/ac09d6
Noh J, Kim J, Stein H S, Sanchez-Lengeling B, Gregoire J M, Aspuru-Guzik A, Jung Y. Matter, 2019, 1(5): 1370-1384. doi:10.1016/j.matt.2019.08.017http://dx.doi.org/10.1016/j.matt.2019.08.017
Gomez-Bombarelli R, Wei J N, Duvenaud D, Hernandez-Lobato J M, Sanchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A. ACS Cent Sci, 2018, 4(2): 268-276. doi:10.1021/acscentsci.7b00572http://dx.doi.org/10.1021/acscentsci.7b00572
Kim B, Lee S, Kim J. Sci Adv, 2020, 6: eaax9324. doi:10.1126/sciadv.aax9324http://dx.doi.org/10.1126/sciadv.aax9324
Sanchez-Lengeling B, Aspuru-Guzik A. Science, 2018, 361(6400): 360-365. doi:10.1126/science.aat2663http://dx.doi.org/10.1126/science.aat2663
Vasudevan R, Pilania G, Balachandran P V. J Appl Phys, 2021, 129(7): 070401. doi:10.1063/5.0043300http://dx.doi.org/10.1063/5.0043300
Jin W, Barzilay R, Jaakkola T. Artificial Intelligence in Drug Discovery. London: Royal Society of Chemistry, 2021. 228-249
Gurnani R, Kamal D, Tran H, Sahu H, Scharm K, Ashraf U, Ramprasad R. Chem Mater, 2021, 33(17): 7008-7016. doi:10.1021/acs.chemmater.1c02061http://dx.doi.org/10.1021/acs.chemmater.1c02061
Rojanarata T, Plianwong S, Su-uta K, Opanasopit P, Ngawhirunpat T. Talanta, 2013, 115: 208-213. doi:10.1016/j.talanta.2013.04.078http://dx.doi.org/10.1016/j.talanta.2013.04.078
Baer E, Hiltner A, Keith H. Science, 1987, 235(4792): 1015-1022. doi:10.1126/science.3823866http://dx.doi.org/10.1126/science.3823866
Zhou T, Song Z, Sundmacher K. Engineering, 2019, 5(6): 1017-1026. doi:10.1016/j.eng.2019.02.011http://dx.doi.org/10.1016/j.eng.2019.02.011
Brooks B R, Brooks C L, 3rd, Mackerell A D, Jr, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor B, Venable R M, Woodcock H L, Wu X, Yang W, York D M, Karplus M. J Comput Chem, 2009, 30(10): 1545-1614. doi:10.1002/jcc.21287http://dx.doi.org/10.1002/jcc.21287
Rappé A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M. J Am Chem Soc, 1992, 114(25): 10024-10025. doi:10.1021/ja00051a040http://dx.doi.org/10.1021/ja00051a040
Jorgensen W L, Maxwell D S, Tirado-Rives J. J Am Chem Soc, 1996, 118: 11225-11236. doi:10.1021/ja9621760http://dx.doi.org/10.1021/ja9621760
Halgren T A. J Comput Chem, 1996, 17(5-6): 490-519. doi:10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-phttp://dx.doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p
van Duin A C T, Dasgupta S, Lorant F, Goddard W A. J Phys Chem A, 2001, 105(41): 9396-9409. doi:10.1021/jp004368uhttp://dx.doi.org/10.1021/jp004368u
Seo B, Lin Z Y, Zhao Q Y, Webb M A, Savoie B M. J Chem Inf Model, 2021, 61(10): 5013-5027. doi:10.1021/acs.jcim.1c00491http://dx.doi.org/10.1021/acs.jcim.1c00491
Yang J, Xu J, Zhang X, Wu C, Lin T, Ying Y. Anal Chim Acta, 2019, 1081: 6-17. doi:10.1016/j.aca.2019.06.012http://dx.doi.org/10.1016/j.aca.2019.06.012
Gastegger M, Behler J, Marquetand P. Chem Sci, 2017, 8(10): 6924-6935. doi:10.1039/c7sc02267khttp://dx.doi.org/10.1039/c7sc02267k
Zeng W, Zhou X, Zhou W, Chi H, Zhan J, He S. Anal Chem, 2019, 91(15): 9724-9731. doi:10.1021/acs.analchem.9b01262http://dx.doi.org/10.1021/acs.analchem.9b01262
Kwon Y, Lee D, Choi Y S, Kang M, Kang S. J Chem Inf Model, 2020, 60(4): 2024-2030. doi:10.1021/acs.jcim.0c00195http://dx.doi.org/10.1021/acs.jcim.0c00195
Carbone M R, Topsakal M, Lu D Y, Yoo S. Phys Rev Lett, 2020, 124(15): 156401. doi:10.1103/physrevlett.124.156401http://dx.doi.org/10.1103/physrevlett.124.156401
Blum L C, Reymond J L. J Am Chem Soc, 2009, 131(25): 8732-8733. doi:10.1021/ja902302hhttp://dx.doi.org/10.1021/ja902302h
Soleimany A P, Amini A, Goldman S, Rus D, Bhatia S N, Coley C W. ACS Cent Sci, 2021, 7(8): 1356-1367. doi:10.1021/acscentsci.1c00546http://dx.doi.org/10.1021/acscentsci.1c00546
Lu Z. Materials Reports: Energy, 2021, 1(3): 10047-10065. doi:10.1016/j.matre.2021.100047http://dx.doi.org/10.1016/j.matre.2021.100047
Yuan Q, Santana-Bonilla A, Zwijnenburg M A, Jelfs K E. Nanoscale, 2020, 12(12): 6744-6758. doi:10.1039/c9nr10687ahttp://dx.doi.org/10.1039/c9nr10687a
Wieder O, Kohlbacher S, Kuenemann M, Garon A, Ducrot P, Seidel T, Langer T. Drug Discov Today Technol, 2020, 37: 1-12. doi:10.1016/j.ddtec.2020.11.009http://dx.doi.org/10.1016/j.ddtec.2020.11.009
Sandfort F, Strieth-Kalthoff F, Kühnemund M, Beecks C, Glorius F. Chem, 2020, 6(6): 1379-1390. doi:10.1016/j.chempr.2020.02.017http://dx.doi.org/10.1016/j.chempr.2020.02.017
Lin K, Xu Y, Pei J, Lai L. Chem Sci, 2020, 11(12): 3355-3364. doi:10.1039/c9sc03666khttp://dx.doi.org/10.1039/c9sc03666k
Schwaller P, Laino T, Gaudin T, Bolgar P, Hunter C A, Bekas C, Lee A A. ACS Cent Sci, 2019: 1572-1583. doi:10.1021/acscentsci.9b00576http://dx.doi.org/10.1021/acscentsci.9b00576
Ellis B, Smith R. Polymers: A Property Database. 2nd ed. Florida: CRC Press, 2009. 1210
Wypych G. Handbook of Polymers. 2nd ed. Toronto: ChemTec Publishing, 2012. doi:10.1016/b978-1-895198-47-8.50165-xhttp://dx.doi.org/10.1016/b978-1-895198-47-8.50165-x
Bieerano J. Prediction of Polymer Properties. 3th ed. New York: Marcel Dekker, 2002
Braun D, Cherdron H, Rehahn M, Ritter H, Voit B. Polymer Synthesis: Theory and Practice. 4th ed. Berlin: Springer, 2012. doi:10.1007/978-3-642-28980-4http://dx.doi.org/10.1007/978-3-642-28980-4
Brandrup J, Immergut E H, Grulke E A. Polymer Handbook. 4th ed. Michigan: Wiley-Blackwell, 1999
Wohlfarth C. CRC Handbook of Phase Equilibria and Thermodynamic Data of Aqueous Polymer Solutions. Boca Raton: CRC Press, 2013
Khemchandani Y, O’Hagan S, Samanta S, Swainston N, Roberts T J, Bollegala D, Kell D B. J Cheminformatics, 2020, 12(1): 1-17. doi:10.1186/s13321-020-00454-3http://dx.doi.org/10.1186/s13321-020-00454-3
Stahl N, Falkman G, Karlsson A, Mathiason G, Bostrom J. J Chem Inf Model, 2019, 59(7): 3166-3176. doi:10.1021/acs.jcim.9b00325http://dx.doi.org/10.1021/acs.jcim.9b00325
Jablonka K M, Jothiappan G M, Wang S, Smit B, Yoo B. Nat Commun, 2021, 12(1): 2312. doi:10.1038/s41467-021-22437-0http://dx.doi.org/10.1038/s41467-021-22437-0
Breiman L. Mach Learn, 2001, 45: 5-32. doi:10.1023/a:1010933404324http://dx.doi.org/10.1023/a:1010933404324
Menard S. Applied Logistic Regression Analysis. 2nd ed. Thousand Oaks, CA: Sage, 2002. 1-17. doi:10.4135/9781412983433http://dx.doi.org/10.4135/9781412983433
Lewis D D. Naive (Bayes) at Forty: The independence assumption in information retrieval. In: European Conference on Machine Learning. Berlin Heidelberg: Springer. 1998. 4-15. doi:10.1007/bfb0026666http://dx.doi.org/10.1007/bfb0026666
Joachims T. Text categorization with support vector machines: learning with many relevant features. In: European Conference on Machine Learning. Berlin Heidelberg: Springer. 1998. 137-142. doi:10.1007/bfb0026683http://dx.doi.org/10.1007/bfb0026683
Hartigan J A, Wong M A. J R Stat Soc Ser C Appl Stat, 1979, 28(1): 100-108. doi:10.2307/2346830http://dx.doi.org/10.2307/2346830
Johnson S C. Psychometrika, 1967, 32(3): 241-254. doi:10.1007/bf02289588http://dx.doi.org/10.1007/bf02289588
Wold S, Esbensen K, Geladi P. Chemometr Intell Lab Syst, 1987, 2(1-3): 37-52. doi:10.1016/0169-7439(87)80084-9http://dx.doi.org/10.1016/0169-7439(87)80084-9
Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods. In: 33rd Annual Meeting of the Association for Computational Linguistics. Cambridge: Association for Computational Linguistics, 1995. 189-196. doi:10.3115/981658.981684http://dx.doi.org/10.3115/981658.981684
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory. New York: Association for Computing Machinery, 1998. 92-100. doi:10.1145/279943.279962http://dx.doi.org/10.1145/279943.279962
Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1999. 200-209
Zhou D, Bousquet O, Lal T, Weston J, Schölkopf B. Adv Neural Inf Process Syst, 2003, 16: 321-328. doi:10.1023/a:1026338322729http://dx.doi.org/10.1023/a:1026338322729
Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G. Nature, 2015, 518(7540): 529-533. doi:10.1038/nature14236http://dx.doi.org/10.1038/nature14236
Watkins C J, Dayan P. Mach Learn, 1992, 8(3-4): 279-292. doi:10.1007/bf00992698http://dx.doi.org/10.1007/bf00992698
Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W, Horgan D, Piot B, Azar M, Silver D. Rainbow: combining improvements in deep reinforcement learning. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). New Orleans: AAAI, 2018. 3215-3222. doi:10.1609/aaai.v33i01.33013796http://dx.doi.org/10.1609/aaai.v33i01.33013796
Sehnke F, Osendorfer C, Rückstieß T, Graves A, Peters J, Schmidhuber J. Neural Networks, 2010, 23(4): 551-559. doi:10.1016/j.neunet.2009.12.004http://dx.doi.org/10.1016/j.neunet.2009.12.004
Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region policy optimization. In: International Conference on Machine Learning. Lille: Association for Computing Machinery, 2015. 1889-1897. doi:10.1109/icra.2015.7139645http://dx.doi.org/10.1109/icra.2015.7139645
Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P. J Artif Intell Res, 2002, 16: 321-357. doi:10.1613/jair.953http://dx.doi.org/10.1613/jair.953
Maciejewski T, Stefanowski J. Local neighbourhood extension of smote for mining imbalanced data. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). Paris: IEEE, 2011. 104-111. doi:10.1109/cidm.2011.5949434http://dx.doi.org/10.1109/cidm.2011.5949434
Xiao X, Min J L, Lin W Z, Liu Z, Cheng X, Chou K C. J Biomol Struct Dyn, 2015, 33(10): 2221-2233. doi:10.1080/07391102.2014.998710http://dx.doi.org/10.1080/07391102.2014.998710
Altae-Tran H, Ramsundar B, Pappu A S, Pande V. ACS Cent Sci, 2017, 3(4): 283-293. doi:10.1021/acscentsci.6b00367http://dx.doi.org/10.1021/acscentsci.6b00367
Yang X, Wang Y, Byrne R, Schneider G, Yang S. Chem Rev, 2019, 119(18): 10520-10594. doi:10.1021/acs.chemrev.8b00728http://dx.doi.org/10.1021/acs.chemrev.8b00728
Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R. Nature, 2020, 583(7815): 237-241. doi:10.1038/s41586-020-2442-2http://dx.doi.org/10.1038/s41586-020-2442-2
Chen L, Pilania G, Batra R, Huan T D, Kim C, Kuenneth C, Ramprasad R. Mater Sci Eng R Rep, 2021, 144: 100595-100611. doi:10.1016/j.mser.2020.100595http://dx.doi.org/10.1016/j.mser.2020.100595
Moriarty D E, Schultz A C, Grefenstette J J. J Artif Intell Res, 1999, 11: 241-276. doi:10.1613/jair.613http://dx.doi.org/10.1613/jair.613
Sutton R S, Barto A G. Reinforcement Learning: An Introduction. 2nd ed. Massachusetts: MIT Press, 2018. 548
Bergstra J, Yamins D, Cox D D. Comput Sci Discov, 2015, 8: 014008-014031. doi:10.1088/1749-4699/8/1/014008http://dx.doi.org/10.1088/1749-4699/8/1/014008
Liu Y, Sid-Lakhdar W M, Marques O, Zhu X, Meng C, Demmel J W, Li X S. Gptune: multitask learning for autotuning exascale applications. In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Virtual: Association for Computing Machinery, 2021. 234-246. doi:10.1145/3437801.3441621http://dx.doi.org/10.1145/3437801.3441621
Ueno T, Rhone T D, Hou Z, Mizoguchi T, Tsuda K. Mater Discov, 2016, 4: 18-21. doi:10.1016/j.md.2016.04.001http://dx.doi.org/10.1016/j.md.2016.04.001
Wu Z, Ramsundar B, Feinberg E N, Gomes J, Geniesse C, Pappu A S, Leswing K, Pande V. Chem Sci, 2018, 9(2): 513-530. doi:10.1039/c7sc02664ahttp://dx.doi.org/10.1039/c7sc02664a
Haghighatlari M, Vishwakarma G, Altarawy D, Subramanian R, Kota B U, Sonpal A, Setlur S, Hachmann J. Wiley Interdiscip Rev: Comput Mol Sci, 2020, 10(4): e1458. doi:10.1002/wcms.1458http://dx.doi.org/10.1002/wcms.1458
Le T T, Fu W, Moore J H. Bioinformatics, 2020, 36(1): 250-256. doi:10.1093/bioinformatics/btz470http://dx.doi.org/10.1093/bioinformatics/btz470
Kausar S, Falcao A O. J Cheminformatics, 2018, 10(1): 1-23. doi:10.1186/s13321-017-0256-5http://dx.doi.org/10.1186/s13321-017-0256-5
Minnich A J, McLoughlin K, Tse M, Deng J, Weber A, Murad N, Madej B D, Ramsundar B, Rush T, Calad-Thomson S. J Chem Inf Model, 2020, 60(4): 1955-1968. doi:10.1021/acs.jcim.9b01053http://dx.doi.org/10.1021/acs.jcim.9b01053
Obrezanova O, Gola J M, Champness E J, Segall M D. J Comput Aided Mol Des, 2008, 22(6): 431-440. doi:10.1007/s10822-008-9193-8http://dx.doi.org/10.1007/s10822-008-9193-8
Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F. In: Advances in Neural Information Processing Systems. Montreal: MIT Press, 2015. 2962-2970
Nazarova A L, Yang L, Liu K, Mishra A, Kalia R K, Nomura K I, Nakano A, Vashishta P, Rajak P. J Chem Inf Model, 2021, 61(5): 2175-2186. doi:10.1021/acs.jcim.0c01366http://dx.doi.org/10.1021/acs.jcim.0c01366
Sattari K, Xie Y, Lin J. Soft Matter, 2021, 17(33): 7607-7622. doi:10.1039/d1sm00725dhttp://dx.doi.org/10.1039/d1sm00725d
Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014. 2672-2680
Chen G, Tao L, Li Y. Polymers, 2021, 13(11): 1898-1911. doi:10.3390/polym13111898http://dx.doi.org/10.3390/polym13111898
Batra R, Dai H, Huan T D, Chen L, Kim C, Gutekunst W R, Song L, Ramprasad R. Chem Mater, 2020, 32(24): 10489-10500. doi:10.1021/acs.chemmater.0c03332http://dx.doi.org/10.1021/acs.chemmater.0c03332
Hiraide K, Hirayama K, Endo K, Muramatsu M. Comput Mater Sci, 2021, 190: 110278-110286. doi:10.1016/j.commatsci.2021.110278http://dx.doi.org/10.1016/j.commatsci.2021.110278
Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R, Rankin N, Harris B, Sprick R S, Cooper A I. Nature, 2020, 583(7815): 237-241. doi:10.1038/s41586-020-2442-2http://dx.doi.org/10.1038/s41586-020-2442-2
Gu Y, Lin P, Zhou C, Chen M. Sci China Chem, 2021, 64(6): 1039-1046. doi:10.1007/s11426-020-9969-yhttp://dx.doi.org/10.1007/s11426-020-9969-y
Li H, Collins C R, Ribelli T G, Matyjaszewski K, Gordon G J, Kowalewski T, Yaron D J. Mol Syst Des Eng, 2018, 3(3): 496-508. doi:10.1039/c7me00131bhttp://dx.doi.org/10.1039/c7me00131b
Xuan Y, Delaney K T, Ceniceros H D, Fredrickson G H. J Comput Phys, 2021, 443: 110519-110537. doi:10.1016/j.jcp.2021.110519http://dx.doi.org/10.1016/j.jcp.2021.110519
Zhao C, Cai T Y, Zhang L S, Li W H, Lin J P. Acs Macro Lett, 2021, 10(5): 598-602. doi:10.1021/acsmacrolett.1c00133http://dx.doi.org/10.1021/acsmacrolett.1c00133
Wei H, Li Y, Wang S, Tao G, Wang T, Cheng S, Yang S, Ding Y. J Membr Sci, 2019, 579: 219-229. doi:10.1016/j.memsci.2019.02.058http://dx.doi.org/10.1016/j.memsci.2019.02.058
Liu W, Cao C. Colloid Polym Sci, 2009, 287(7): 811-818. doi:10.1007/s00396-009-2035-yhttp://dx.doi.org/10.1007/s00396-009-2035-y
Joyce S J, Osguthorpe D J, Padgettf J A, Price G J. J Chem Soc Faraday Trans, 1995, 91(16): 2491-2496. doi:10.1039/ft9959102491http://dx.doi.org/10.1039/ft9959102491
Kim C, Chandrasekaran A, Jha A, Ramprasad R. MRS Commun, 2019, 9(3): 860-866. doi:10.1557/mrc.2019.78http://dx.doi.org/10.1557/mrc.2019.78
Colby R H, Fetters L J, Funk W G, Graessley W W. Macromolecules, 1991, 24(13): 3873-3882. doi:10.1021/ma00013a021http://dx.doi.org/10.1021/ma00013a021
Jin K, Luo H, Wang Z, Wang H, Tao J. Mater Des, 2020, 194: 108932-108942. doi:10.1016/j.matdes.2020.108932http://dx.doi.org/10.1016/j.matdes.2020.108932
Kopal I, Labaj I, Harnicarova M, Valicek J, Hruby D. Polymers (Basel), 2018, 10(6): 10060644. doi:10.21125/iceri.2018.0485http://dx.doi.org/10.21125/iceri.2018.0485
Le T T. J Compos Mater, 2020, 55(6): 787-811. doi:10.1177/0021998320953540http://dx.doi.org/10.1177/0021998320953540
Ho N X, Le T T, Le M V. Mech Adv Mater Struct, 2021: 1-14. doi:10.1002/adem.v14.11http://dx.doi.org/10.1002/adem.v14.11
Kopal I, Harničárová M, Valíček J, Kušnerová M. Polymers, 2017, 9(12): 519-535. doi:10.3390/polym9100519http://dx.doi.org/10.3390/polym9100519
Jordan B, Gorji M B, Mohr D. Int J Plast, 2020, 135: 102811-102833. doi:10.1016/j.ijplas.2020.102811http://dx.doi.org/10.1016/j.ijplas.2020.102811
Shi R, Li S J, Yu L X Z, Qian H J, Lu Z Y. Soft Mater, 2020, 18(2-3): 323-334. doi:10.1080/1539445x.2020.1741387http://dx.doi.org/10.1080/1539445x.2020.1741387
Menon A, Thompson-Colon J A, Washburn N R. Front Mater Sci, 2019, 6: 87-98. doi:10.3389/fmats.2019.00087http://dx.doi.org/10.3389/fmats.2019.00087
Zhang M, Li X L, Wang Y X, Chen W, Brinson C. J Mater Res, 2020, 35(14): 1857-1873. doi:10.1557/jmr.2020.161http://dx.doi.org/10.1557/jmr.2020.161
Ghaderi A, Morovati V, Dargazany R. Polymers, 2020, 12(11): 2628-2647. doi:10.3390/polym12112628http://dx.doi.org/10.3390/polym12112628
Chung I, Im S, Cho M. Int J Numer Methods Eng, 2020, 122: 5-24. doi:10.1002/nme.6459http://dx.doi.org/10.1002/nme.6459
Deng D, Chen X, Zhang R, Lei Z, Wang X, Zhou F. J Chem Inf Model, 2021, 61(6): 2697-2705. doi:10.1021/acs.jcim.0c01489http://dx.doi.org/10.1021/acs.jcim.0c01489
Ding F, Liu T, Zhang H, Liu L, Li Y. J Appl Polym Sci, 2021, 138(39): 51269-51281. doi:10.1002/app.51269http://dx.doi.org/10.1002/app.51269
Ding Fang(丁芳), Zhang Huan(张欢), Ding Mingming(丁明明), Shi Tongfei(石彤非), Li Yunqi(李云琦), An Lijia(安立佳). Acat Polymerica Sinica(高分子学报), 2019, 50(12): 1357-1366. doi:10.11777/j.issn1000-3304.2019.19132http://dx.doi.org/10.11777/j.issn1000-3304.2019.19132
Zhang H, Ding F, Liu T, Liu L, Li Y. J Appl Polym Sci, 2021: e51923
Zhang F, Li T, Chen W, Wu X, Yan X, Xiao W, Zhang Y, Wang X, He G. ACS Appl Mater Interfaces, 2021, 13(8): 10490-10499. doi:10.1021/acsami.1c00324http://dx.doi.org/10.1021/acsami.1c00324
Kamal D, Tran H, Kim C, Wang Y, Chen L, Cao Y, Joseph V R, Ramprasad R. J Chem Phys, 2021, 154(17): 174906-174916. doi:10.1063/5.0044306http://dx.doi.org/10.1063/5.0044306
Shen Z H, Bao Z W, Cheng X X, Li B W, Liu H X, Shen Y, Chen L Q, Li X G, Nan C W. npj Comput Mater, 2021, 7(1): 110-119. doi:10.1038/s41524-021-00578-6http://dx.doi.org/10.1038/s41524-021-00578-6
Jabeen F, Chen M, Rasulev B, Ossowski M, Boudjouk P. Comput Mater Sci, 2017, 137: 215-224. doi:10.1016/j.commatsci.2017.05.022http://dx.doi.org/10.1016/j.commatsci.2017.05.022
Wu S, Kondo Y, M-aKakimoto, Yang B, Yamada H, Kuwajima I, Lambard G, Hongo K, Xu Y, Shiomi J, Schick C, Morikawa J, Yoshida R. npj Comput Mater, 2019, 5(1): 66-77. doi:10.1038/s41524-019-0203-2http://dx.doi.org/10.1038/s41524-019-0203-2
Kranthiraja K, Saeki A. Adv Funct Mater, 2021, 31(23): 2011168-2011179. doi:10.1002/adfm.202011168http://dx.doi.org/10.1002/adfm.202011168
Wu Y, Guo J, Sun R, Min J. npj Comput Mater, 2020, 6(1): 120-128. doi:10.1038/s41524-020-00388-2http://dx.doi.org/10.1038/s41524-020-00388-2
Huang Y, Zhang J, Jiang E S, Oya Y, Saeki A, Kikugawa G, Okabe T, Ohuchi F S. J Phys Chem C, 2020, 124(24): 12871-12882. doi:10.1021/acs.jpcc.0c00517http://dx.doi.org/10.1021/acs.jpcc.0c00517
Sun W, Zheng Y, Yang K, Zhang Q, Shah A A, Wu Z, Sun Y, Feng L, Chen D, Xiao Z, Lu S, Li Y, Sun K. Sci Adv, 2019, 5: eaay4275. doi:10.1126/sciadv.aay4275http://dx.doi.org/10.1126/sciadv.aay4275
Webb M A, Jackson N E, Gil P S, Pablo J J D. Sci Adv, 2020, 6(43): eabc6216. doi:10.1126/sciadv.abc6216http://dx.doi.org/10.1126/sciadv.abc6216
Shi C, Cai Y, Cui F, Li Y. Chinese J Appl Chem, 2019, 36(12): 1406-1412. doi:10.23919/chicc.2019.8865893http://dx.doi.org/10.23919/chicc.2019.8865893
Liu L, Chen W, Li Y. J Membr Sci, 2016, 504: 1-9. doi:10.12989/mwt.2016.7.5.417http://dx.doi.org/10.12989/mwt.2016.7.5.417
Liu L, Chen W, Li Y. J Membr Sci, 2018, 549: 393-402. doi:10.1016/j.memsci.2017.12.025http://dx.doi.org/10.1016/j.memsci.2017.12.025
Chen W, Cui F, Liu L, Li Y. J Phys Chem B, 2017, 121(41): 9718-9724. doi:10.1021/acs.jpcb.7b06412http://dx.doi.org/10.1021/acs.jpcb.7b06412
Shi C, Liu T, Chen W, Cui F, Liu L, Cai Y, Li Y. Polymer, 2020, 213: 123224-123231. doi:10.1016/j.polymer.2020.123224http://dx.doi.org/10.1016/j.polymer.2020.123224
Liu L, Chen W, Liu T, Kong X, Zheng J, Li Y. J Mater Chem A, 2019, 7(19): 11847-11857. doi:10.1039/c9ta00688ehttp://dx.doi.org/10.1039/c9ta00688e
Liu L, Liu T, Ding F, Zhang H, Zheng J, Li Y. ACS Appl Mater Interfaces, 2021, 13(49): 58838-58847. doi:10.1021/acsami.1c20289http://dx.doi.org/10.1021/acsami.1c20289
Liu T, Liu L, Cui F, Ding F, Zhang Q, Li Y. J Mater Chem A, 2020, 8(41): 21862-21871. doi:10.1039/d0ta07607dhttp://dx.doi.org/10.1039/d0ta07607d
Barnett J W, Bilchak C R, Wang Y, Benicewicz B C, Murdock L A, Bereau T, Kumar S K. Sci Adv, 2020, 6: eaaz4301. doi:10.1126/sciadv.aaz4301http://dx.doi.org/10.1126/sciadv.aaz4301
Zhu G, Kim C, Chandrasekarn A, Everett J D, Ramprasad R, Lively R P. J Polym Eng, 2020, 40(6): 451-457. doi:10.1515/polyeng-2019-0329http://dx.doi.org/10.1515/polyeng-2019-0329
Hatakeyama-Sato K, Tezuka T, Umeki M, Oyaizu K. J Am Chem Soc, 2020, 142(7): 3301-3305. doi:10.1021/jacs.9b11442http://dx.doi.org/10.1021/jacs.9b11442
Wheatle B K, Fuentes E F, Lynd N A, Ganesan V. Macromolecules, 2020, 53(21): 9449-9459. doi:10.1021/acs.macromol.0c01547http://dx.doi.org/10.1021/acs.macromol.0c01547
Wang Y, Xie T, France-Lanord A, Berkley A, Johnson J A, Shao-Horn Y, Grossman J C. Chem Mater, 2020, 32(10): 4144-4151. doi:10.1021/acs.chemmater.9b04830http://dx.doi.org/10.1021/acs.chemmater.9b04830
Schauser N S, Kliegle G A, Cooke P, Segalman R A, Seshadri R. Chem Mater, 2021, 33(13): 4863-4876. doi:10.1021/acs.chemmater.0c04767http://dx.doi.org/10.1021/acs.chemmater.0c04767
Fetanat M, Keshtiara M, Low Z X, Keyikoglu R, Khataee A, Orooji Y, Chen V, Leslie G, Razmjou A. Ind Eng Chem Res, 2021, 60(14): 5236-5250. doi:10.1021/acs.iecr.0c05446http://dx.doi.org/10.1021/acs.iecr.0c05446
Zhai F H, Zhan Q Q, Yang Y F, Ye N Y, Wan R Y, Wang J, Chen S, He R H. J Membr Sci, 2022, 642: 119983-119991. doi:10.1016/j.memsci.2021.119983http://dx.doi.org/10.1016/j.memsci.2021.119983
Qiao Z W, Li L F, Li S H, Liang H, Zhou J, Snurr R Q. Aiche J, 2021, 67(10). doi:10.1002/aic.17352http://dx.doi.org/10.1002/aic.17352
Shapely L S. Contributions to the Theory of Games. Princeton: Princeton University Press, 2016. 307-318
Molina J, Laroche A, Richard J V, Schuller A S, Rolando C. Front Chem, 2019, 7: 375-387. doi:10.3389/fchem.2019.00375http://dx.doi.org/10.3389/fchem.2019.00375
Jackson N E, Webb M A, de Pablo J J. Curr Opin Chem Eng, 2019, 23: 106-114. doi:10.1016/j.coche.2019.03.005http://dx.doi.org/10.1016/j.coche.2019.03.005
Treloar L R G. T Faraday Soc, 1944, 40: 59-69. doi:10.1039/tf9444000059http://dx.doi.org/10.1039/tf9444000059
Bates F S. Science, 1991, 251(4996): 898-905. doi:10.1126/science.251.4996.898http://dx.doi.org/10.1126/science.251.4996.898
0
浏览量
587
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构