浏览全部资源
扫码关注微信
1.深圳先进电子材料国际创新研究院 中国科学院深圳先进技术研究院 深圳 518100
2.中国科学院化学研究所 北京 100190
3.北京自动化控制设备研究所 北京 100071
4.北京工商大学化学与材料工程学院 北京 100048
E-mail: zfwang@iccas.ac.cn;
xingqian@btbu.edu.cn
纸质出版日期:2022-05-20,
网络出版日期:2022-03-25,
收稿日期:2021-12-03,
录用日期:2022-01-28
移动端阅览
王泽凡,姜千红,邢倩等.聚丙烯片晶厚度对受限空间内聚丁烯-1三方晶型形成的影响[J].高分子学报,2022,53(05):514-521.
Wang Ze-fan,Jiang Qian-hong,Xing Qian,et al.The Effect of Lamellar Thickness of iPP on the Formation of Trigonal Modification of PB-1 under Confinement Environment[J].ACTA POLYMERICA SINICA,2022,53(05):514-521.
王泽凡,姜千红,邢倩等.聚丙烯片晶厚度对受限空间内聚丁烯-1三方晶型形成的影响[J].高分子学报,2022,53(05):514-521. DOI: 10.11777/j.issn1000-3304.2021.21370.
Wang Ze-fan,Jiang Qian-hong,Xing Qian,et al.The Effect of Lamellar Thickness of iPP on the Formation of Trigonal Modification of PB-1 under Confinement Environment[J].ACTA POLYMERICA SINICA,2022,53(05):514-521. DOI: 10.11777/j.issn1000-3304.2021.21370.
当聚丁烯-1以小液滴的形式分散在另一种树脂基体中时,会表现出不同的成核路径,即发生“分级结晶”现象. 前期研究结果表明将聚丁烯-1以≤20%的比例与聚丙烯进行共混,动力学优先的晶型Ⅱ的成核会受到抑制,使得聚丁烯-1小液滴相界面处更容易发生界面诱导成核形成三方的晶型I'. 本工作采用自成核与调控聚丙烯等温结晶温度的方法,改变了聚丙烯/聚丁烯-1界面处聚丙烯的片晶厚度,发现聚丙烯的片晶越厚,晶型I'的结晶速率越慢,进一步证明了三方晶的形成是由界面处聚丙烯诱导得到. 原位广角X射线衍射结果显示,聚丁烯-1的晶型I'是否发生重结晶取决于体系中是否存在晶型Ⅱ晶核. 纯净的晶型I'在升温过程中会直接熔融而不会转化为晶型Ⅱ.
Polybutene-1 (PB-1) could behave different crystallization paths when it is finely dispersed into large number of small droplets
which is so-called "fractioned crystallization" phenomenon. According to our previous research
the nucleation of the kinetic favored form Ⅱ could be suppressed when it is blended with polypropylene (
i
PP) with content lower than 20%. In this situation
trigonal form I' could be generated at the interface of the droplets. Self-nucleation and the manipulation of isothermal crystallization temperature methods are involved to modify lamellar thickness of
i
PP in this work. These results clearly show that crystallization temperature of PB-1 trigonal crystals is controlled by
T
s
temperatures. According to Gibbs-Thomson equation
it could be concluded that the nucleation of form I' could be hindered by thicker
i
PP lamellae.
In situ
wide angle X-ray diffraction (WAXD) experiment is also conducted
which confirms that the melt and re-crystallization of PB-1 is controlled by the existence of form Ⅱ nuclei generated at low temperature. Pure form I' could melt directly without transformin
g into form Ⅱ crystals during heating process. Our results shed new lights on understanding the effect of interface on fractionated crystallization.
聚丙烯聚丁烯-1受限空间结晶
PolypropylenePolybutene-1Confined spaceCrystallization
Michell R M, Lorenzo A T, Müller A J, Lin M C, Chen H L, Blaszczyk-Lezak I, Martin J, Mijangos C. Macromolecules, 2012, 45: 1517-1528. doi:10.1021/ma202327fhttp://dx.doi.org/10.1021/ma202327f
Michell R M, Müller A J. Prog Polym Sci, 2016, 54-55: 183-213. doi:10.1016/j.progpolymsci.2015.10.007http://dx.doi.org/10.1016/j.progpolymsci.2015.10.007
Sangroniz L, Ocando C, Cavallo D, Müller A. Polymers, 2020, 12: 2796. doi:10.3390/polym12122796http://dx.doi.org/10.3390/polym12122796
Sangroniz L, Cavallo D, Müller, A J. Macromolecules, 2020, 53: 4581-4604. doi:10.1021/acs.macromol.0c00223http://dx.doi.org/10.1021/acs.macromol.0c00223
Sangroniz L, Wang, B, Su, Y L, Liu G M, Cavallo D, Wang D J, Müller A J. Prog Polym Sci, 2021, 115: 101376. doi:10.1016/j.progpolymsci.2021.101376http://dx.doi.org/10.1016/j.progpolymsci.2021.101376
Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J. Polymer, 2013, 54: 4059-4077. doi:10.1016/j.polymer.2013.05.029http://dx.doi.org/10.1016/j.polymer.2013.05.029
Stolte I, Fischer M, Roth R, Borreck S, Androsch R. Polymer, 2015, 63: 30-33. doi:10.1016/j.polymer.2015.02.034http://dx.doi.org/10.1016/j.polymer.2015.02.034
Michell R M, Mugica A, Zubitur M, Müller A J. In Polymer Crystallization I: From Chain Microstructure to Processing. In: Auriemma F, Alfonso G C, de Rosa C, eds. Gewerbestrasse: Springer, 2017. 215
Hu J, Tashiro K. Polymer, 2016, 90: 165-177. doi:10.1016/j.polymer.2016.03.004http://dx.doi.org/10.1016/j.polymer.2016.03.004
Qiao Y, Men, Y. Macromolecules, 2017, 50: 5490-5497. doi:10.1021/acs.macromol.7b00771http://dx.doi.org/10.1021/acs.macromol.7b00771
Qiao Y, Yang F, Lu Y, Liu P, Li Y, Men Y. Macromolecules, 2018, 51: 8298-8305. doi:10.1021/acs.macromol.8b01795http://dx.doi.org/10.1021/acs.macromol.8b01795
Qiao Y, Wang H, Men Y. Macromolecules, 2018, 51: 2232-2239. doi:10.1021/acs.macromol.8b01795http://dx.doi.org/10.1021/acs.macromol.8b01795
Xin R, Zhang J, Sun X L, Li H H, Ren Z J, Yan S K. Polymers, 2018, 10: 556. doi:10.3390/polym10050556http://dx.doi.org/10.3390/polym10050556
Qiao Y, Schulz M, Wang H, Chen R, Schäfer M, Thurn-Albrecht T, Men Y. Polymer, 2020, 195: 122425. doi:10.1016/j.polymer.2020.122425http://dx.doi.org/10.1016/j.polymer.2020.122425
Wang Z, Dong X, Cavallo D, Wang D, Müller A J. Polymer Crystallization, 2021, 4: e10201. doi:10.1002/pcr2.10201http://dx.doi.org/10.1002/pcr2.10201
Cavallo D, Gardella L, Portale G, Müller A J, Alfonso G C. Polymer, 2013, 54: 4637-4644. doi:10.1016/j.polymer.2013.06.051http://dx.doi.org/10.1016/j.polymer.2013.06.051
Cavallo D, Gardella L, Portale G, Müller A J, Alfonso G C. Polymer, 2014, 55: 137-142. doi:10.1016/j.polymer.2013.11.030http://dx.doi.org/10.1016/j.polymer.2013.11.030
Cavallo D, Zhang, L, Sics I, Alfonso G C, Dumas P, Marco C, Ellis G. Cryst Eng Comm, 2016, 18: 816-828. doi:10.1039/c5ce01727khttp://dx.doi.org/10.1039/c5ce01727k
Cavallo D, Gardella L, Portale G, Müller A J, Alfonso G C. Macromolecules, 2014, 47: 870-873. doi:10.1021/ma500281fhttp://dx.doi.org/10.1021/ma500281f
Su F M, Li X Y, Zhou W M, Zhu S S, Ji Y X, Wang Z, Qi Z M, Li L B. Macromolecules, 2013, 46: 7399-7405. doi:10.1021/ma400952rhttp://dx.doi.org/10.1021/ma400952r
Wang Y, Lu Y, Zhao J, Jiang Z, Men Y. Macromolecules, 2014, 47: 8653-8662. doi:10.1021/ma5019796http://dx.doi.org/10.1021/ma5019796
Wang Z, Dong X, Cavallo D, Müller A J, Wang D. Macromolecules, 2018, 51: 6034-6046. doi:10.1021/acs.macromol.8b01313http://dx.doi.org/10.1021/acs.macromol.8b01313
Zhang B, Yang D C, Yan S. J Polym Sci, Part B: Polym Phys, 2002, 40: 2641-2645. doi:10.1002/polb.10327http://dx.doi.org/10.1002/polb.10327
Shieh Y T, Lee M S, Chen S A. Polymer, 2001, 42: 4439-4448. doi:10.1016/s0032-3861(00)00567-xhttp://dx.doi.org/10.1016/s0032-3861(00)00567-x
Wang Z, Dong X, Liu G, Xing Q, Cavallo D, Jiang Q, Müller A J, Wang D. Polymer, 2018, 138: 396-406. doi:10.1016/j.polymer.2018.01.078http://dx.doi.org/10.1016/j.polymer.2018.01.078
Ji Y, Su F, Cui K, Huang N, Qi Z, Li L. Macromolecules, 2016, 49: 1761-1769. doi:10.1021/acs.macromol.5b02161http://dx.doi.org/10.1021/acs.macromol.5b02161
Müller A J, Arnal M L, Lorenzo A T. Handbook of Polymer Crystallization. In: Piorkowska E, Rutledge G C, eds. Hoboken: John Wiley & Sons, Inc, 2012. 347
Fillon B, Thierry A, Wittmann J C, Lotz B. J Polym Sci, Part B: Polym Phys, 1993, 31: 1407-1424. doi:10.1002/polb.1993.090311015http://dx.doi.org/10.1002/polb.1993.090311015
Wunderlich B. Macromolecular Physics. New York and London: Academic Press, 1976. doi:10.1016/b978-0-12-765602-1.50007-0http://dx.doi.org/10.1016/b978-0-12-765602-1.50007-0
Pyda M, Wunderlich B. Macromolecules, 1999, 32: 2044-2050. doi:10.1021/ma9816620http://dx.doi.org/10.1021/ma9816620
Cheng S Z S. In Phase Transitions in Polymers the Role of Metastable States. In: Cheng S Z, ed. Elsevier, 2008. 77. doi:10.1016/b978-0-444-51911-5.00004-9http://dx.doi.org/10.1016/b978-0-444-51911-5.00004-9
Luciani L, Seppala J, Lofgren B. Prog Polym Sci, 1988, 13: 37-62. doi:10.1016/0079-6700(88)90010-xhttp://dx.doi.org/10.1016/0079-6700(88)90010-x
Stolte I, Androsch R. Colloid Polym Sci, 2014, 292: 1639-1647. doi:10.1007/s00396-014-3224-xhttp://dx.doi.org/10.1007/s00396-014-3224-x
Qiao Y N, Wang Q, Men Y F. Macromolecules, 2016, 49: 5126-5136. doi:10.1021/acs.macromol.6b00862http://dx.doi.org/10.1021/acs.macromol.6b00862
0
浏览量
132
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构