浏览全部资源
扫码关注微信
杭州师范大学材料与化学化工学院 杭州 311121
[ "李勇进,男,1973年生. 1996年和1999年在同济大学分别获学士和硕士学位,2002年获上海交通大学博士学位. 2002~2011年,历任日本产业技术综合研究所JSPS博士后和研究员. 2011年加入杭州师范大学,主要从事高分子材料成型加工研究. 先后获得高分子成型加工新锐创新奖(2017年)、冯新德高分子奖提名奖(2018年和2020年)、国际高分子加工学会(PPS)的Morand Lambla奖(2019年)、浙江省自然科学奖(2020年)等." ]
纸质出版日期:2022-05-20,
网络出版日期:2022-03-08,
收稿日期:2021-12-11,
录用日期:2022-01-07
移动端阅览
郑鑫,由吉春,朱雨田等.扫描电镜技术在高分子表征研究中的应用[J].高分子学报,2022,53(05):539-560.
Zheng Xin,You Ji-chun,Zhu Yu-tian,et al.Applications of Scanning Electron Microscopy in Polymer Characterization[J].ACTA POLYMERICA SINICA,2022,53(05):539-560.
郑鑫,由吉春,朱雨田等.扫描电镜技术在高分子表征研究中的应用[J].高分子学报,2022,53(05):539-560. DOI: 10.11777/j.issn1000-3304.2021.21377.
Zheng Xin,You Ji-chun,Zhu Yu-tian,et al.Applications of Scanning Electron Microscopy in Polymer Characterization[J].ACTA POLYMERICA SINICA,2022,53(05):539-560. DOI: 10.11777/j.issn1000-3304.2021.21377.
扫描电子显微镜(scanning electron microscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmission electron microscope,TEM)进行比较,突出了其优势与特色. 详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术. 介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展. 最后,对SEM的发展趋势进行了展望.
Scanning electron microscopy (SEM) is one of the most important tools for the characterization of polymer materials' microstructure and composition. First
it is easy to operate; then there are various electronic signals available which contain different sample information for SEM imaging; besides
there are little sample damage during SEM observation. In this work
the working principle of SEM was elucidated systematically. Also
a comparison was made between SEM and TEM with respect to working principle
resolution and magnification
view and depth of field
sample preparation
sample damage and pollution. Therefore
the advantages and features of SEM were highlighted. In addition
the experiment methods of SEM were illustrated in detail
including sample preparation
instrument parameter settings
operation skills and image treatment. The key factors which determines the quality of SEM image were revealed. The main applications of SEM in polymer characterization were introduced. Specifically
the secondary electrons imaging was used to investigate the microstructure of polymer composition
compatibility of polymer blends
crystal structure of polymer
morphology of polymer porous membrane
biocompatibility of polymer material
self-assemble behavior of polymer and so on. Besides
the backscattered electrons
characteristic X-ray
transmittance electrons were also used to reveal the morphology and composition information of polymer systems. The combination of SEM with Raman spectrometer and Focused ion beam and the
in situ
SEM techniques were illustrated. Finally
the recent trends of SEM development were prospected.
扫描电子显微镜高分子材料微观结构组成信息应用
Scanning electron microscopyPolymer materialMicrostructureCompositionApplication
Pease R F W. Adv Imag Elect Phys, 2008, 150: 53-86. doi:10.1016/s1076-5670(07)00002-xhttp://dx.doi.org/10.1016/s1076-5670(07)00002-x
Guo Suzhi(郭素枝). Electron Microscope Technology and Its Application(电子显微镜技术及应用). Xiamen(厦门):Xiamen University Press(厦门大学出版社), 2008
Ren Xiaoming(任小明). Scanning Electron Microscope/Principle of Energy Spectrum and Special Analysis Technique (扫描电镜/能谱原理及特殊分析技术). Beijing(北京): Chemical Industry Press(化学工业出版社). 2020
Zhang Datong(张大同). Scanning Electron Microscope and X-Ray Energy Dispersive Spectrometer Analysis Technics(扫描电镜与能谱仪分析技术). Guangzhou(广州): South China University of Technology Press(华南理工大学出版社). 2008
Wei B, Lin Q, Zheng X, Gu X, Zhao L, Li J, Li Y. Polymer, 2019, 185: 121952. doi:10.1016/j.polymer.2019.121952http://dx.doi.org/10.1016/j.polymer.2019.121952
Park J, Eom K, Kwon O, Woo S. Microsc Microanal, 2001, 7(3): 276-286. doi:10.1007/s100050010074http://dx.doi.org/10.1007/s100050010074
Zheng X, Lin Q, Jiang P, Li Y, Li J. Polymers, 2018, 10(5): 562. doi:10.3390/polym10050562http://dx.doi.org/10.3390/polym10050562
Sumita A, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M. Colloid Polym Sci, 1992, 270(2): 134-139. doi:10.1007/bf00652179http://dx.doi.org/10.1007/bf00652179
Saini P, Choudhary V, Dhawan S K. Polym Adv Technol, 2012, 23(3): 343-349. doi:10.1002/pat.1873http://dx.doi.org/10.1002/pat.1873
Li W, Buschhorn S T, Schulte K, Bauhofer W. Carbon, 2011, 49(6): 1955-1964. doi:10.1016/j.carbon.2010.12.069http://dx.doi.org/10.1016/j.carbon.2010.12.069
Egerton R F, Li P, Malac M. Micron, 2004, 35(6): 399-409. doi:10.1016/j.micron.2004.02.003http://dx.doi.org/10.1016/j.micron.2004.02.003
Hein L R O, Campos K A, Caltabiano P C R O, Kostov K G. Scanning, 2013, 35(3): 196-204. doi:10.1002/sca.21048http://dx.doi.org/10.1002/sca.21048
Ravi M, Kumar K K, Mohan V M, Rao V N. Polym Test, 2014, 33: 152-160
Joy D C. J Microsc, 1987, 147(1): 51-64. doi:10.1111/j.1365-2818.1987.tb02817.xhttp://dx.doi.org/10.1111/j.1365-2818.1987.tb02817.x
Šlouf M, Vacková T, Lednický F, Wandrol P. Polymer surface morphology: characterization by electron microscopies. In: Polymer Surface Characterization. Berlin: Walter de Gruyter GmbH & Co KG, 2014. 169-206. doi:10.1515/9783110288117.169http://dx.doi.org/10.1515/9783110288117.169
Seiler H. J Appl Phys, 1983, 54(11): R1-R18. doi:10.1063/1.332840http://dx.doi.org/10.1063/1.332840
Joy D C. J Microsc, 1984, 136(2): 241-258. doi:10.1111/j.1365-2818.1984.tb00532.xhttp://dx.doi.org/10.1111/j.1365-2818.1984.tb00532.x
Sathishkumar T P, Satheeshkumar S, Naveen J. J Reinf Plast Compos, 2014, 33(13): 1258-1275. doi:10.1177/0731684414530790http://dx.doi.org/10.1177/0731684414530790
Karataş M A, Gökkaya H. Def Technol, 2018, 14(4): 318-326
Forintos N, Czigany T. Compos B Eng, 2019, 162: 331-343. doi:10.1016/j.compositesb.2018.10.098http://dx.doi.org/10.1016/j.compositesb.2018.10.098
Wang Wenjun(王文俊), Wang Weiwei(王维玮), Hong Xuhong(洪旭辉). Acta Polymerica Sinica(高分子学报), 2015, (9): 1036-1043
Favier V, Chanzy H, Cavaillé J Y. Macromolecules, 1995, 28(18): 6365-6367. doi:10.1021/ma00122a053http://dx.doi.org/10.1021/ma00122a053
Converse G L, Yue W, Roeder R K. Biomaterials, 2007, 28(6): 927-935. doi:10.1016/j.biomaterials.2006.10.031http://dx.doi.org/10.1016/j.biomaterials.2006.10.031
Ramesh P, Prasad B D, Narayana K L. Silicon, 2020, 12(7): 1751-1760. doi:10.1007/s12633-019-00275-6http://dx.doi.org/10.1007/s12633-019-00275-6
Yang Jintao(杨晋涛), Fan Hong(范宏), Bu Zhiyang(卜志扬), Li Bogeng(李伯耿). Acta Polymerica Sinica(高分子学报), 2007, (1): 70-74
Li Shaofan(李少范), Wen Xiangning(温向宁), Ju Weilong(鞠维龙), Su Yunlan(苏允兰), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2021, 52(2): 146-157
Huang Dengjia(黄登甲), Song Yihu(宋义虎), Zheng Qiang(郑强). Acta Polymerica Sinica(高分子学报), 2015, (5): 542-549
Fu Zhiang(傅志昂), Wang Hengti(王亨缇), Dong Wenyong(董文勇), Li Yongjin(李勇进). Acta Polymerica Sinica(高分子学报), 2017, (2): 334-341
Chen Y, Wang Y, Zhang H, B, Li X, Gui C, X, Yu Z, Z. Carbon, 2015, 82: 67-76. doi:10.1016/j.carbon.2014.10.031http://dx.doi.org/10.1016/j.carbon.2014.10.031
Liu H, Gu S, Cao H, Li X, Jiang X, Li Y. Compos B Eng, 2019, 176: 107268. doi:10.1016/j.compositesb.2019.107268http://dx.doi.org/10.1016/j.compositesb.2019.107268
Seyni F I, Grady B P. Colloid Polym Sci, 2021, 299(4): 585-593. doi:10.1007/s00396-021-04820-xhttp://dx.doi.org/10.1007/s00396-021-04820-x
Krause S. Polymer-polymer compatibility. In: Polymer Blends. New York: Academic Press, 1978. 15-113. doi:10.1016/b978-0-12-546801-5.50008-6http://dx.doi.org/10.1016/b978-0-12-546801-5.50008-6
Wang H, Yang X, Fu Z, Zhao X, Li Y. Li J. Macromolecules, 2017, 50(23): 9494-9506. doi:10.1021/acs.macromol.7b02143http://dx.doi.org/10.1021/acs.macromol.7b02143
Fu Z, Wang H, Zhao X, Li X, Gu X, Li Y. J Mater Chem A, 2019, 7(9): 4903-4912. doi:10.1039/c8ta12233dhttp://dx.doi.org/10.1039/c8ta12233d
Wang H, Fu Z, Zhao X, Li Y, Li J. ACS Appl Mater Interfaces, 2017, 9(16): 14358-14370. doi:10.1021/acsami.7b01728http://dx.doi.org/10.1021/acsami.7b01728
Wang H, Dong W, Li Y. ACS Macro Lett, 2015, 4(12): 1398-1403. doi:10.1021/acsmacrolett.5b00763http://dx.doi.org/10.1021/acsmacrolett.5b00763
Fu Z, Wang H, Zhao X, Horiuchi S, Li Y. Polymer, 2017, 132: 353-361. doi:10.1016/j.polymer.2017.11.004http://dx.doi.org/10.1016/j.polymer.2017.11.004
Dong W, He M, Wang H, Ren F, Zhang J, Zhao X, Li Y. ACS Sustain Chem Eng, 2015, 3(10): 2542-2550. doi:10.1021/acssuschemeng.5b00740http://dx.doi.org/10.1021/acssuschemeng.5b00740
Wei B, Chen D, Wang H, You J, Wang L, Li Y, Zhang M. Polymer, 2019, 160: 162-169. doi:10.1016/j.polymer.2018.11.042http://dx.doi.org/10.1016/j.polymer.2018.11.042
Gan Z, Kuwabara K, Abe H, Iwata T, Doi Y. Polym Degrad Stabil, 2005, 87(1): 191-199. doi:10.1016/j.polymdegradstab.2004.08.007http://dx.doi.org/10.1016/j.polymdegradstab.2004.08.007
Chen X, Dong B, Wang B, Shah R, Li C Y. Macromolecules, 2010, 43(23): 9918-9927. doi:10.1021/ma101900nhttp://dx.doi.org/10.1021/ma101900n
Shah D, Maiti P, Gunn E, Schmidt D F, Jiang D D, Batt C A, Giannelis E P. Adv Mater, 2004, 16(14): 1173-1177. doi:10.1002/adma.200306355http://dx.doi.org/10.1002/adma.200306355
Aboulfaraj M, G'sell C, Ulrich B, Dahoun A. Polymer, 1995, 36(4): 731-742. doi:10.1016/0032-3861(95)93102-rhttp://dx.doi.org/10.1016/0032-3861(95)93102-r
Yang J, Wang K, Deng H, Chen F, Fu Q. Polymer, 2010, 51(3): 774-782. doi:10.1016/j.polymer.2009.11.059http://dx.doi.org/10.1016/j.polymer.2009.11.059
Ye L, Shi X, Ye C, Chen Z, Zeng M, You J, Li Y. ACS Appl Mater Interfaces, 2015, 7(12): 6946-6954. doi:10.1021/acsami.5b00848http://dx.doi.org/10.1021/acsami.5b00848
Aboulfaraj M, Ulrich B, Dahoun A, G'sell C. Polymer, 1993, 34(23): 4817-4825. doi:10.1016/0032-3861(93)90003-shttp://dx.doi.org/10.1016/0032-3861(93)90003-s
Ye L, Qiu J, Wu T, Shi X, Li Y. RSC Adv, 2014, 4(82): 43351-43356. doi:10.1039/c4ra06943ahttp://dx.doi.org/10.1039/c4ra06943a
Ye C, Cao X, Wang H, Wang J, Wang T, Wang Z, Li Y, You J. J Polym Sci, 2020, 58(12): 1699-1706. doi:10.1002/pol.20190232http://dx.doi.org/10.1002/pol.20190232
Ye C, Zhao J, Ye L, Jiang Z, You J, Li Y. Polymer, 2018, 142: 48-51. doi:10.1016/j.polymer.2018.02.004http://dx.doi.org/10.1016/j.polymer.2018.02.004
Wang J, Ding M, Cheng X, Ye C, Li F, Li Y, You J. J Membr Sci, 2020, 604: 118040. doi:10.1016/j.memsci.2020.118040http://dx.doi.org/10.1016/j.memsci.2020.118040
Wang J, Chen B, Cheng X, Li Y, Ding M, You J. J Membr Sci, 2021: 120065. doi:10.1016/j.memsci.2021.120065http://dx.doi.org/10.1016/j.memsci.2021.120065
Jhaveri J H, Murthy Z V P. Desalination, 2016, 379: 137-154. doi:10.1016/j.desal.2015.11.009http://dx.doi.org/10.1016/j.desal.2015.11.009
Yan X, Anguille S, Bendahan M, Moulin P. Sep Purif Technol, 2019, 222: 230-253. doi:10.1016/j.seppur.2019.03.103http://dx.doi.org/10.1016/j.seppur.2019.03.103
Rynkowska E, Fatyeyeva K, Kujawski W. Rev Chem Eng, 2018, 34(3): 341-363. doi:10.1515/revce-2016-0054http://dx.doi.org/10.1515/revce-2016-0054
Li J H, Shao X S, Zhou Q, Li M Z, Zhang Q Q. Appl Surf Sci, 2013, 265: 663-670. doi:10.1016/j.apsusc.2012.11.072http://dx.doi.org/10.1016/j.apsusc.2012.11.072
Zhang X, Liang Y, Ni C, Li Y. Mater Sci Eng C, 2021, 118: 111411. doi:10.1016/j.msec.2020.111411http://dx.doi.org/10.1016/j.msec.2020.111411
Xing C, Guan J, Li Y, Li J. ACS Appl Mater Interfaces, 2014, 6(6): 4447-4457. doi:10.1021/am500061vhttp://dx.doi.org/10.1021/am500061v
Zheng X, Chen F, Zhang X, Zhang H, Li Y, Li J. Appl Surf Sci, 2019, 481: 1435-1441. doi:10.1016/j.apsusc.2019.03.111http://dx.doi.org/10.1016/j.apsusc.2019.03.111
Hu M X, Yang Q, Xu Z K. J Membr Sci, 2006, 285(1-2): 196-205. doi:10.1016/j.memsci.2006.08.023http://dx.doi.org/10.1016/j.memsci.2006.08.023
Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. J Membr Sci, 2010, 362(1-2): 255-264. doi:10.1016/j.memsci.2010.06.048http://dx.doi.org/10.1016/j.memsci.2010.06.048
Zhang W, Liang W, Huang G, Wei J, Ding L, Jaffrin M Y. RSC Adv, 2015, 5(60): 48484-48491. doi:10.1039/c5ra06063jhttp://dx.doi.org/10.1039/c5ra06063j
Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, Jin J. Nat Commun, 2018, 9(1): 1-9. doi:10.1038/s41467-018-04467-3http://dx.doi.org/10.1038/s41467-018-04467-3
Hariharan P, Sundarrajan S, Arthanareeswaran G, Seshan S, Das D B, Ismail A F. Environ Res, 2021: 112045. doi:10.1016/j.envres.2021.112045http://dx.doi.org/10.1016/j.envres.2021.112045
Nie S, Xue J, Lu Y, Liu Y, Wang D, Sun S, Ran F Zhao C. Colloid Surface B, 2012, 100: 116-125. doi:10.1016/j.colsurfb.2012.05.004http://dx.doi.org/10.1016/j.colsurfb.2012.05.004
Ma L, Su B, Cheng C, Yin Z, Qin H, Zhao J, Sun S Zhao C. J Membr Sci, 2014, 470: 90-101. doi:10.1016/j.memsci.2014.07.030http://dx.doi.org/10.1016/j.memsci.2014.07.030
Fang B, Ling Q, Zhao W, Ma Y, Bai P, Wei Q, Zhao C. J Membr Sci, 2009, 329(1-2): 46-55. doi:10.1016/j.memsci.2008.12.008http://dx.doi.org/10.1016/j.memsci.2008.12.008
Lin T P, Chang A B, Luo S X, Chen H Y, Lee B, Grubbs R H. ACS Nano, 2017, 11(11): 11632-11641. doi:10.1021/acsnano.7b06664http://dx.doi.org/10.1021/acsnano.7b06664
Yan D, Zhou Y, Hou J. Science, 2004, 303(5654): 65-67. doi:10.1126/science.1090763http://dx.doi.org/10.1126/science.1090763
Liu C, Gao C, Yan D. Angew Chem, 2007, 119(22): 4206-4209. doi:10.1002/ange.200604429http://dx.doi.org/10.1002/ange.200604429
Robinson V N E. Scanning, 1980, 3(1): 15-26. doi:10.1002/sca.4950030103http://dx.doi.org/10.1002/sca.4950030103
Murariu M, Ferreira A D S, Degée P, Alexandre M, Dubois P. Polymer, 2007, 48(9): 2613-2618. doi:10.1016/j.polymer.2007.02.067http://dx.doi.org/10.1016/j.polymer.2007.02.067
Hu X, Kang H, Li Y, Geng Y, Wang R, Zhang L. Polymer, 2017, 108: 11-20. doi:10.1016/j.polymer.2016.11.045http://dx.doi.org/10.1016/j.polymer.2016.11.045
Goizueta G, Chiba T, Inoue T. Polymer, 1993, 34(2): 253-256. doi:10.1016/0032-3861(93)90074-khttp://dx.doi.org/10.1016/0032-3861(93)90074-k
Blackson J, Garcia-Meitin E, Darus M. Microsc Microanal, 2007, 13(S02): 1062-1063. doi:10.1017/s1431927607076040http://dx.doi.org/10.1017/s1431927607076040
Bar G, Tocha E, Garcia-Meitin E, Todd C, Blackson J. Macromol Sym, 2009, 282(1): 128-135. doi:10.1002/masy.200950813http://dx.doi.org/10.1002/masy.200950813
Bora J, Deka P, Bhuyan P, Sarma K P, Hoque R R. SN Appl Sci, 2021, 3(1): 1-15. doi:10.1007/s42452-020-04117-8http://dx.doi.org/10.1007/s42452-020-04117-8
Korolkov I V, Gorin Y G, Yeszhanov A B, Kozlovskiy A L, Zdorovets M V. Mater Chem Phys, 2018, 205: 55-63. doi:10.1016/j.matchemphys.2017.11.006http://dx.doi.org/10.1016/j.matchemphys.2017.11.006
Kamal A S M, Boulfiza M. J Compos Constr, 2011, 15(4): 473-481. doi:10.1061/(asce)cc.1943-5614.0000168http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000168
Zhang F, Zhang W, Yu Y, Deng B, Li J, Jin J. J Membr Sci, 2013, 432: 25-32. doi:10.1016/j.memsci.2012.12.041http://dx.doi.org/10.1016/j.memsci.2012.12.041
Abd Mutalib M, Rahman M A, Othman M H D, Ismail A F, Jaafar J. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. In: Membrane Characterization. Amsterdam: Elsevier Ltd, 2017. 161-179. doi:10.1016/b978-0-444-63776-5.00009-7http://dx.doi.org/10.1016/b978-0-444-63776-5.00009-7
Guise O, Strom C, Preschilla N. Polymer, 2011, 52(5): 1278-1285. doi:10.1016/j.polymer.2011.01.030http://dx.doi.org/10.1016/j.polymer.2011.01.030
Fortelný I, Šlouf M, Sikora A, Hlavatá D, Hašová V, Mikešová J, Jacob C. J Appl Polym Sci, 2006, 100(4): 2803-2816. doi:10.1002/app.23731http://dx.doi.org/10.1002/app.23731
Loos J, Sourty E, Lu K, de With G, Bavel S. Macromolecules, 2009, 42(7): 2581-2586. doi:10.1021/ma8026589http://dx.doi.org/10.1021/ma8026589
Higuchi T, Tajima A, Yabu H, Shimomura M. Soft Matter, 2008, 4(6): 1302-1305. doi:10.1039/b800904jhttp://dx.doi.org/10.1039/b800904j
Inamoto S, Yoshida A, Otsuka Y. Microsc Microanal, 2019, 25(S2): 1826-1827. doi:10.1017/s1431927619009863http://dx.doi.org/10.1017/s1431927619009863
Butler H J, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Martin F L. Nat Protoc, 2016, 11(4): 664-687. doi:10.1038/nprot.2016.036http://dx.doi.org/10.1038/nprot.2016.036
Zhang W, Dong Z, Zhu L, Hou Y, Qiu Y. ACS Nano, 2020, 14(7): 7920-7926. doi:10.1021/acsnano.0c02878http://dx.doi.org/10.1021/acsnano.0c02878
Timmermans F J, Liszka B, Lenferink A T, van Wolferen H A, Otto C. J Raman Spectrosc, 2016, 47(8): 956-962. doi:10.1002/jrs.4931http://dx.doi.org/10.1002/jrs.4931
Kim S, Liu G, Minor A M. Microsc Today, 2009, 17(6): 20-23. doi:10.1017/s1551929509991003http://dx.doi.org/10.1017/s1551929509991003
Timmermans F J, Liszka B, Lenferink A T, van Wolferen H A, Otto C. Ultramicroscopy, 2011, 111(3): 191-199
Fager C, Barman S, Röding M, Olsson A, Lorén N, von Corswant C, Bolin D Rootzén H, Olsson E. Int J Pharmaceut, 2020, 587: 119622. doi:10.1016/j.ijpharm.2020.119622http://dx.doi.org/10.1016/j.ijpharm.2020.119622
Čalkovský M, Müller E, Meffert M, Firman N, Mayer F, Wegener M, Gerthsen D. Mater Charact, 2021, 171: 110806. doi:10.1016/j.matchar.2020.110806http://dx.doi.org/10.1016/j.matchar.2020.110806
Neusser G, Eppler S, Bowen J, Allender C J, Walther P, Mizaikoff B, Kranz C. Nanoscale, 2017, 9(38): 14327-14334. doi:10.1039/c7nr05725chttp://dx.doi.org/10.1039/c7nr05725c
Ghosh S, Ohashi H, Tabata H, Hashimasa Y, Yamaguchi T. Int J Hydrog Energy, 2015, 40(45): 15663-15671. doi:10.1016/j.ijhydene.2015.09.080http://dx.doi.org/10.1016/j.ijhydene.2015.09.080
Chen R, Pearce D J, Fortuna S, Cheung D L, Bon S A. J Am Chem Soc, 2011, 133(7): 2151-2153. doi:10.1021/ja110359fhttp://dx.doi.org/10.1021/ja110359f
Liang J, Xiao X, Chou T M, Libera M. Acc Chem Res, 2021, 54(10): 2386-2396. doi:10.1021/acs.accounts.1c00109http://dx.doi.org/10.1021/acs.accounts.1c00109
Ge H, Zhao C L, Porzio S, Zhuo L, Davis H T, Scriven L E. Macromolecules, 2006, 39(16): 5531-5539. doi:10.1021/ma060058jhttp://dx.doi.org/10.1021/ma060058j
Motomura S, Soejima Y, Miyoshi T, Hara T, Omori T, Kainuma R, Nishida M. J Electron Microsc, 2015, 65(2): 159-168. doi:10.1093/jmicro/dfv363http://dx.doi.org/10.1093/jmicro/dfv363
Heard R, Huber J E, Siviour C, Edwards G, Williamson-Brown E, Dragnevski K. Rev Sci Instrum, 2020, 91(6): 063702. doi:10.1063/1.5144981http://dx.doi.org/10.1063/1.5144981
Hobbiebrunken T, Hojo M, Adachi T, De Jong C, Fiedler B. Compos Part A, Appl Sci Manuf, 2006, 37(12): 2248-2256. doi:10.1016/j.compositesa.2005.12.021http://dx.doi.org/10.1016/j.compositesa.2005.12.021
Beurrot S, Huneau B, Verron E. J Appl Polym Sci, 2010, 117(3): 1260-1269
Joy D C, Joy C S. Micron, 1996, 27(3-4): 247-263. doi:10.1016/0968-4328(96)00023-6http://dx.doi.org/10.1016/0968-4328(96)00023-6
Mohaiyiddin M S, Ong H L, Othman M B H, Julkapli N M, Villagracia A R C, Md. Akil H. Polym Compos, 2018, 39: E561-E572. doi:10.1002/pc.24712http://dx.doi.org/10.1002/pc.24712
Primo G A, Manzano M F G, Romero M R, Igarzabal C I A. Mater Chem Phys, 2015, 153: 365-375
0
浏览量
1264
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构