浏览全部资源
扫码关注微信
1.发光材料与器件国家重点实验室 高分子光电材料与器件研究所 华南理工大学 广州 510641
2.广州光达创新科技有限公司 广州 510530
[ "杨喜业,男,1990年生. 2010~2014年就读于华南理工大学,获学士学位. 2018年于华南理工大学获博士学位. 2018~2021年于华南理工大学开展博士后研究工作;2019~2020赴美国科罗拉多大学博尔德分校访问. 主持国家自然科学基金委青年科学基金项目(2019年),中国博士后基金面上项目(2019年). 现任广州光达创新科技有限公司总经理. 主要研究方向为有机/聚合物光探测材料与器件、有机红外图像传感器技术等." ]
[ "黄飞,男,1979年生. 华南理工大学教授,发光材料与器件国家重点实验室副主任. 华南理工大学博士、美国华盛顿大学材料系博士后. 长期从事有机光电材料与器件的研究工作. 国家杰出青年基金获得者、长江学者特聘教授、973计划首席科学家. 曾获教育部首届青年科学奖,美国化学会Arthur K. Doolittle Award奖,两次参与获得国家自然科学二等奖. 任《高分子学报》副主编,《Chem Mater》《Sci China Chem》《Chinese J Polym Sci》等刊物编委,中国化学会青委会副主任委员、中国材料学会高分子分会副秘书长." ]
纸质出版日期:2022-04-20,
网络出版日期:2022-03-04,
收稿日期:2021-12-21,
修回日期:2022-01-09,
移动端阅览
曹云皓,杨喜业,刘春晨等.有机/聚合物光探测器在医疗健康领域中的应用[J].高分子学报,2022,53(04):307-330.
Cao Yun-hao,Yang Xi-ye,Liu Chun-chen,et al.Application of Organic/Polymer Photodetectors in the Medical and Healthcare Area[J].ACTA POLYMERICA SINICA,2022,53(04):307-330.
曹云皓,杨喜业,刘春晨等.有机/聚合物光探测器在医疗健康领域中的应用[J].高分子学报,2022,53(04):307-330. DOI: 10.11777/j.issn1000-3304.2021.21391.
Cao Yun-hao,Yang Xi-ye,Liu Chun-chen,et al.Application of Organic/Polymer Photodetectors in the Medical and Healthcare Area[J].ACTA POLYMERICA SINICA,2022,53(04):307-330. DOI: 10.11777/j.issn1000-3304.2021.21391.
有机/聚合物光探测器因其具有响应光谱大范围可调、可制备柔性化器件以及可溶液加工等优势,受到研究人员的广泛关注. 随着近年来有机/聚合物光电材料体系的迅速发展,有机/聚合物光探测器的各项性能指标已经可以与商业化硅基光探测器媲美,甚至在短波红外光区的响应性能已经超越硅基光探测器,这使其显示出巨大的应用潜力. 特别是在医疗健康领域中,具有轻、薄、柔性等优势的有机/聚合物光探测器受到了广泛的关注,为新型便携式健康监测设备的发展提供了新的技术可能. 本文围绕有机/聚合物光探测器,综述了近年来有机/聚合物光探测器在医疗健康领域中的研究进展,并对与之相关的应用原理进行了分析与讨论,最后指出了有机/聚合物光探测器在医疗健康领域中的发展潜力,展望了其未来的发展.
Organic/polymer photodetectors have attracted extensive attentions due to their adjustable responding spectra
solution processed procedure and capability of flexible device fabrication. In recent years
with the rapid development of organic semiconducting materials
the performances of organic/polymer photodetectors have been significantly improved. Organic photodetectors show comparable performance to that of commercial silicon-based photodetectors in visible light region
while outdo that in the near-infrared region. The study on organic photodetectors also widens their potential applications. Especially in medical and healthcare area
where lighter
thinner and more flexible organic/polymer photodetectors have aroused research interests
paving a new way for the development of novel portable healthcare monitoring device. For example
photoplethysmography signal monitoring is essentially important for the development of both wearable devices and clinical medicine area. By using flexible organic photodetectors
high resolution photoplethysmography signals were obtained. Organic light-emitting diodes with organic photodetectors are further integrated on flexible substrates
via
solution processed approach
and skin-like healthcare devices with real-time photoplethysmography
blood oxygen monitoring capabilities were realized. Focusing on both fundamental research and extending applications of organic/polymer photodetector
we summarized recent developments of organic/polymer photodetector for healthcare technology. In this review
the material design principles and outlook for high performance organic/polymer photodetectors toward medical and healthcare applications are discussed. In the first chapter
we describe the working principle of organic photodetectors. The representative near-infrared sensitive organic semiconductors were reviewed. Then
practical applications of the organic photodetectors for healthcare techniques were subsequently introduced. Finally
the current challenges in this field and prospects for the future development were concluded in the last part.
有机/聚合物光探测器光电高分子光容积脉搏波描记法健康监测短波红外传感
Organic/polymer photodetectorOptoelectronic polymerPhotoplethysmographyHealthcare monitoringShort-wave infrared sensor
Taguchi K, Iwanczyk J S. Med Phys, 2013, 40(10): 100901-100901. doi:10.1118/1.4820371http://dx.doi.org/10.1118/1.4820371
Hudnell A B, Jr., Chick E W. Arch Ophthalmol (Chicago, IL, U. S.), 1962, 68(1): 304-312. doi:10.1001/archopht.1962.00960030308003http://dx.doi.org/10.1001/archopht.1962.00960030308003
Berneburg M, Rocken M, Benedix F. Acta Derm-Venereol, 2005, 85(2): 98-108
JrAnderson W T. Arch Phys Med Rehab, 1947, 28(11): 705-712
Song K, Mohseni M, Taghipour F. Water Res, 2016, 94(1): 341-349. doi:10.1016/j.watres.2016.03.003http://dx.doi.org/10.1016/j.watres.2016.03.003
Dong L, Liu X, Wang T, Fang B, Chen J, Li C, Miao X, Wei C, Yu F, Xin H, Hong K, Ding X, Wang X. ACS Appl Mater Interfaces, 2019, 11(2): 1951-1956. doi:10.1021/acsami.8b20616http://dx.doi.org/10.1021/acsami.8b20616
Li B, Wang X, Chen L, Zhou Y, Dang W, Chang J, Wu C. Theranostics, 2018, 8(15): 4086-4096. doi:10.7150/thno.25433http://dx.doi.org/10.7150/thno.25433
Novelly R A, Perona P J, Ax A F. Psychophysiology, 1973, 10(1): 67-73. doi:10.1111/j.1469-8986.1973.tb01084.xhttp://dx.doi.org/10.1111/j.1469-8986.1973.tb01084.x
Chung H U, Kim B H, Lee J Y, Lee J, Xie Z Q, Ibler E M, Lee K, Banks A, Jeong J Y, Kim J, Ogle C, Grande D, Yu Y, Jang H, Assem P, Ryu D, Kwak J W, Namkoong M, Park J B, Lee Y, Kim D H, Ryu A, Jeong J, You K, Ji B W, Liu Z J, Huo Q Z, Feng X, Deng Y J, Xu Y S, Jang K I, Kim J, Zhang Y H, Ghaffari R, Rand C M, Schau M, Hamvas A, Weese-Mayer D E, Huang Y G, Lee S M, Lee C H, Shanbhag N R, Paller A S, Xu S, Rogers J A. Science, 2019, 363(6430): 0780-0780. doi:10.1126/science.aau0780http://dx.doi.org/10.1126/science.aau0780
Kramer K, Elam J O, Saxton G A, JrElam W N. Am J Physiol, 1951, 165(1): 229-246. doi:10.1152/ajplegacy.1951.165.1.229http://dx.doi.org/10.1152/ajplegacy.1951.165.1.229
Posteli T. Cuore Circ, 1951, 35(1): 1-23
Tahmoush A J, Jkennings J R, Lee A L, Camp S, Webhr F. Psychophysiology, 1976, 13(4): 357-362. doi:10.1111/j.1469-8986.1976.tb03090.xhttp://dx.doi.org/10.1111/j.1469-8986.1976.tb03090.x
Lee A L, Tahmoush A J, Jennings J R. IEEE T Bio-Med Eng, 1975, 22(3): 248-250. doi:10.1109/tbme.1975.324491http://dx.doi.org/10.1109/tbme.1975.324491
De Kock J P, Tarassenko L. Med Biol Eng Comput, 1993, 31(3): 291-300. doi:10.1007/bf02458049http://dx.doi.org/10.1007/bf02458049
Chung H U, Rwei A Y, Hourlier-Fargette A, Xu S, Lee K, Dunne E C, Xie Z, Liu C, Carlini A, Kim D H, Ryu D, Kulikova E, Cao J, Odland I C, Fields K B, Hopkins B, Banks A, Ogle C, Grande D, Park J B, Kim J, Irie M, Jang H, Lee J, Park Y, Kim J, Jo H H, Hahm H, Avila R, Xu Y, Namkoong M, Kwak J W, Suen E, Paulus M A, Kim R J, Parsons B V, Human K A, Kim S S, Patel M, Reuther W, Kim H S, Lee S H, Leedle J D, Yun Y, Rigali S, Son T, Jung I, Arafa H, Soundararajan V R, Ollech A, Shukla A, Bradley A, Schau M, Rand C M, Marsillio L E, Harris Z L, Huang Y, Hamvas A, Paller A S, Weese-Mayer D E, Lee J Y, Rogers J A. Nat Med, 2020, 26(3): 418-429. doi:10.1038/s41591-020-0792-9http://dx.doi.org/10.1038/s41591-020-0792-9
Saran R, Curry R J. Nat Photon, 2016, 10(2): 81-92. doi:10.1038/nphoton.2015.280http://dx.doi.org/10.1038/nphoton.2015.280
Chen H, Liu H, Zhang Z, Hu K, Fang X. Adv Mater, 2016, 28(3): 403-433. doi:10.1002/adma.201503534http://dx.doi.org/10.1002/adma.201503534
Michel J, Liu J, Kimerling L C. Nat Photon, 2010, 4(8): 527-534. doi:10.1038/nphoton.2010.157http://dx.doi.org/10.1038/nphoton.2010.157
Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347(6293): 539-541. doi:10.1038/347539a0http://dx.doi.org/10.1038/347539a0
Pei Q, Yu G, Zhang C, Yang Y, Heeger A J. Science, 1995, 269(5227): 1086-1088. doi:10.1126/science.269.5227.1086http://dx.doi.org/10.1126/science.269.5227.1086
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789-1791. doi:10.1126/science.270.5243.1789http://dx.doi.org/10.1126/science.270.5243.1789
Tang C W. Appl Phys Lett, 1986, 48(2): 183-185. doi:10.1063/1.96937http://dx.doi.org/10.1063/1.96937
Tang C W, VanSlyke S A. Appl Phys Lett, 1987, 51(12): 913-915. doi:10.1063/1.98799http://dx.doi.org/10.1063/1.98799
Huang Fei(黄飞), Bo Zhishan(薄志山), Geng Yanhou(耿延候), Wang Xianhong(王献红), Wang Lixiang(王利祥), Ma Yuguang(马於光), Hou Jianhui(侯剑辉), Hu Wenping(胡文平), Pei Jian(裴坚), Dong Huanli(董焕丽), Wang Shu(王树), Li Zhen(李振), Shuai Zhigang(帅志刚), Li Yongfang(李永舫), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Kudo K, Moriizumi T. Appl Phys Lett, 1981, 39(8): 609-611. doi:10.1063/1.92820http://dx.doi.org/10.1063/1.92820
Yu G, Zhang C, Heeger A J. Appl Phys Lett, 1994, 64(12): 1540-1542. doi:10.1063/1.111885http://dx.doi.org/10.1063/1.111885
Yu G, Pakbaz K, Heeger A J. Appl Phys Lett, 1994, 64(25): 3422-3424. doi:10.1063/1.111260http://dx.doi.org/10.1063/1.111260
Ostroverkhova O. Chem Rev, 2016, 116(22): 13279-13-12. doi:10.1021/acs.chemrev.6b00127http://dx.doi.org/10.1021/acs.chemrev.6b00127
Li Q, Guo Y, Liu Y. Chem Mater, 2019, 31(17): 6359-6379. doi:10.1021/acs.chemmater.9b00966http://dx.doi.org/10.1021/acs.chemmater.9b00966
Yang D, Ma D. Adv Opt Mater, 2019, 7(1): 1800522. doi:10.1002/adom.201800522http://dx.doi.org/10.1002/adom.201800522
Lee H, Jiang Z, Yokota T, Fukuda K, Park S, Someya T. Mater Sci Eng R Rep, 2021, 146(1): 100631. doi:10.1016/j.mser.2021.100631http://dx.doi.org/10.1016/j.mser.2021.100631
Xie B, Chen Z, Ying L, Huang F, Cao Y. InfoMat, 2020, 2(1): 57-91. doi:10.1002/inf2.12063http://dx.doi.org/10.1002/inf2.12063
Ren H, Chen J D, Li Y Q, Tang J X. Adv Sci, 2021, 8(1): 2002418. doi:10.1002/advs.202002418http://dx.doi.org/10.1002/advs.202002418
Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Adv Mater, 2013, 25(31): 4267-4295. doi:10.1002/adma.201204979http://dx.doi.org/10.1002/adma.201204979
Wang C, Zhang X, Hu W. Chem Soc Rev, 2020, 49(3): 653-670. doi:10.1039/c9cs00431ahttp://dx.doi.org/10.1039/c9cs00431a
Chow P C Y, Someya T. Adv Mater, 2020, 32(15): 1902045. doi:10.1002/adma.201902045http://dx.doi.org/10.1002/adma.201902045
Clarke T M, Durrant J R. Chem Rev, 2010, 110(11): 6736-6767. doi:10.1021/cr900271shttp://dx.doi.org/10.1021/cr900271s
Jansen-van Vuuren R D, Armin A, Pandey A K, Burn P L, Meredith P. Adv Mater, 2016, 28(24): 4766-4802. doi:10.1002/adma.201505405http://dx.doi.org/10.1002/adma.201505405
Zhang G, Zhao J, Chow P C Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118(7): 3447-3507. doi:10.1021/acs.chemrev.7b00535http://dx.doi.org/10.1021/acs.chemrev.7b00535
Zhao Z, Xu C, Niu L, Zhang X, Zhang F. Laser Photon Rev, 2020, 14(11): 2000262. doi:10.1002/lpor.202000262http://dx.doi.org/10.1002/lpor.202000262
Yoon S, Sim K M, Chung D S. J Mater Chem C, 2018, 6(48): 13084-13100. doi:10.1039/c8tc04371jhttp://dx.doi.org/10.1039/c8tc04371j
Pecunia V. J Phys Mater, 2019, 2(4): 042001. doi:10.1088/2515-7639/ab336ahttp://dx.doi.org/10.1088/2515-7639/ab336a
Lin Q, Armin A, Burn P L, Meredith P. Nat Photon, 2015, 9(10): 687-694. doi:10.1038/nphoton.2015.175http://dx.doi.org/10.1038/nphoton.2015.175
Martin N, Rousselot C. J Appl Phys, 2000, 87(12): 8747-8753. doi:10.1063/1.373605http://dx.doi.org/10.1063/1.373605
Chow P C Y, Matsuhisa N, Zalar P, Koizumi M, Yokota T, Someya T. Nat Commun, 2018, 9(1): 4546. doi:10.1038/s41467-018-06907-6http://dx.doi.org/10.1038/s41467-018-06907-6
Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948): 1665-1667. doi:10.1126/science.1176706http://dx.doi.org/10.1126/science.1176706
Tian P, Tang L, Xiang J, Sun Z, Ji R, Lai S K, Ping L S, Kong J, Zhao J, Yang C, Li Y. RSC Adv, 2016, 6(51): 45166-45171. doi:10.1039/c6ra02773chttp://dx.doi.org/10.1039/c6ra02773c
Xiong S, Tong J, Mao L, Li Z, Qin F, Jiang F, Meng W, Liu T, Li W, Zhou Y. J Mater Chem C, 2016, 4(7): 1414-1419. doi:10.1039/c5tc04111bhttp://dx.doi.org/10.1039/c5tc04111b
Kim I K, Jo J H, Lee J, Choi Y J. Org Electron, 2018, 57(1): 89-92. doi:10.1016/j.orgel.2018.02.036http://dx.doi.org/10.1016/j.orgel.2018.02.036
Zhong Z, Bu L, Zhu P, Xiao T, Fan B, Ying L, Lu G, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11(8): 8350-8356. doi:10.1021/acsami.8b20981http://dx.doi.org/10.1021/acsami.8b20981
Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J. Nanoscale, 2016, 8(26): 12990-12997. doi:10.1039/c6nr02902ghttp://dx.doi.org/10.1039/c6nr02902g
Konstantatos G, Sargent E H. Appl Phys Lett, 2007, 91(17): 173505. doi:10.1063/1.2800805http://dx.doi.org/10.1063/1.2800805
Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J. Nat Nanotechnol, 2012, 7(12): 798-802. doi:10.1038/nnano.2012.187http://dx.doi.org/10.1038/nnano.2012.187
Liu X, Lin Y, Liao Y, Wu J, Zheng Y. J Mater Chem C, 2018, 6(14): 3499-3513. doi:10.1039/c7tc05042ahttp://dx.doi.org/10.1039/c7tc05042a
Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Nature, 2006, 442(7099): 180-183. doi:10.1038/nature04855http://dx.doi.org/10.1038/nature04855
Qian L, Sun Y, Wu M, Li C, Xie D, Ding L, Shi G. Nanoscale, 2018, 10(15): 6837-6843. doi:10.1039/c8nr00914ghttp://dx.doi.org/10.1039/c8nr00914g
Hiramoto M, Imahigashi T, Yokoyama M. Appl Phys Lett, 1994, 64(2): 187-189. doi:10.1063/1.111527http://dx.doi.org/10.1063/1.111527
Shi L, Liang Q, Wang W, Zhang Y, Li G, Ji T, Hao Y, Cui Y. Nanomaterials, 2018, 8(9): 713. doi:10.3390/nano8090713http://dx.doi.org/10.3390/nano8090713
Guo D, Xu Z, Yang D, Ma D, Tang B, Vadim A. Nanoscale, 2020, 12(4): 2648-2656. doi:10.1039/C9NR09386Ahttp://dx.doi.org/10.1039/C9NR09386A
Wu Y-L, Fukuda K, Yokota T, Someya T. Adv Mater, 2019, 31(43): 1903687. doi:10.1002/adma.201903687http://dx.doi.org/10.1002/adma.201903687
Zhou J, Gu Y, Hu Y, Mai W, Yeh P-H, Bao G, Sood A K, Polla D L, Wang Z L. Appl Phys Lett, 2009, 94(19): 191103. doi:10.1063/1.3133358http://dx.doi.org/10.1063/1.3133358
Zhou X, Yang D, Ma D, Vadim A, Ahamad T, Alshehri S M. Adv Funct Mater, 2016, 26(36): 6619-6626. doi:10.1002/adfm.201601980http://dx.doi.org/10.1002/adfm.201601980
Zhang Y, Hellebusch D J, Bronstein N D, Ko C, Ogletree D F, Salmeron M, Alivisatos A P. Nat Commun, 2016, 7(1): 11924. doi:10.1038/ncomms11924http://dx.doi.org/10.1038/ncomms11924
Han T, Shou M, Liu L, Xie Z, Ying L, Jiang C, Wang H, Yao M, Deng H, Jin G, Chen J, Ma Y. J Mater Chem C, 2019, 7(16): 4725-4732. doi:10.1039/c9tc00324jhttp://dx.doi.org/10.1039/c9tc00324j
Kumar B, Kaushik B K, Negi Y S. Polym Rev, 2014, 54(1): 33-111. doi:10.1080/15583724.2013.848455http://dx.doi.org/10.1080/15583724.2013.848455
Bashkatov A N, Zhestkov D M, Genina É A, Tuchin V V. Opt Spectrosc, 2005, 98(4): 638-646
Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y. Adv Mater, 2007, 19(22): 3979-3983. doi:10.1002/adma.200602670http://dx.doi.org/10.1002/adma.200602670
Zhang C, Zang Y, Gann E, McNeill C R, Zhu X, Di C A, Zhu D. J Am Chem Soc, 2014, 136(46): 16176-16184. doi:10.1021/ja510003yhttp://dx.doi.org/10.1021/ja510003y
Huang J, Lee J, Vollbrecht J, Brus V V, Dixon A L, Cao D X, Zhu Z, Du Z, Wang H, Cho K, Bazan G C, Nguyen T Q. Adv Mater, 2020, 32(1): 1906027. doi:10.1002/adma.201906027http://dx.doi.org/10.1002/adma.201906027
Lee J, Ko S J, Seifrid M, Lee H, Luginbuhl B R, Karki A, Ford M, Rosenthal K, Cho K, Nguyen T Q, Bazan G C. Adv Energy Mater, 2018, 8(24): 1801212. doi:10.1002/aenm.201801212http://dx.doi.org/10.1002/aenm.201801212
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56(11): 3045-3049. doi:10.1002/anie.201610944http://dx.doi.org/10.1002/anie.201610944
Song Y, Yu G, Xie B, Zhang K, Huang F. Appl Phys Lett, 2020, 117(9): 093302. doi:10.1063/5.0018274http://dx.doi.org/10.1063/5.0018274
Xie B, Xie R, Zhang K, Yin Q, Hu Z, Yu G, Huang F, Cao Y. Nat Commun, 2020, 11(1): 2871. doi:10.1038/s41467-020-16675-xhttp://dx.doi.org/10.1038/s41467-020-16675-x
Keivanidis P E, Greenham N C, Sirringhaus H, Friend R H, Blakesley J C, Speller R, Campoy-Quiles M, Agostinelli T, Bradley D D C, Nelson J. Appl Phys Lett, 2008, 92(2): 023304. doi:10.1063/1.2834364http://dx.doi.org/10.1063/1.2834364
Yokota T, Zalar P, Kaltenbrunner M, Jinno H, Matsuhisa N, Kitanosako H, Tachibana Y, Yukita W, Koizumi M, Someya T. Sci Adv, 2016, 2(4): e1501856. doi:10.1126/sciadv.1501856http://dx.doi.org/10.1126/sciadv.1501856
Gelinck G H, Kumar A, Moet D, van der Steen J-L, Shafique U, Malinowski P E, Myny K, Rand B P, Simon M, Rütten W, Douglas A, Jorritsma J, Heremans P, Andriessen R. Org Electron, 2013, 14(10): 2602-2609. doi:10.1016/j.orgel.2013.06.020http://dx.doi.org/10.1016/j.orgel.2013.06.020
Yang W, Qiu W, Georgitzikis E, Simoen E, Serron J, Lee J, Lieberman I, Cheyns D, Malinowski P, Genoe J, Chen H, Heremans P. ACS Appl Mater Interfaces, 2021, 13(14): 16766-16774. doi:10.1021/acsami.1c02080http://dx.doi.org/10.1021/acsami.1c02080
Jinno H, Yokota T, Koizumi M, Yukita W, Saito M, Osaka I, Fukuda K, Someya T. Nat Commun, 2021, 12(1): 2234. doi:10.1038/s41467-021-22558-6http://dx.doi.org/10.1038/s41467-021-22558-6
Fuentes-Hernandez C, Chou W-F, Khan T M, Diniz L, Lukens J, Larrain F A, Rodriguez-Toro V A, Kippelen B. Science, 2020, 370(6517): 698-701. doi:10.1126/science.aba2624http://dx.doi.org/10.1126/science.aba2624
Lee H, Kim E, Lee Y, Kim H, Lee J, Kim M, Yoo H J, Yoo S. Sci Adv, 2018, 4(11): 9530. doi:10.1126/sciadv.aas9530http://dx.doi.org/10.1126/sciadv.aas9530
Elsamnah F, Bilgaiyan A, Affiq M, Shim C H, Ishidai H, Hattori R. Biosensors, 2019, 9(2): 48. doi:10.3390/bios9020048http://dx.doi.org/10.3390/bios9020048
Elsamnah F, Bilgaiyan A, Affiq M, Shim C H, Ishidai H, Hattori R. Biosensors, 2019, 9(3): 87. doi:10.3390/bios9030087http://dx.doi.org/10.3390/bios9030087
Yokota T, Nakamura T, Kato H, Mochizuki M, Tada M, Uchida M, Lee S, Koizumi M, Yukita W, Takimoto A, Someya T. Nat Electron, 2020, 3(2): 113-121. doi:10.1038/s41928-019-0354-7http://dx.doi.org/10.1038/s41928-019-0354-7
Simone G, Tordera D, Delvitto E, Peeters B, van Breemen A J J M, Meskers S C J, Janssen R A J, Gelinck G H. Adv Optical Mater, 2020, 8(10): 1901989. doi:10.1002/adom.201901989http://dx.doi.org/10.1002/adom.201901989
Ryu G, You J, Kostianovskii V, Lee E, Kim Y, Park C, Noh Y. IEEE T Electron Dev, 2018, 65(7): 2997-3004. doi:10.1109/ted.2018.2833477http://dx.doi.org/10.1109/ted.2018.2833477
Lochner C M, Khan Y, Pierre A, Arias A C. Nat Commun, 2014, 5(1): 5745. doi:10.1038/ncomms6745http://dx.doi.org/10.1038/ncomms6745
Eckstein R, Strobel N, Rödlmeier T, Glaser K, Lemmer U, Hernandez-Sosa G. Adv Optical Mater, 2018, 6(5): 1701108. doi:10.1002/adom.201701108http://dx.doi.org/10.1002/adom.201701108
Park S, Fukuda K, Wang M, Lee C, Yokota T, Jin H, Jinno H, Kimura H, Zalar P, Matsuhisa N, Umezu S, Bazan G C, Someya T. Adv Mater, 2018, 30(34): 1802359. doi:10.1002/adma.201870252http://dx.doi.org/10.1002/adma.201870252
Lee Y, Chung J W, Lee G H, Kang H, Kim J Y, Bae C, Yoo H, Jeong S, Cho H, Kang S G, Jung J Y, Lee D W, Gam S, Hahm S G, Kuzumoto Y, Kim S J, Bao Z, Hong Y, Yun Y, Kim S. Sci Adv, 2021, 7(23): 9180. doi:10.1126/sciadv.abg9180http://dx.doi.org/10.1126/sciadv.abg9180
Biele M, Montenegro Benavides C, Hürdler J, Tedde S F, Brabec C J, Schmidt O. Adv Mater Technol, 2019, 4(1): 1800158. doi:10.1002/admt.201800158http://dx.doi.org/10.1002/admt.201800158
Wu Z, Zhai Y, Yao W, Eedugurala N, Zhang S, Huang L, Gu X, Azoulay J D, Ng T N. Adv Funct Mater, 2018, 28(50): 1805738. doi:10.1002/adfm.201805738http://dx.doi.org/10.1002/adfm.201805738
Xu H, Liu J, Zhang J, Zhou G, Luo N, Zhao N. Adv Mater, 2017, 29(31): 1700975. doi:10.1002/adma.201700975http://dx.doi.org/10.1002/adma.201700975
Kim J, Kim J, Jo S, Kang J, Jo J W, Lee M, Moon J, Yang L, Kim M G, Kim Y H, Park S K. Adv Mater, 2016, 28(16): 3078-3086. doi:10.1002/adma.201505149http://dx.doi.org/10.1002/adma.201505149
Baierl D, Pancheri L, Schmidt M, Stoppa D, Dalla Betta G F, Scarpa G, Lugli P. Nat Commun, 2012, 3(1): 1175. doi:10.1038/ncomms2180http://dx.doi.org/10.1038/ncomms2180
Tedde S F, Kern J, Sterzl T, Fürst J, Lugli P, Hayden O. Nano Lett, 2009, 9(3): 980-983. doi:10.1021/nl803386yhttp://dx.doi.org/10.1021/nl803386y
Lee G H, Moon H, Kim H, Lee G H, Kwon W, Yoo S, Myung D, Yun S H, Bao Z, Hahn S K. Nat Rev Mater, 2020, 5(2): 149-165. doi:10.1038/s41578-019-0167-3http://dx.doi.org/10.1038/s41578-019-0167-3
Allen J. Physiol Meas, 2007, 28(3): R1-R39. doi:10.1088/0967-3334/28/3/r01http://dx.doi.org/10.1088/0967-3334/28/3/r01
Kamal A A R, Harness J B, Irving G, Mearns A J. Comput Meth Prog Bio, 1989, 28(4): 257-269. doi:10.1016/0169-2607(89)90159-4http://dx.doi.org/10.1016/0169-2607(89)90159-4
Anderson R R, Parrish J A. J Invest Dermatol, 1981, 77(1): 13-19. doi:10.1111/1523-1747.ep12479191http://dx.doi.org/10.1111/1523-1747.ep12479191
Zijlstra W G, Buursma A, Meeuwsen-van der Roest W P. Clin Chem, 1991, 37(9): 1633-1638. doi:10.1093/clinchem/37.9.1633http://dx.doi.org/10.1093/clinchem/37.9.1633
Cui W, Ostrander L E, Lee B Y. IEEE T Bio-Med Eng, 1990, 37(6): 632-639. doi:10.1109/10.55667http://dx.doi.org/10.1109/10.55667
Maeda Y, Sekine M, Tamura T. J Med Syst, 2011, 35(5): 829-834. doi:10.1007/s10916-010-9506-zhttp://dx.doi.org/10.1007/s10916-010-9506-z
Challoner A. Photoelectric plethysmography for estimating cutaneous blood flow. In: Peter R, ed. Non-invasive Physiological Measurements. London: Academic Press Inc, 1979. 125-151
Tamura T, Maeda Y, Sekine M, Yoshida M. Electronics, 2014, 3(2): 282-302. doi:10.3390/electronics3020282http://dx.doi.org/10.3390/electronics3020282
Khan Y, Lochner C M, Pierre A, Arias A C. System design for organic pulse oximeter. In: 2015 6th International Workshop on Advances in Sensors and Interfaces. Orlando: IEEE Computer Society, 2015. 83-86. doi:10.1109/iwasi.2015.7184975http://dx.doi.org/10.1109/iwasi.2015.7184975
Imholz B P M, Wieling W, van Montfrans G A, Wesseling K H. Cardiovasc Res, 1998, 38(3): 605-616
Naschitz J E, Bezobchuk S, Mussafia-Priselac R, Sundick S, Dreyfuss D, Khorshidi I, Karidis A, Manor H, Nagar M, Peck E R, Peck S, Storch S, Rosner I, Gaitini L. J Clin Monit Comput, 2004, 18(5): 333-342. doi:10.1007/s10877-005-4300-zhttp://dx.doi.org/10.1007/s10877-005-4300-z
Foo J Y A, Lim C S, Wang P. Physiol Meas, 2006, 27(8): 685-694. doi:10.1088/0967-3334/27/8/003http://dx.doi.org/10.1088/0967-3334/27/8/003
Chen W, Kobayashi T, Ichikawa S, Takeuchi Y, Togawa T. Med Biol Eng Comput, 2000, 38(5): 569-574. doi:10.1007/bf02345755http://dx.doi.org/10.1007/bf02345755
Pandey R K, Lin T Y, Chao P C P. Microsyst Technol, 2021, 27(6): 2345-2367. doi:10.1007/s00542-020-05109-9http://dx.doi.org/10.1007/s00542-020-05109-9
Priyanka K N G, Chao P C, Tu T, Kao Y, Yeh M, Pandey R, Eka F P. Estimating blood pressure via artificial neural networks based on measured photoplethysmography waveforms. In: 2018 IEEE SENSORSed. Orlando: IEEE Computer Society, 2018. 1-4. doi:10.1109/icsens.2018.8589796http://dx.doi.org/10.1109/icsens.2018.8589796
Zhang G, Mei Z, Zhang Y, Ma X, Lo B, Chen D, Zhang Y. IEEE T Ind Inform, 2020, 16(11): 7209-7218. doi:10.1109/tii.2020.2975222http://dx.doi.org/10.1109/tii.2020.2975222
Ramasahayam S, Arora L, Chowdhury S R, Anumukonda M. FPGA based system for blood glucose sensing using photoplethysmography and online motion artifact correction using adaline. In: 2015 9th International Conference on Sensing Technology. Orlando: IEEE Computer Society, 2015. 22-27. doi:10.1109/icsenst.2015.7438358http://dx.doi.org/10.1109/icsenst.2015.7438358
Tsai C, Li C, Lam R W, Li C, Ho S. IEEE Consum Electr M, 2020, 9(1): 30-34. doi:10.1109/mce.2019.2941461http://dx.doi.org/10.1109/mce.2019.2941461
Hina A, Nadeem H, Saadeh W. A Single LED photoplethysmography-based noninvasive glucose monitoring prototype system. In: 2019 IEEE International Symposium on Circuits and Systems. Orlando: IEEE Computer Society, 2019. 1-5. doi:10.1109/iscas.2019.8702747http://dx.doi.org/10.1109/iscas.2019.8702747
Monte-Moreno E. Artif Intell Med, 2011, 53(2): 127-138. doi:10.1016/j.artmed.2011.05.001http://dx.doi.org/10.1016/j.artmed.2011.05.001
Rachim V P, Chung W Y. Sens Actuators B Chem, 2019, 286(1): 173-180. doi:10.1016/j.snb.2019.01.121http://dx.doi.org/10.1016/j.snb.2019.01.121
Koetse M, Rensing P, van Heck G, Sharpe R, Allard B, Wieringa F, Kruijt P, Meulendijks N, Jansen H, Schoo H. In plane optical sensor based on organic electronic devices. In: Proceeding of SPIE. Bellingham: Society of Photo-optical Instrumentation Engineers, 2008. 7054: 70541. doi:10.1117/12.794830http://dx.doi.org/10.1117/12.794830
Cui N, Song Y, Tan C H, Zhang K, Yang X, Dong S, Xie B, Huang F. npj Flex Electron, 2021, 5(1): 31. doi:10.1038/s41528-021-00127-7http://dx.doi.org/10.1038/s41528-021-00127-7
Jiang Z, Yu K, Wang H, Rich S, Yokota T, Fukuda K, Someya T. Adv Mater Technol, 2021, 6(1): 2000956. doi:10.1002/admt.202000956http://dx.doi.org/10.1002/admt.202000956
Wei Y, Chen H, Liu T, Wang S, Jiang Y, Song Y, Zhang J, Zhang X, Lu G, Huang F, Wei Z, Huang H. Adv Funct Mater, 2021, 31(52): 2106326. doi:10.1002/adfm.202106326http://dx.doi.org/10.1002/adfm.202106326
Khan Y, Han D, Ting J, Ahmed M, Nagisetty R, Arias A C. IEEE Access, 2019, 7(1): 128114-128124. doi:10.1109/access.2019.2939798http://dx.doi.org/10.1109/access.2019.2939798
Khan Y, Han D, Pierre A, Ting J, Wang X, Lochner C M, Bovo G, Yaacobi-Gross N, Newsome C, Wilson R, Arias A C. Proc Natl Acad Sci, 2018, 115(47): E11015-E11024. doi:10.1073/pnas.1813053115http://dx.doi.org/10.1073/pnas.1813053115
Zhao Z, Liu B, Xie C, Ma Y, Wang J, Liu M, Yang K, Xu Y, Zhang J, Li W, Shen L, Zhang F. Sci China Chem, 2021, 64(8): 1302-1309. doi:10.1007/s11426-021-1008-9http://dx.doi.org/10.1007/s11426-021-1008-9
Lee Y, Lee H, Yoo S, Yoo H J. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device. In: 38th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society. Orlando: IEEE Computer Society, 2016. 2014-2017. doi:10.1109/embc.2016.7591121http://dx.doi.org/10.1109/embc.2016.7591121
Pinti P, Tachtsidis I, Hamilton A, Hirsch J, Aichelburg C, Gilbert S, Burgess P W. Ann NY Acad Sci, 2020, 1464(1): 5-29. doi:10.1111/nyas.13948http://dx.doi.org/10.1111/nyas.13948
Liu T, Liu X, Yi L, Zhu C, Markey P S, Pelowski M. NeuroImage, 2019, 185(1): 955-967. doi:10.1016/j.neuroimage.2017.09.044http://dx.doi.org/10.1016/j.neuroimage.2017.09.044
Keehn B, Wagner J, Tager-Flusberg H, Nelson C. Front Hum Neurosci, 2013, 7(444): 1-10. doi:10.3389/fnhum.2013.00444http://dx.doi.org/10.3389/fnhum.2013.00444
Ishii-Takahashi A, Takizawa R, Nishimura Y, Kawakubo Y, Kuwabara H, Matsubayashi J, Hamada K, Okuhata S, Yahata N, Igarashi T, Kawasaki S, Yamasue H, Kato N, Kasai K, Kano Y. NeuroImage: Clin, 2014, 4(1): 53-63. doi:10.1016/j.nicl.2013.10.002http://dx.doi.org/10.1016/j.nicl.2013.10.002
Yu G, Wang J, McElvain J, Heeger A J. Adv Mater, 1998, 10(17): 1431-1434. doi:10.1002/(sici)1521-4095(199812)10:17<1431::aid-adma1431>3.0.co;2-4http://dx.doi.org/10.1002/(sici)1521-4095(199812)10:17<1431::aid-adma1431>3.0.co;2-4
Street R A, Graham J, Popovic Z D, Hor A, Ready S, Ho J. J Non-Cryst Solids, 2002, 299-302(1): 1240-1244. doi:10.1016/s0022-3093(01)01090-0http://dx.doi.org/10.1016/s0022-3093(01)01090-0
Blakesley J C, Keivanidis P E, Campoy-Quiles M, Newman C R, Jin Y, Speller R, Sirringhaus H, Greenham N C, Nelson J, Stavrinou P. Nucl Instrum Methods Phys Res A, 2007, 580(1): 774-777. doi:10.1016/j.nima.2007.05.105http://dx.doi.org/10.1016/j.nima.2007.05.105
Agostinelli T, Campoy-Quiles M, Blakesley J C, Speller R, Bradley D D C, Nelson J. Appl Phys Lett, 2008, 93(20): 203305. doi:10.1063/1.3028640http://dx.doi.org/10.1063/1.3028640
Kingsley J W, Pearson A J, Harris L, Weston S J, Lidzey D G. Org Electron, 2009, 10(6): 1170-1173. doi:10.1016/j.orgel.2009.06.006http://dx.doi.org/10.1016/j.orgel.2009.06.006
Malinowski P E, Vicca P, Willegems M, Schols S, Cheyns D, Smout S, Ameys M, Myny K, Vaidyanathan S, Martin E, Kumar A, Steen J L v d, Gelinck G, Heremans P. IEEE Photonic Tech L, 2014, 26(21): 2197-2200. doi:10.1109/lpt.2014.2350035http://dx.doi.org/10.1109/lpt.2014.2350035
Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins T I, Galambos L, Smith R, Harris J S, Sher A, Palanker D. Nat Photon, 2012, 6(6): 391-397. doi:10.1038/nphoton.2012.104http://dx.doi.org/10.1038/nphoton.2012.104
Antognazza M R, Di Paolo M, Ghezzi D, Mete M, Di Marco S, Maya-Vetencourt J F, Maccarone R, Desii A, di Fonzo F, Bramini M, Russo A, Laudato L, Donelli I, Cilli M, Freddi G, Pertile G, Lanzani G, Bisti S, Benfenati F. Adv Health Mater, 2016, 5(17): 2271-2282. doi:10.1002/adhm.201600318http://dx.doi.org/10.1002/adhm.201600318
Simone G, Di Carlo Rasi D, de Vries X, Heintges G H L, Meskers S C J, Janssen R A J, Gelinck G H. Adv Mater, 2018, 30(51): 1804678. doi:10.1002/adma.201804678http://dx.doi.org/10.1002/adma.201804678
Maya-Vetencourt J F, Ghezzi D, Antognazza M R, Colombo E, Mete M, Feyen P, Desii A, Buschiazzo A, Di Paolo M, Di Marco S, Ticconi F, Emionite L, Shmal D, Marini C, Donelli I, Freddi G, Maccarone R, Bisti S, Sambuceti G, Pertile G, Lanzani G, Benfenati F. Nat Mater, 2017, 16(6): 681-689. doi:10.1038/nmat4874http://dx.doi.org/10.1038/nmat4874
Gautam V, Rand D, Hanein Y, Narayan K S. Adv Mater, 2014, 26(11): 1751-1756. doi:10.1002/adma.201304368http://dx.doi.org/10.1002/adma.201304368
Ghezzi D, Antognazza M R, Maccarone R, Bellani S, Lanzarini E, Martino N, Mete M, Pertile G, Bisti S, Lanzani G, Benfenati F. Nature Photon, 2013, 7(5): 400-406 Review. doi:10.1038/nphoton.2013.34http://dx.doi.org/10.1038/nphoton.2013.34
0
浏览量
275
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构