浏览全部资源
扫码关注微信
1.大连理工大学化工学院高分子材料系 精细化工国家重点实验室 大连 116024
2.浙江欧美环境工程有限公司 湖州 313000
E-mail: guofang@dlut.edu.cn
纸质出版日期:2022-05-20,
网络出版日期:2022-03-17,
收稿日期:2021-12-22,
录用日期:2022-01-14
移动端阅览
李璠,陈首龙,董显文等.羟基功能化聚环氧乙烷的可控合成[J].高分子学报,2022,53(05):482-487.
Li Fan,Chen Shou-long,Dong Xian-wen,et al.Controllable Synthesis of Hydroxyl Functionalized Polyethylene Oxide[J].ACTA POLYMERICA SINICA,2022,53(05):482-487.
李璠,陈首龙,董显文等.羟基功能化聚环氧乙烷的可控合成[J].高分子学报,2022,53(05):482-487. DOI: 10.11777/j.issn1000-3304.2021.21394.
Li Fan,Chen Shou-long,Dong Xian-wen,et al.Controllable Synthesis of Hydroxyl Functionalized Polyethylene Oxide[J].ACTA POLYMERICA SINICA,2022,53(05):482-487. DOI: 10.11777/j.issn1000-3304.2021.21394.
研究了烷基磷酸铝催化剂
i
-Bu
3
Al/H
3
PO
4
/DBU催化异亚丙基甘油基缩水甘油(IGG)与环氧乙烷(EO)共聚合的性能,通过核磁共振(NMR)、凝胶渗透色谱(GPC)和示差扫描量热法(DSC)对所获共聚物及脱保护的产物的微观结构和热性能进行表征分析. 结果表明,在室温甲苯溶剂中,
i
-Bu
3
Al/H
3
PO
4
/DBU催化剂可以高效催化不同用量的IGG和EO共聚合. IGG和EO共聚合30 min,获得了含量精确可控的EO-IGG无规共聚物,收率为100%. 室温下将EO-IGG共聚物在酸性条件下水解2 h,EO-IGG共聚物中缩酮结构完全水解为羟基,获得了含羟基的共聚物(EO-GG).
13
C-NMR分析表明羟基无规分布于聚环氧乙烷侧链. GPC分析表明,不同羟基含量EO-GG共聚物均为高分子量(
M
n
= 5.9×10
4
~18.1×10
4
)、窄分布(
M
w
/
M
n
=1.32~1.54)的聚合物,调控单体与
i-
Bu
3
Al摩尔比可以调控聚合物分子量. 不同羟基含量的EO-GG共聚物具有一个-5~-28 ℃的玻璃化转变温度(
T
g
),
T
g
值随共聚物中羟基含量的增加而增加,当共聚物中EO含量高于90 mol%时EO-GG共聚物具有51 ℃的熔点. 不同羟基含量的EO-GG共聚物接触角测试表明随着羟基插入量的增加,共聚物的亲水性增加. 通过共聚合和水解两步反应,获得了羟基功能化的高分子量聚环氧乙烷,收率为100%,羟基无规分布且含量精确可控.
The copolymerization of isopropylidene glyceryl glycidyl (IGG) and ethylene oxide (EO) with
i
-Bu
3
Al/H
3
PO
4
/DBU as catalyst has been examined. The microstructures
thermal properties and molecular weights of the obtained polymers were characterized by NMR
DSC and GPC. The copolymerization of IGG with EO has also been successfully achieved at room temperature in toluene. The EO-IGG copolymers with controllable contents were conveniently obtained in 100% yield within 30 min by changing the feed ratio of IGG to EO. The hydrolysis of EO-IGG copolymers afforded the corresponding hydroxyl functionalized copolymers (EO-GG) under acidic conditions for 2 h at room temperature
and the ketal structures in EO-IGG copolymers were completely transformed to hydroxyl. The
13
C-NMR analysis of EO-GG copolymers showed that the hydroxyl groups were randomly distributed in EO-GG copolymers. The GPC analysis of EO-GG copolymers showed that the EO-GG copolymers with high molecular weight (
M
n
= 5.9×10
4
‒18.1×10
4
) and narrow distribution (
M
w
/
M
n
= 1.32‒1.54) were obtained. The molecular weight of the copolymers can be adjusted by changing the molar ratio of monomer to
i
-Bu
3
Al. The EO-GG copolymers with different compositions possessed a glass transition temperature (
T
g
= -5~-28 ℃)
which increased with the hydroxyl content in EO-GG copolymers. When the EO content in EO-GG copolymers was higher than 90 mol%
the EO-GG copolymer possessed a melting point of 51 ℃. With the increase of the hydroxyl content in EO-GG copolymers
the hydrophilicit
y of EO-GG copolymers was improved obviously. By the two-step reaction of copolymerization and hydrolysis
the hydroxyl functionalized polyethylene oxides with high molecular weight were obtained in 100% yield
and the hydroxyl groups with controllable content were randomly distributed in the polyethylene oxide.
环氧乙烷功能化羟基开环聚合
Ethylene oxideFunctionalizationHydroxylRing-opening polymerization
Angot S, Taton D, Gnanou Y. Macromolecules, 2000, 33(15): 5418-5426. doi:10.1021/ma000079shttp://dx.doi.org/10.1021/ma000079s
Atanasov V, Sinigersky V, Klapper M, Müllen K. Macromolecules, 2005, 38(5): 1672-1683. doi:10.1021/ma048172uhttp://dx.doi.org/10.1021/ma048172u
Feng X S, Taton D, Chaikof E L, Gnanou Y. J Am Chem Soc, 2005, 127(31): 10956-10966. doi:10.1021/ja0509432http://dx.doi.org/10.1021/ja0509432
Sunder A, Hanselmann R, Frey H. Macromolecules, 1999, 32(13): 4240-4246. doi:10.1021/ma990090whttp://dx.doi.org/10.1021/ma990090w
Mangold C, Wurm F, Obermeier B, Frey H. Macromol Rapid Commun, 2010, 31(3): 258-264. doi:10.1002/marc.201090004http://dx.doi.org/10.1002/marc.201090004
Dworak A, Walach W. Polymer, 2009, 50(15): 3440-3447. doi:10.1016/j.polymer.2009.05.029http://dx.doi.org/10.1016/j.polymer.2009.05.029
Libera M, Trzebicka B, Kowalczuk A, Dworak A. Polymer, 2011, 52(2): 250-257. doi:10.1016/j.polymer.2010.12.001http://dx.doi.org/10.1016/j.polymer.2010.12.001
Dimitrov P, Rangelov S, Dworak A. Macromolecules, 2004, 37(3): 1000-1008. doi:10.1021/ma0354039http://dx.doi.org/10.1021/ma0354039
Haamann D, Keul H, Klee D. Macromolecules, 2010, 43(15): 6295-6301. doi:10.1021/ma100901qhttp://dx.doi.org/10.1021/ma100901q
Erberich M, Keul H, Möller M. Macromolecules, 2007, 40(9): 3070-3079. doi:10.1021/ma0627875http://dx.doi.org/10.1021/ma0627875
Keul H, Möller M. Polym Chem, 2009, 47(13): 3209-3231. doi:10.1002/pola.23359http://dx.doi.org/10.1002/pola.23359
Niederer K, Schüll C, Leibig D, Johann T, Frey H. Macromolecules, 2016, 49(5): 1655-1665. doi:10.1021/acs.macromol.5b02441http://dx.doi.org/10.1021/acs.macromol.5b02441
Klckner B, Niederer K, Fokina A, Frey H, Zentel R. Macromolecules, 2017, 50(10): 3779-3788. doi:10.1021/acs.macromol.7b00217http://dx.doi.org/10.1021/acs.macromol.7b00217
Wurm F, Nieberle J, Frey H. Macromolecules, 2008, 41(6): 1909-1911. doi:10.1021/ma702458ghttp://dx.doi.org/10.1021/ma702458g
Mangold C, Wurm F, Obermeier B, Frey H. Macromolecules, 2010, 43(20): 8511-8518. doi:10.1021/ma1015352http://dx.doi.org/10.1021/ma1015352
Borke T, Korpi A, Pooch F, Tenhu H, Hietala S. Polym Chem, 2017, 55(11): 1822-1830. doi:10.1002/pola.28497http://dx.doi.org/10.1002/pola.28497
Gervais M, Brocas A L, Cendejas G. Macromolecules, 2010, 43(4): 1778-1784. doi:10.1021/ma902286ahttp://dx.doi.org/10.1021/ma902286a
Guo F, Deng M, Li F, Chen S. Polym Chem, 2021, 12(38): 5477-5484. doi:10.1039/d1py00938ahttp://dx.doi.org/10.1039/d1py00938a
Deng M, Guo F, Li Y, Hou Z. Polym Chem, 2019, 10(9): 1110-1118. doi:10.1039/c8py01829dhttp://dx.doi.org/10.1039/c8py01829d
Deng M, Guo F, Liao D, Hou Z. Polym Chem, 2018, 9(1): 98-107. doi:10.1039/c7py01516jhttp://dx.doi.org/10.1039/c7py01516j
0
浏览量
179
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构