浏览全部资源
扫码关注微信
广东省低碳化学与过程节能重点实验室 中山大学材料科学与工程学院 广州 510006
E-mail: stsxm@mail.sysu.edu.cn
纸质出版日期:2022-05-20,
网络出版日期:2022-03-21,
收稿日期:2021-12-29,
录用日期:2022-02-08
移动端阅览
樊丛笑,梁嘉欣,叶淑娴等.不同序列结构的二氧化碳/环氧丙烷/邻苯二甲酸酐三元共聚物的可控合成及性能研究[J].高分子学报,2022,53(05):497-504.
Fan Cong-xiao,Liang Jia-xin,Ye Shu-xian,et al.Study of the Synthesis of CO2/Propylene Epoxide/Phthalic Anhydride Terpolymers with Different Sequence Structures and Their Properties[J].ACTA POLYMERICA SINICA,2022,53(05):497-504.
樊丛笑,梁嘉欣,叶淑娴等.不同序列结构的二氧化碳/环氧丙烷/邻苯二甲酸酐三元共聚物的可控合成及性能研究[J].高分子学报,2022,53(05):497-504. DOI: 10.11777/j.issn1000-3304.2021.21402.
Fan Cong-xiao,Liang Jia-xin,Ye Shu-xian,et al.Study of the Synthesis of CO2/Propylene Epoxide/Phthalic Anhydride Terpolymers with Different Sequence Structures and Their Properties[J].ACTA POLYMERICA SINICA,2022,53(05):497-504. DOI: 10.11777/j.issn1000-3304.2021.21402.
利用非金属催化体系,分别通过一锅两步法和一锅一步法,实现了二氧化碳(CO
2
)、环氧丙烷(PO)和邻苯二甲酸酐(PA)的本体聚合. 通过反应条件优化获得了3种聚酯(PE)链段摩尔组成和分子量较为相近,但分别具有嵌段、梯度和无规序列结构的聚酯-聚碳酸酯共聚物(PPC-P). 通过示差扫描量热法(DSC)、热重分析(TGA)以及拉伸试验对3种不同序列结构的PPC-P进行了热性能和力学性能的比较,其中嵌段PPC-P存在2个玻璃化温度(43和54 ℃),而梯度、无规PPC-P只存在一个玻璃化温度(分别为51和50 ℃). 嵌段PPC-P的5%失重温度比无规和梯度PPC-P的低10 ℃,说明其热分解稳定性稍差一些. 3种序列结构的PPC-P抗拉性能相当,拉伸强度达到35 MPa,都属于硬而脆的材料.
Producing biodegradable plastics from CO
2
is a promising methodology for recycling industrial waste gas
and the conservation of environment and energy. Propylene oxide (PO) has been commonly used to copolymerize with CO
2
to yield biodegradable poly(propylene carbonate) (PPC). PPC exhibits excellent transparency
low water and oxygen permeability as well as high flexibility. But low glass transition temperature (
T
g
) limited its practical applications. In recent years
the copolymerization of PO
CO
2
with phthalic anhydride (PA) provides a robust and economical method to improve PPC's thermal and mechanical performance. In this study
to explore the relationship between the sequence structure and the properties of CO
2
/PO/PA terpolymer (PPC-P)
PPC-P terpolymers with similar polyester (PE) content and molecular weight but different sequence structures (block
tapered and random) were synthesized through one-pot two-step method or one-pot one-step method using non-metallic catalytic system (TEB/PPNCl). The effects of polymerization temperature and reaction time on the composition and molecular weight of the PPC-P were systematically studied
and the PE content and molecular weight of all the terpolymers were controlled to be around 45% and 5.0×10
4
respectively for comparison. The typical sequence structure characteristics of the terpolymers were proven by
1
H-NMR. Differential scanning calorimetry (DSC)
thermogravimetric analysis (TGA) and tensile test were used to characterize the thermal and mechanical properties of the PPC-P terpolymers. The block terpolymer shows two g
lass-transition temperature (
T
g
) (43 and 54 ℃)
while the tapered and random terpolymer has only one
T
g
(51
50 ℃). The
T
d5
of the block terpolymer (263 ℃) is lower than that of the tapered and random terpolymer (around 273 ℃)
indicating the poorer thermostability of block terpolymer. The three terpolymers with different sequence structures have similar tensile strength (around 35 MPa)
all belonging to hard and brittle materials.
二氧化碳基聚合物序列结构热学性能力学性能
CO2 based copolymerSequence structureThermal propertiesMechanical properties
Poland S J, Darensbourg D J. Green Chem, 2017, 19(21): 4990-5011. doi:10.1039/c7gc02560bhttp://dx.doi.org/10.1039/c7gc02560b
Kozak C M, Ambrose K, Anderson T S. Coordin Chem Rev, 2018, 376: 565-587. doi:10.1016/j.ccr.2018.08.019http://dx.doi.org/10.1016/j.ccr.2018.08.019
Darensbourg D J. Inorg Chem Front, 2017, 4(3): 412-419. doi:10.1039/c7qi00013hhttp://dx.doi.org/10.1039/c7qi00013h
Kamphuis A J, Picchioni F, Pescarmona P P. Green Chem, 2019, 21(3): 406-448. doi:10.1039/c8gc03086chttp://dx.doi.org/10.1039/c8gc03086c
Xu Y, Lin L, Xiao M, Wang S, Smith A T, Sun L, Meng Y. Prog Polym Sci, 2018, 80: 163-182. doi:10.1016/j.progpolymsci.2018.01.006http://dx.doi.org/10.1016/j.progpolymsci.2018.01.006
Zhang X, Fevre M, Jones G O, Waymouth R M. Chem Rev, 2018, 118(2): 839-885. doi:10.1021/acs.chemrev.7b00329http://dx.doi.org/10.1021/acs.chemrev.7b00329
Darensbourg D J, Mackiewicz R M, Phelps A L, Billodeaux D R. Acc Chem Res, 2004, 37(11): 836-844. doi:10.1021/ar030240uhttp://dx.doi.org/10.1021/ar030240u
Zhang D, Boopathi S K, Hadjichristidis N, Gnanou Y, Feng X. J Am Chem Soc, 2016, 138(35): 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Chen Z, Yang J L, Lu X Y, Hu L F, Cao X H, Wu G P, Zhang X H. Polym Chem, 2019, 10(26): 3621-3628. doi:10.1039/c9py00398chttp://dx.doi.org/10.1039/c9py00398c
Wang L, Zhang J, Zhao N, Ren C, Liu S, Li Z. ACS Macro Lett, 2020, 9(9): 1398-1402. doi:10.1021/acsmacrolett.0c00564http://dx.doi.org/10.1021/acsmacrolett.0c00564
Yang G W, Xu C K, Xie R, Zhang Y Y, Zhu X F, Wu G P. J Am Chem Soc, 2021, 143(9): 3455-3465. doi:10.1021/jacs.0c12425http://dx.doi.org/10.1021/jacs.0c12425
Yang G W, Zhang Y Y, Xie R, Wu G P. J Am Chem Soc, 2020, 142(28): 12245-12255. doi:10.1021/jacs.0c03651http://dx.doi.org/10.1021/jacs.0c03651
Zhang J, Wang L, Liu S, Li Z. Angew Chem Int Ed Engl, 2022, 61(4): e202111197. doi:10.1002/anie.202116982http://dx.doi.org/10.1002/anie.202116982
Yang G W, Zhang Y Y, Wu G P. Acc Chem Res, 2021, 54(23): 4434-4448. doi:10.1021/acs.accounts.1c00620http://dx.doi.org/10.1021/acs.accounts.1c00620
Dai Y, Zhang X, Xia F. Macromol Rapid Commun, 2017, 38(19): 1700357. doi:10.1002/marc.201700357http://dx.doi.org/10.1002/marc.201700357
Longo J M, Sanford M J, Coates G W. Chem Rev, 2016, 116(24): 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Chen T T D, Zhu Y, Williams C K. Macromolecules, 2018, 51(14): 5346-5351. doi:10.1021/acs.macromol.8b01224http://dx.doi.org/10.1021/acs.macromol.8b01224
Darensbourg D J, Poland R R, Escobedo C. Macromolecules, 2012, 45(5): 2242-2248. doi:10.1021/ma2026385http://dx.doi.org/10.1021/ma2026385
Jeon J Y, Eo S C, Varghese J K, Lee B Y. Beilstein J Org Chem, 2014, 10: 1787-1795. doi:10.3762/bjoc.10.187http://dx.doi.org/10.3762/bjoc.10.187
Xie R, Zhang Y Y, Yang G W, Zhu X F, Li B, Wu G P. Angew Chem Int Ed Engl, 2021, 60(35): 19253-19261. doi:10.1002/anie.202104981http://dx.doi.org/10.1002/anie.202104981
Liang J, Ye S, Wang W, Fan C, Wang S, Han D, Liu W, Cui Y, Hao L, Xiao M, Meng Y. J CO2 Util, 2021, 49: 101558. doi:10.1016/j.jcou.2021.101558http://dx.doi.org/10.1016/j.jcou.2021.101558
Chen Y, Liu S, Zhao J, Pahovnik D, Žagar E, Zhang G. ACS Macro Lett, 2019, 8(12): 1582-1587. doi:10.1021/acsmacrolett.9b00789http://dx.doi.org/10.1021/acsmacrolett.9b00789
0
浏览量
147
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构