浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海 200237
[ "王立权,男,1982年生,华东理工大学副教授,博士生导师. 2005年华东理工大学本科毕业,2011年华东理工大学博士毕业. 毕业后在华东理工大学任教至今,期间(2016年2月~2017年2月)在加州理工学院作访问学者,主要从事针对高性能树脂设计的材料基因工程、高分子理论计算与模拟等研究工作." ]
[ "林嘉平,男,1964年生,华东理工大学特聘教授. 1986年、1989年上海交通大学本科、硕士毕业,1993年华东化工学院博士毕业,1993年6月~1995年6月日本东京工业大学博士后研究,1995年6月~1997年8月奥地利林茨大学博士后研究. 1997年华东理工大学任教至今. 任华东理工大学学术、学位委员会委员,国务院学位委员会第7、8届学科评议组(材料科学与工程组)成员、中国材料研究学会理事、中国化学会应用化学学科委员会委员、英国皇家化学会会士. 任《功能高分子学报》主编;《Polymer International》《高分子学报》《高分子材料科学与工程》等刊物的编委. 主要从事高分子理论模拟、高分子自组装和生物医用高分子、高分子材料基因组的研究,先后承担了国家自然科学基金重点、面上项目、军科委基础加强计划重点项目、教育部科学技术研究重大项目、国防科工局重大项目等多项科研项目. 2004年入选教育部新世纪优秀人才,2005年获得国务院特殊津贴,2008年入选上海市领军人才,2009年获得国家杰出青年基金,入选国家新世纪百千万人才工程,入选上海市优秀学科带头人." ]
纸质出版日期:2022-06-20,
网络出版日期:2022-04-07,
收稿日期:2021-12-31,
录用日期:2022-02-14
移动端阅览
都仕,张宋奇,王立权等.高分子材料基因组——高分子研发的新方法[J].高分子学报,2022,53(06):592-607.
Du Shi,Zhang Song-qi,Wang Li-quan,et al.Polymer Genome Approach: A New Method for Research and Development of Polymers[J].ACTA POLYMERICA SINICA,2022,53(06):592-607.
都仕,张宋奇,王立权等.高分子材料基因组——高分子研发的新方法[J].高分子学报,2022,53(06):592-607. DOI: 10.11777/j.issn1000-3304.2021.21404.
Du Shi,Zhang Song-qi,Wang Li-quan,et al.Polymer Genome Approach: A New Method for Research and Development of Polymers[J].ACTA POLYMERICA SINICA,2022,53(06):592-607. DOI: 10.11777/j.issn1000-3304.2021.21404.
材料基因组旨在将计算工具、数据库和实验工具有机结合,缩短研发时间,提高材料研发效率. 高分子材料因其结构独特性和复杂性阻碍了材料基因组在高分子材料领域的发展. 目前,国内外学者在高通量筛选高分子化学结构策略和构建性能预测方法等方面开展了尝试,并取得了一些成果. 本文总结和评述了当前利用代理量方法和机器学习预测模型实现高分子材料基因组的进展,利用可计算的量代理宏观性能的代理量法和利用机器学习模型预测材料性能的方法在一定程度上克服了高分子复杂性的影响.在此基础上,系统地介绍了数据挖掘或模型构建的方法以及运用这些模型筛选不同类型高分子的思路,着重探讨了方法构建和材料筛选背后的思想以及对各类问题的解决措施.最后,探讨了当前高分子材料基因组发展中所面临的主要挑战,并展望了高分子材料基因组的未来发展方向.
The materials genome approach (MGA)
which can accelerate the research and development of new materials
via
combining computer technology
database technology
and experiments
has attracted considerable attention from academia and industry. However
establishing the structure-property relationship of polymer is more complicated than those of metal and inorganic materials because of the complex structural features such as chain architecture
chain configuration
chain conformation
and chain aggregation. The difficulty in building the structure-property relationship has hindered the development of MGA in polymers. Recently
there have been increasing studies on the rational design of advanced polymers by MGA. This review summarizes research progresses on the MGA of polymer
including establishing structure-property relationships that can predict polymer properties
exploring the vast chemical space of polymers
and rationally designing polymer structures. Calculating the key features that correlate with the desired properties from data mining is one of the ways to screen promising polymers. Alternatively
machine learning can construct structure-property relationships automatically based on databases. The model based on machine learning can apply to the forward and inverse design of advanced polymers. These two prevalent methods are presented. The review systematically introduces the methods of data mining or model construction and the ideas of screening different types of polymers by using these models and focuses on the ideas behind method construction and material screening and the solutions to various problems. In addition
the challenges faced by the development of polymer MGA are also outlined. To push forward the research on polymer MGA
we suggest paying more attention to introducing more efficient machine learning technology
establishing more comprehensive polymer databases
and developing high-throughput experimental technology in the future.
材料基因组高分子机器学习理论模拟
Material genome approachPolymerMachine learningSimulation
Su Yanjing(宿彦京), Fu Huadong(付华栋), Bai Yang(白洋), Jiang Xue(姜雪), Xie Jianxin(谢建新). Acta Metallurgica Sinica(金属学报), 2020, 56(10): 1313-1323. doi:10.11900/0412.1961.2020.00199http://dx.doi.org/10.11900/0412.1961.2020.00199
Agrawal A, Choudhary A. APL Mater, 2016, 4(5): 053208. doi:10.1063/1.4946894http://dx.doi.org/10.1063/1.4946894
Hanak J J. J Mater Sci, 1970, 5(11): 964-971. doi:10.1007/bf00558177http://dx.doi.org/10.1007/bf00558177
Gautier R, Zhang X, Hu L, Yu L, Lin Y, Sunde T O L, Chon D, Poeppelmeier K, Zunger A. Nat Chem, 2015, 7(4): 308-316. doi:10.1038/nchem.2207http://dx.doi.org/10.1038/nchem.2207
Priyadarshini D, Kondratyuk P, Miller J B, Gellman A J. J Vac Sci Technol A, 2012, 30(1):011503. doi:10.1116/1.3664078http://dx.doi.org/10.1116/1.3664078
Wang Juan(王娟), Yang Xiaoyu(杨小渝), Wang Zongguo(王宗国), Wang Xingyang(王幸阳), Zhang Xiaoli(张小丽), Zeng Zhi(曾雉). Computer Engineering and Science(计算机工程与科学), 2016, 38(3): 401-410. doi:10.3969/j.issn.1007-130X.2016.03.001http://dx.doi.org/10.3969/j.issn.1007-130X.2016.03.001
Liu Z, Li Y, Shi D, Guo Y, Li M, Zhou X, Huang Q, Du S. Scr Mater, 2017, 141: 99-106. doi:10.1016/j.scriptamat.2017.07.030http://dx.doi.org/10.1016/j.scriptamat.2017.07.030
Boyd P G, Lee Y, Smit B. Nat Rev Mater, 2017, 2(8): 17037. doi:10.1038/natrevmats.2017.37http://dx.doi.org/10.1038/natrevmats.2017.37
Bai P, Jeon M, Ren L, Knight C, Deem M W, Tsapatsis M, Siepmann J I. Nat Commun, 2015, 6: 5912. doi:10.1038/ncomms6912http://dx.doi.org/10.1038/ncomms6912
Mauro J C, Tandia A, Vargheese K D, Mauro Y Z, Smedskjaer M M. Chem Mater, 2016, 28(12): 4267-4277. doi:10.1021/acs.chemmater.6b01054http://dx.doi.org/10.1021/acs.chemmater.6b01054
Goussard V, Duprat F, Ploix J, Dreyfus G, Nardello-Rataj V, Aubry J. J Chem Inf Model, 2020, 60(4): 2012-2023. doi:10.1021/acs.jcim.0c00083http://dx.doi.org/10.1021/acs.jcim.0c00083
Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, Liu Y, Zhang Q, Tian Y. Nat Commun, 2018, 9(1): 2444. doi:10.1038/s41467-018-04897-zhttp://dx.doi.org/10.1038/s41467-018-04897-z
Sharma V, Wang C, Lorenzini R G, Ma R, Zhu Q, Sinkovits D W, Pilania G, Oganov A R, SanatKumar, Sotzing G A, Boggs Steven A, Ramprasad R. Nat Commun, 2014, 5(1): 4845. doi:10.1038/ncomms5845http://dx.doi.org/10.1038/ncomms5845
Mannodi-Kanakkithodi A, Chandrasekaran A, Kim C, Huan T D, Pilania G, Botu V, Ramprasad R. Mater Today, 2018, 21(7): 785-796. doi:10.1016/j.mattod.2017.11.021http://dx.doi.org/10.1016/j.mattod.2017.11.021
Mannodi-Kanakkithodi A, Treich G M, Huan T D, Ma R, Tefferi M, Cao Y, Sotzing G A, Ramprasad R. Adv Mater, 2016, 28(30): 6277-6291. doi:10.1002/adma.201600377http://dx.doi.org/10.1002/adma.201600377
Ma R, Sharma V, Baldwin A F, Tefferi M, Offenbach I, Cakmak M, Weiss R, Cao Y, Ramprasad R, Sotzing G A. J Mater Chem A, 2015, 3(28): 14845-14852. doi:10.1039/c5ta01252jhttp://dx.doi.org/10.1039/c5ta01252j
Lorenzini R G, Kline W M, Wang C, Ramprasad R, Sotzing G A. Polymer, 2013, 54(14): 3529-3533. doi:10.1016/j.polymer.2013.05.003http://dx.doi.org/10.1016/j.polymer.2013.05.003
Ma R, Baldwin A F, Wang C, Offenbach I, Cakmak M, Ramprasad R, Sotzing G A. ACS Appl Mater Interfaces, 2014, 6(13): 10445-10451. doi:10.1021/am502002vhttp://dx.doi.org/10.1021/am502002v
Pilania G, Wang C, Wu K, Sukumar N, Breneman C, Sotzing G, Ramprasad R. J Chem Inf Model, 2013, 53(4): 879-886. doi:10.1021/ci400033hhttp://dx.doi.org/10.1021/ci400033h
Baldwin A F, Huan T D, Ma R, Mannodi-Kanakkithodi A, Tefferi M, Katz N, Cao Y, Ramprasad R, Sotzing G A. Macromolecules, 2015, 48(8): 2422-2428. doi:10.1021/ma502424rhttp://dx.doi.org/10.1021/ma502424r
Zhou Enbin(周恩斌), Wang Liquan(王立权), Lin Jiaping(林嘉平), Zhu Junli(朱峻立), Du Lei(杜磊), Deng Shifeng(邓诗峰), Gu Jiabin(顾佳斌), Zhang Liangshun(张良顺). Acta Polymerica Sinica(高分子学报), 2019, 50(12): 1322-1330. doi:10.11777/j.issn1000-3304.2019.19104http://dx.doi.org/10.11777/j.issn1000-3304.2019.19104
Chu Ming(楚明), Zhu Junli(朱峻立), Wang Liquan(王立权), Lin Jiaping(林嘉平), Du Lei(杜磊), Cai Chunhua(蔡春华). Acta Polymerica Sinica(高分子学报), 2019, 50(11): 1211-1219. doi:10.11777/j.issn1000-3304.2019.19076http://dx.doi.org/10.11777/j.issn1000-3304.2019.19076
Shen Y, Yuan Q, Huang F, Du L. Thermochim Acta, 2014, 590: 66-72. doi:10.1016/j.tca.2014.06.002http://dx.doi.org/10.1016/j.tca.2014.06.002
Zhang J, Huang J, Du W, Huang F, Du L. Polym Degrad Stabil, 2011, 96(12): 2276-2283. doi:10.1016/j.polymdegradstab.2011.04.022http://dx.doi.org/10.1016/j.polymdegradstab.2011.04.022
Jiang Z, Zhou Y, Huang F, Du L. Chinese J Polym Sci, 2011, 29(6): 726-731. doi:10.1007/s10118-011-1086-yhttp://dx.doi.org/10.1007/s10118-011-1086-y
Ye L, Han W J, Zhang R, Hu J, Zhao T. J Appl Polym Sci, 2008, 110(6): 4064-4070. doi:10.1002/app.28996http://dx.doi.org/10.1002/app.28996
Zhu J, Chu M, Chen Z, Wang L, Lin J, Du L. Chem Mater, 2020, 32(11): 4527-4535. doi:10.1021/acs.chemmater.0c00238http://dx.doi.org/10.1021/acs.chemmater.0c00238
Huang J, Du W, Zhang J, Huang F, Du L. Polym Bull, 2008, 62(2): 127-138. doi:10.1007/s00289-008-0003-1http://dx.doi.org/10.1007/s00289-008-0003-1
Zhang J, Huang J, Yu X, Wang C, Huang F, Du L. Bull Korean Chem Soc, 2012, 33(11): 3706-3710. doi:10.5012/bkcs.2012.33.11.3706http://dx.doi.org/10.5012/bkcs.2012.33.11.3706
Gao Y, Zhou Y, Huang F, Du L. High Perform Polym, 2013, 25(4): 445-453. doi:10.1177/0954008312469889http://dx.doi.org/10.1177/0954008312469889
Gao G, Zhang S, Wang L, Lin J, Qi H, Zhu J, Du L, Chu M. ACS Appl Mater Interfaces, 2020, 12(24): 27587-27597. doi:10.1021/acsami.0c06292http://dx.doi.org/10.1021/acsami.0c06292
Zhang Songqi(张宋奇), Zhu Junli(朱峻立), Wang Liquan(王立权), Lin Jiaping(林嘉平). Polymer Materials Science and Engineering (高分子材料科学与工程), 2021, 37(1): 51-58
Schmidt J, Marques M R G, Botti S, Marques M A L. npj Comput Mater, 2019, 5(1): 83. doi:10.1038/s41524-019-0221-0http://dx.doi.org/10.1038/s41524-019-0221-0
Oweida T J, Mahmood A, Manning M D, Rigin S, Yingling Y G. MRS Adv, 2020, 5(7): 329-346. doi:10.1557/adv.2020.171http://dx.doi.org/10.1557/adv.2020.171
Lin T S, Coley C W, Mochigase H, Beech H K, Wang W, Wang Z, Woods E, Craig S L, Johnson J A, Kalow J A, Jensen K F, Olsen B D. ACS Cent Sci, 2019, 5(9): 1523-1531. doi:10.1021/acscentsci.9b00476http://dx.doi.org/10.1021/acscentsci.9b00476
Tran H D, Kim C, Chen L, Chandrasekaran A, Batra R, Venkatram S, Kamal D, Lightstone J P, Gurnani R, Shetty P, Pamprasad M, Laws J, Shelton Madeline, Ramprasad R. J Appl Phys, 2020, 128(17): 171104
Yu W, Liu Y, Chen Y, Jiang Y, Chen J Z Y. J Chem Phys, 2019, 151(3): 031101. doi:10.1063/1.5103210http://dx.doi.org/10.1063/1.5103210
Cravero F, Martinez M J, Vazquez G E, Diaz M F, Ponzoni I. J Integr Bioinform, 2016, 13(2): 286. doi:10.1007/978-3-319-40126-3_1http://dx.doi.org/10.1007/978-3-319-40126-3_1
Nakajin K, Minami T, Kawata M, Fujita T, Murofushi K, Uchida H, Omori K, Okuno Y. MRS Adv, 2020, 5(29): 1567-1575. doi:10.1557/adv.2020.266http://dx.doi.org/10.1557/adv.2020.266
Tao L, Chen G, Li Y. Patterns, 2021, 2(4): 100225. doi:10.1016/j.patter.2021.100225http://dx.doi.org/10.1016/j.patter.2021.100225
Yu W, Liu Y, Chen Y, Jiang Y, Chen J Z Y. J Chem Phys, 2019, 151(3): 031101. doi:10.1063/1.5103210http://dx.doi.org/10.1063/1.5103210
Zhao S, Cai T, Zhang L, Li W, Lin J. ACS Macro Lett, 2021, 10(5): 598-602. doi:10.1021/acsmacrolett.1c00133http://dx.doi.org/10.1021/acsmacrolett.1c00133
Mannodi-Kanakkithodi A, Pilania G, Huan T D, Lookman T, Ramprasad R. Sci Rep, 2016, 6: 20952. doi:10.1038/srep20952http://dx.doi.org/10.1038/srep20952
Katoch S, Chauhan S S, Kumar V. Multimed Tools Appl, 2021, 80(5): 8091-8126. doi:10.1007/s11042-020-10139-6http://dx.doi.org/10.1007/s11042-020-10139-6
Wang Y, Xie T, France-Lanord A, Berkley A, Johnson J A, Shao-Horn Y, Grossman J C. Chem Mater, 2020, 32(10): 4144-4151. doi:10.1021/acs.chemmater.9b04830http://dx.doi.org/10.1021/acs.chemmater.9b04830
Hatakeyama-Sato K, Tezuka T, Umeki M, Oyaizu K. J Am Chem Soc, 2020, 142(7): 3301-3305. doi:10.1021/jacs.9b11442http://dx.doi.org/10.1021/jacs.9b11442
Auvergne R, Caillol S, David G, Boutevin B, Pascault J. Chem Rev, 2014, 114(2): 1082-1115. doi:10.1021/cr3001274http://dx.doi.org/10.1021/cr3001274
Li T, Heinzer M J, Francis L F, Bates F S. J Polym Sci, Part B: Polym Phys, 2016, 54(2): 189-204. doi:10.1002/polb.23894http://dx.doi.org/10.1002/polb.23894
Jin K, Luo H, Wang Z, Wang H, Tao J. Mater Des, 2020, 194: 108932. doi:10.1016/j.matdes.2020.108932http://dx.doi.org/10.1016/j.matdes.2020.108932
Luo H, Jin K, Tao J, Wang H. Mater Res Express, 2021, 8(4): 045308. doi:10.1088/2053-1591/abf66bhttp://dx.doi.org/10.1088/2053-1591/abf66b
Iyer G M, Liu L, Zhang C. J Polym Sci, 2020, 58(18): 2482-2517. doi:10.1002/pol.20200128http://dx.doi.org/10.1002/pol.20200128
Barnett J W, Bilchak C R, Wang Y, Benicewicz B C, Murdock L A, Bereau T, Kumar S K. Sci Adv, 2020, 6(20): eaaz4301. doi:10.1126/sciadv.aaz4301http://dx.doi.org/10.1126/sciadv.aaz4301
Liu L, Chen W, Liu T, Kong X, Zheng J, Li Y. J Mater Chem A, 2019, 7(19): 11847-11857. doi:10.1039/c9ta00688ehttp://dx.doi.org/10.1039/c9ta00688e
Liu T, Liu L, Cui F, Ding F, Zhang Q, Li Y. J Mater Chem A, 2020, 8(41): 21862-21871. doi:10.1039/d0ta07607dhttp://dx.doi.org/10.1039/d0ta07607d
Park N H, Zubarev D Y, Hedrick J L, Kiyek V, Corbet C, Lottier S. Macromolecules, 2020, 53(24): 10847-10854. doi:10.1021/acs.macromol.0c02127http://dx.doi.org/10.1021/acs.macromol.0c02127
Dennis J M, Zubarev D Y. J Phys Chem A, 2021, 125(31): 6829-6835. doi:10.1021/acs.jpca.1c02959http://dx.doi.org/10.1021/acs.jpca.1c02959
Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, Morikawa J, Yoshida R. ACS Cent Sci, 2019, 5(10): 1717-1730. doi:10.1021/acscentsci.9b00804http://dx.doi.org/10.1021/acscentsci.9b00804
Yan C, Feng X, Wick C, Peters A, Li G. Polymer, 2021, 214: 123351. doi:10.1016/j.polymer.2020.123351http://dx.doi.org/10.1016/j.polymer.2020.123351
Wan Y, Ramirez F, Zhang X, Nguyen T, Bazan G C, Lu G. npj Comput Mater, 2021, 7(1): 69. doi:10.1038/s41524-021-00541-5http://dx.doi.org/10.1038/s41524-021-00541-5
Zhang Y, Xu X. Heliyon, 2020, 6(10): e05055. doi:10.1016/j.heliyon.2020.e05055http://dx.doi.org/10.1016/j.heliyon.2020.e05055
Venkatraman V, Alsberg B K. Polymers, 2018, 10(1): 103. doi:10.3390/polym10010103http://dx.doi.org/10.3390/polym10010103
Zdeborová L. Nat Phys, 2020, 16(6): 602-604. doi:10.1038/s41567-020-0929-2http://dx.doi.org/10.1038/s41567-020-0929-2
Ehm C, Mingione A, Vittoria A, Zaccaria F, Cipullo R, Busico V. Ind Eng Chem Res, 2020, 59(31): 13940-13947. doi:10.1021/acs.iecr.0c02549http://dx.doi.org/10.1021/acs.iecr.0c02549
Zhang H, Marin V, Fijten M W M, Schubert U S. J Polym Sci, Part A: Polym Chem, 2004, 42(8): 1876-1885. doi:10.1002/pola.20027http://dx.doi.org/10.1002/pola.20027
Mosse W K J, Koppens M L, Gengenbach T R, Scanlon D B, Gras S L, Ducker W A. Langmuir, 2009, 25(3): 1488-1494. doi:10.1021/la802864vhttp://dx.doi.org/10.1021/la802864v
0
浏览量
549
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构