浏览全部资源
扫码关注微信
中国科学技术大学 火灾科学国家重点实验室 合肥 230026
[ "王鑫,男,1986年生. 中国科学技术大学火灾科学国家重点实验室副研究员、硕士生导师. 2008年于安徽大学获工学学士学位,2013年于中国科学技术大学火灾科学国家重点实验室获工学博士学位. 目前在安全科学与工程等领域发表SCI收录论文150余篇,他引7500余次,H因子52. 获得国家自然科学二等奖(2017年),入选Elsevier“中国高被引学者”榜单(2021年)和中科院青年创新促进会会员(2021年). 主要研究方向为聚合物材料火灾安全设计及阻燃机理." ]
纸质出版日期:2022-08-20,
网络出版日期:2022-08-15,
收稿日期:2022-01-07,
修回日期:2022-02-23,
移动端阅览
牛浩鑫,王鑫,宋磊,胡源.本征阻燃生物基环氧树脂研究进展[J].高分子学报,
Niu Hao-xin,Wang Xin,Song Lei,Hu Yuan.Progress on Intrinsically Flame-retardant Bio-based Epoxy Thermosets[J].ACTA POLYMERICA SINICA,
牛浩鑫,王鑫,宋磊,胡源.本征阻燃生物基环氧树脂研究进展[J].高分子学报, DOI:10.11777/j.issn1000-3304.2022.22007.
Niu Hao-xin,Wang Xin,Song Lei,Hu Yuan.Progress on Intrinsically Flame-retardant Bio-based Epoxy Thermosets[J].ACTA POLYMERICA SINICA, DOI:10.11777/j.issn1000-3304.2022.22007.
目前绝大部分环氧树脂尤其是双酚A二缩水甘油醚型环氧单体依赖于石油资源. 由于温室气体的限制排放,采用生物基环氧树脂来替代石油基环氧树脂的发展受到越来越多的关注. 然而,与石油基环氧树脂类似,生物基环氧树脂同样面临易燃、火焰蔓延快等缺点,极大地限制了其应用. 因此,开发本征阻燃生物基环氧树脂十分重要. 本文主要探讨了由可再生资源制备本征阻燃生物基环氧树脂的最新进展和未来前景. 重点介绍了由生物基环氧单体或生物基固化剂制备的部分生物基环氧树脂的力学性能、热稳定性和阻燃性能,此外,还介绍了本征阻燃全生物基环氧树脂.最后对本征阻燃生物基环氧树脂未来发展的机遇和挑战做了简要的展望.
Currently
most epoxy thermosets especially diglycidyl ether of bisphenol A (DGEBA)-type epoxy monomers are sourced from petroleum resources. Due to the restrictions on greenhouse gas emissions
the development of bio-based epoxy thermosets to replace petroleum-based epoxy thermosets has received more and more attention. However
like petroleum-based counterparts
bio-based epoxy thermosets are highly flammable. Therefore
the development of intrinsically flame-retardant bio-based epoxy thermosets is extremely important. The future development direction of intrinsically flame-retardant bio-based epoxy thermosets must be green and sustainable. At present
intrinsically flame-retardant bio-based epoxy thermosets still have some defects such as poor thermal stability
and there is a long way to go. Considering the development trend in this field
increasing the functionality of bio-based epoxy monomers or curing agents
improving biomass content and biodegradability are several key factors for the future development of flame-retardant bio-based epoxy thermosets with high-performance. This review mainly discusses the recent progress and prospects of the preparation of intrinsically flame-retardant bio-based epoxy thermosets from bio-based resources. The mechanical properties
thermal stability and flame retardancy of partly bio-based intrinsically flame-retardant epoxy thermosets from either bio-based epoxy monomers or bio-based curing agents are emphatically introduced. In addition
the fully bio-based flame-retardant epoxy thermosets are also introduced. Finally
the opportunities and challenges of the future development of the intrinsically flame-retardant bio-based epoxy thermosets have been briefly prospected.
生物基环氧树脂本征阻燃阻燃性能力学性能
Bio-based epoxyIntrinsically flame-retardantFlame-retardant performancesMechanical properties
Huang J, Guo W, Wang X, Song L, Hu Y. Polym Degrad Stabil, 2021, 186: 109519. doi:10.1016/j.polymdegradstab.2021.109519http://dx.doi.org/10.1016/j.polymdegradstab.2021.109519
Jin F L, Li X, Park S J. J Ind Eng Chem, 2015, 29: 1-11
Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G. Polymer, 2010, 51(11): 2435-2445. doi:10.1016/j.polymer.2010.03.053http://dx.doi.org/10.1016/j.polymer.2010.03.053
Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, Jin P, Wang D Y. Prog Polym Sci, 2020, 108: 101287. doi:10.1016/j.progpolymsci.2020.101287http://dx.doi.org/10.1016/j.progpolymsci.2020.101287
Wang X, Guo W, Song L, Hu Y. Compos Part B-Eng, 2019, 179: 107487. doi:10.1016/j.compositesb.2019.107487http://dx.doi.org/10.1016/j.compositesb.2019.107487
Wang X, Kalali E N, Wan J T, Wang D Y. Prog Polym Sci, 2017, 69: 22-46. doi:10.1016/j.progpolymsci.2017.02.001http://dx.doi.org/10.1016/j.progpolymsci.2017.02.001
Guo X, Wang H, Ma D, He J, Lei Z. J Appl Polym Sci, 2018, 135(29): 46410. doi:10.1002/app.46410http://dx.doi.org/10.1002/app.46410
Mukherjee P K, Maity N, Nema N K, Sarkar B K. Phytomedicine, 2011, 19(1): 64-73. doi:10.1016/j.phymed.2011.10.003http://dx.doi.org/10.1016/j.phymed.2011.10.003
Qi Y, Weng Z, Zhang K, Wang J, Zhang S, Liu C, Jian X. Chem Eng J, 2020, 387: 124115. doi:10.1016/j.cej.2020.124115http://dx.doi.org/10.1016/j.cej.2020.124115
Qi Y, Weng Z, Kou Y, Li J, Cao Q, Wang J, Zhang S, Jian Y. Compos Part B: Eng, 2021, 214: 108749. doi:10.1016/j.compositesb.2021.108749http://dx.doi.org/10.1016/j.compositesb.2021.108749
Zwingelstein M, Draye M, Besombes J L, Piot C, Chatel G. ACS Sustain Chem Eng, 2019, 7(9): 8310-8316. doi:10.1021/acssuschemeng.8b06723http://dx.doi.org/10.1021/acssuschemeng.8b06723
Tian Y, Wang Q, Shen L, Cui Z, Kou L, Cheng J, Zhang J. Chem Eng J, 2020, 383: 123124. doi:10.1016/j.cej.2019.123124http://dx.doi.org/10.1016/j.cej.2019.123124
Xie W, Huang S, Liu S, Zhao J. Chem Eng J, 2021, 404: 126598. doi:10.1016/j.cej.2020.126598http://dx.doi.org/10.1016/j.cej.2020.126598
Lochab B, Shukla S, Varma I K. RSC Adv, 2014, 4(42): 21712-21752. doi:10.1039/c4ra00181hhttp://dx.doi.org/10.1039/c4ra00181h
Zhang D, Jin S, Wan J, Wang J, Li Y, Jin P, Hu D. Mater Today Commun, 2021, 29: 102846. doi:10.1016/j.mtcomm.2021.102846http://dx.doi.org/10.1016/j.mtcomm.2021.102846
Wan J, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, Wang D Y. J Mater Chem A, 2015, 3(43): 21907-21921. doi:10.1039/c5ta02939bhttp://dx.doi.org/10.1039/c5ta02939b
Wan J, Gan B, Li C, Molina-Aldareguia J, Kalali E N, Wang X, Wang D Y. Chem Eng J, 2016, 284: 1080-1093. doi:10.1016/j.cej.2015.09.031http://dx.doi.org/10.1016/j.cej.2015.09.031
Jiang H, Sun L, Zhang Y, Liu Q, Ru C, Zhang W, Zhao C. Polym Degrad Stabil, 2019, 160: 45-52. doi:10.1016/j.polymdegradstab.2018.12.007http://dx.doi.org/10.1016/j.polymdegradstab.2018.12.007
Xie W Q, Tang D L, Liu S M, Zhao J Q. Polym Test, 2020, 86: 106466. doi:10.1016/j.polymertesting.2020.106466http://dx.doi.org/10.1016/j.polymertesting.2020.106466
Miao J T, Ge M Y, Wu Y D, Chou T Y, Wang H P, Zheng L H, Wu L X. Eur Polym J, 2020, 134: 109805. doi:10.1016/j.eurpolymj.2020.109805http://dx.doi.org/10.1016/j.eurpolymj.2020.109805
Liu J H, He Z J, Wu G H, Zhang X Q, Zhao C, Lei C H. Chem Eng J, 2020, 390: 124620. doi:10.1016/j.cej.2020.124620http://dx.doi.org/10.1016/j.cej.2020.124620
Bozell J J, Petersen G R. Green Chem, 2010, 12(4): 539-554. doi:10.1039/b922014chttp://dx.doi.org/10.1039/b922014c
Kumar S, Samal S K, Mohanty S, Nayak S K. Polym-Plast Technol Eng, 2018, 57(3): 133-155. doi:10.1080/03602559.2016.1253742http://dx.doi.org/10.1080/03602559.2016.1253742
Li J, Zhang G, Deng L, Jiang K, Zhao S, Gao Y, Sun R, Wong C. J Appl Polym Sci, 2015, 132(26): 42167. doi:10.1002/app.42167http://dx.doi.org/10.1002/app.42167
Meng J, Zeng Y, Zhu G, Zhang J, Chen P, Cheng Y, Fang Z, Guo K. Polym Chem, 2019, 10(19): 2370-2375. doi:10.1039/c9py00202bhttp://dx.doi.org/10.1039/c9py00202b
Meng J, Zeng Y, Chen P, Zhang J, Yao C, Fang Z, Ouyang P, Guo K. Macromol Mater Eng, 2020, 305(1): 1900587. doi:10.1002/mame.201900587http://dx.doi.org/10.1002/mame.201900587
Gang H, Lee D, Choi K Y, Kim H N, Ryu H, Lee D S, Kim B G. ACS Sustain Chem Eng, 2017, 5(6): 4582-4588. doi:10.1021/acssuschemeng.6b02960http://dx.doi.org/10.1021/acssuschemeng.6b02960
Wang S, Ma S, Xu C, Liu Y, Dai J, Wang Z, Liu X, Chen J, Shen X, Wei J, Zhu J. Macromolecules, 2017, 50(5): 1892-1901. doi:10.1021/acs.macromol.7b00097http://dx.doi.org/10.1021/acs.macromol.7b00097
Niu H, Nabipour H, Wang X, Song L, Hu Y. ACS Sustain Chem Eng, 2021, 9(15): 5268-5277. doi:10.1021/acssuschemeng.0c08302http://dx.doi.org/10.1021/acssuschemeng.0c08302
Qi Y, Weng Z, Kou Y, Song L, Li J, Wang J, Zhang S, Liu C, Jian X. Chem Eng J, 2021, 406: 126881. doi:10.1016/j.cej.2020.126881http://dx.doi.org/10.1016/j.cej.2020.126881
Gnanasekar P, Feng M, Yan N. ACS Sustain Chem Eng, 2020, 8(47): 17417-17426. doi:10.1021/acssuschemeng.0c05610http://dx.doi.org/10.1021/acssuschemeng.0c05610
Liu J, Dai J, Wang S, Peng Y, Cao L, Liu X. Compos Part B-Eng, 2020, 190: 107926. doi:10.1016/j.compositesb.2020.107926http://dx.doi.org/10.1016/j.compositesb.2020.107926
Jia P, Song F, Li Q, Xia H, Li M, Shu X, Zhou Y. J Renew Mater, 2019, 7(7): 601-619. doi:10.32604/jrm.2019.07011http://dx.doi.org/10.32604/jrm.2019.07011
Wang X, Niu H, Guo W, Song L, Hu Y. Chem Eng J, 2021, 421: 129738. doi:10.1016/j.cej.2021.129738http://dx.doi.org/10.1016/j.cej.2021.129738
Guo W, Wang X, Huang J, Cai W, Song L, Hu Y. Ind Crop Prod, 2021, 166: 113496. doi:10.1016/j.indcrop.2021.113496http://dx.doi.org/10.1016/j.indcrop.2021.113496
Gao L, Zheng G, Nie X, Wang Y. J Therm Anal Calorim, 2017, 127(2): 1419-1430. doi:10.1007/s10973-016-5456-0http://dx.doi.org/10.1007/s10973-016-5456-0
Chi Z, Guo Z, Xu Z, Zhang M, Li M, Shang L, Ao Y. Polym Degrad Stabil, 2020, 176: 109151. doi:10.1016/j.polymdegradstab.2020.109151http://dx.doi.org/10.1016/j.polymdegradstab.2020.109151
Nabipour H, Qiu S L, Wang X, Song L, Hu Y. ACS Sustain Chem Eng, 2021, 9(32): 10799-10808. doi:10.1021/acssuschemeng.1c02434http://dx.doi.org/10.1021/acssuschemeng.1c02434
Dai J Y, Teng N, Liu J K, Feng J X, Zhu J, Liu X Q. Compos Part B-Eng, 2019, 179: 107523. doi:10.1016/j.compositesb.2019.107523http://dx.doi.org/10.1016/j.compositesb.2019.107523
Abidin L, Mujeeb M, Imam S S, Aqil M, Khurana D. Drug Deliv, 2016, 23(3): 1079-1084. doi:10.3109/10717544.2014.945130http://dx.doi.org/10.3109/10717544.2014.945130
Gao T Y, Wang F D, Xu Y, Wei C X, Zhu S E, Yang W, Lu H D. Chem Eng J, 2022, 428: 131173. doi:10.1016/j.cej.2021.131173http://dx.doi.org/10.1016/j.cej.2021.131173
Lligadas G, Ronda J C, Galia M, Cadiz V. J Polym Sci, Part A: Polym Chem, 2006, 44(23): 6717-6727. doi:10.1002/pola.21794http://dx.doi.org/10.1002/pola.21794
Lligadas G, Ronda J C, Galia M, Cadiz V. J Polym Sci, Part A: Polym Chem, 2006, 44(19): 5630-5644. doi:10.1002/pola.21691http://dx.doi.org/10.1002/pola.21691
Zhao M, Lu X, Zong H, Li J, Zhuge B. Biotechnol Lett, 2018, 40(3): 455-464. doi:10.1007/s10529-017-2500-5http://dx.doi.org/10.1007/s10529-017-2500-5
Ma S, Liu X, Jiang Y, Fan L, Feng J, Zhu J. Sci China-Chem, 2014, 57(3): 379-388. doi:10.1007/s11426-013-5025-3http://dx.doi.org/10.1007/s11426-013-5025-3
Wang X L, Chen L, Wu J N, Fu T, Wang Y Z. ACS Sustain Chem Eng, 2017, 5(4): 3353-3361. doi:10.1021/acssuschemeng.6b03201http://dx.doi.org/10.1021/acssuschemeng.6b03201
Jia P, Ma Y, Kong Q, Xu L, Li Q, Zhou Y. Green Mater, 2020, 8(1): 6-23. doi:10.1680/jgrma.19.00026http://dx.doi.org/10.1680/jgrma.19.00026
Yao Z, Qian L, Qiu Y, Chen Y, Xu B, Li J. Polym Adv Technol, 2020, 31(3): 461-471. doi:10.1002/pat.4782http://dx.doi.org/10.1002/pat.4782
Xie W, Huang S, Tang D, Liu S, Zhao J. RSC Adv, 2020, 10(4): 1956-1965. doi:10.1039/c9ra06425ghttp://dx.doi.org/10.1039/c9ra06425g
Peng W, Xu Y X, Nie S B, Yang W. RSC Adv, 2021, 11(49): 30943-30954. doi:10.1039/d1ra05709jhttp://dx.doi.org/10.1039/d1ra05709j
Cao J, Duan H, Zou J, Zhang J, Ma H. Polym Degrad Stabil, 2021, 187: 109548. doi:10.1016/j.polymdegradstab.2021.109548http://dx.doi.org/10.1016/j.polymdegradstab.2021.109548
Nabipour H, Wang X, Batool S, Song L, Hu Y. Polymer, 2021, 217: 123460. doi:10.1016/j.polymer.2021.123460http://dx.doi.org/10.1016/j.polymer.2021.123460
Yang X, Wang C, Xia J, Mao W, Li S. Prog Org Coat, 2017, 110: 195-203. doi:10.1016/j.porgcoat.2017.01.012http://dx.doi.org/10.1016/j.porgcoat.2017.01.012
Liu Y L, Wang B B, Ma S Q, Xu X W, Qiu J F, Li Q, Wang S, Lu N, Ye J L, Zhu J. Eur Polym J, 2021, 144: 110236. doi:10.1016/j.eurpolymj.2020.110236http://dx.doi.org/10.1016/j.eurpolymj.2020.110236
Nabipour H, Wang X, Song L, Hu Y. Green Chem, 2021, 23(1): 501-510. doi:10.1039/d0gc03451ghttp://dx.doi.org/10.1039/d0gc03451g
Nabipour H, Niu H, Wang X, Batool S, Hu Y. React Funct Polym, 2021, 168: 105034. doi:10.1016/j.reactfunctpolym.2021.105034http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105034
0
浏览量
237
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构