浏览全部资源
扫码关注微信
中国科学院宁波材料技术与工程研究所 宁波 315201
E-mail: daijinyue@nimte.ac.cn
liuxq@nimte.ac.cn
纸质出版日期:2022-09-20,
网络出版日期:2022-06-27,
收稿日期:2022-01-17,
修回日期:2022-03-02,
移动端阅览
冯浩洋,胡婧媛,金丹丹等.具有可控降解与抗菌功能的生物基环氧树脂合成[J].高分子学报,2022,53(09):1083-1094.
Feng Hao-yang,Hu Jing-yuan,Jin Dan-dan,et al.Bio-based Epoxy Resin: Controllable Degradation, Chemical Recovery and Antimicrobial Property[J].ACTA POLYMERICA SINICA,2022,53(09):1083-1094.
冯浩洋,胡婧媛,金丹丹等.具有可控降解与抗菌功能的生物基环氧树脂合成[J].高分子学报,2022,53(09):1083-1094. DOI: 10.11777/j.issn1000-3304.2022.22020.
Feng Hao-yang,Hu Jing-yuan,Jin Dan-dan,et al.Bio-based Epoxy Resin: Controllable Degradation, Chemical Recovery and Antimicrobial Property[J].ACTA POLYMERICA SINICA,2022,53(09):1083-1094. DOI: 10.11777/j.issn1000-3304.2022.22020.
赋予环氧树脂在温和条件下的可控降解与高附加值回收利用,是实现其可持续发展的重要手段. 本工作以生物基香草醛为原料设计合成了含有螺环缩醛结构的
β
-羟丙基胺类环氧树脂固化剂(NVP),以生物基樟脑酸为原料合成了生物基缩水甘油酯类环氧树脂DGECA,通过两者的固化反应形成了一种螺环缩醛结构有序分布在侧链的环氧树脂交联网络. 通过降解动力学和实时核磁共振氢谱(
1
H-NMR)研究了环氧树脂在50 ℃、0.1 mol/L H
+
溶液中的降解行为,结果表明,螺环缩醛的引入可以使交联网络在温和条件下解聚,并促进酯键的水解过程. 利用2种可降解键的降解速率差异,用水萃取不同阶段的降解产物分别回收原料单体(季戊四醇收率大于85.5%,樟脑酸大于58.9%),实现了环氧树脂的可控分级降解和原料回收. 此外,固化反应原位形成的
β
-氨基醇结构赋予了树脂优异的抗菌性能(抑菌率大于95%). 上述研究结果将有助于更多的具有可控分级降解与抗菌功能树脂的开发.
Endowing epoxy resin derived from bio-based glycidyl ester with controllable degradation in mild condition and high-valued recovery is a huge challenge. We design a novel cross-linked network with the degradable spior acetal structure orderly distributed on branch chains through the curing reaction between camphoric acid-based diglycidyl ester and vanillin-based amine curing agent. To investigate degradation mechanism of the epoxy resins
the degradation behaviors in 0.1 mol/L H
+
acidic aqueous solutions for 48 h at 50 ℃ were monitored by the degradation kinetics and real-time
1
H-NMR spectra. The result indicated that the cross-linked network with spiro acetal structure was hydrolyzed into pentaerythritol and oligomers
and then camphoric acid was obtained by the hydrolyzation of ester bonds in oligomers. The degradation products in different periods were extracted by water to recover the raw material monomer (yield
pentaerythritol
>
85.5%
camphoric acid
>
58.9%)
which realized the controllable degradation and chemical recovery of epoxy resin by a green method. The curing agent formulation of the epoxy resin was adjusted to enhance thermal stability and tensile properties of resin samples
and samples with NVP performed excellent antimicrobial property (ratio
>
95%) for both
E. coli
and
S. aureus
bacteria because of
β
-amino alcohols generated in the curing reaction. The above result will inspire more synthesis of epoxy resin with controllable degradation
chemical recovery and antimicrobial property.
环氧树脂二缩水甘油酯可控降解化学回收抗菌
Epoxy resinDiglycidyl esterControllable degradationChemical recoveryAntimicrobial property
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Chen Ping(陈平), Liu Shengping(刘胜平), Wang Dezhong(王德中). Epoxy Resin and Its Applications(环氧树脂及其应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2011. 1-5
Auvergne R, Caillol S, David G, Boutevin B, Pascault J P. Chem Rev, 2014, 114(2): 1082-1115. doi:10.1021/cr3001274http://dx.doi.org/10.1021/cr3001274
Tao Yue(陶月), Chen Jinlong(陈金龙), Wang Shixue(王士学), Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2020, 51(7): 738-743. doi:10.11777/j.issn1000-3304.2020.20025http://dx.doi.org/10.11777/j.issn1000-3304.2020.20025
Ma S Q, Webster D C. Prog Polym Sci, 2018, 76: 65-110. doi:10.1016/j.progpolymsci.2017.07.008http://dx.doi.org/10.1016/j.progpolymsci.2017.07.008
Liu J, Wang S, Peng Y, Zhu J, Zhao W, Liu X. Prog Polym Sci, 2021, 113: 101353. doi:10.1016/j.progpolymsci.2020.101353http://dx.doi.org/10.1016/j.progpolymsci.2020.101353
Werpy T, Petersen G, eds. Top Value Added Chemicals from Biomass: Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. 2004. Doi: 10.2172/926125http://dx.doi.org/10.2172/926125
Ma S Q, Liu X Q, Jiang Y H, Tang Z B, Zhang C Z, Zhu J. Green Chem, 2013, 15(1): 245-254. doi:10.1039/c2gc36715ghttp://dx.doi.org/10.1039/c2gc36715g
Deng J, Liu X, Li C, Jiang Y, Zhu J. RSC Adv, 2015, 5(21): 15930-15939. doi:10.1039/c5ra00242ghttp://dx.doi.org/10.1039/c5ra00242g
Hu J Y, Wang C H, Dai J Y, Teng N, Wang S P, Zhang L Y, Jiang Y M, Liu X Q. Polym Adv Technol, 2021, 32(9): 3701-3713. doi:10.1002/pat.5390http://dx.doi.org/10.1002/pat.5390
Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Science, 2015, 347(6223): 768. doi:10.1126/science.1260352http://dx.doi.org/10.1126/science.1260352
Xu Z J, Liang Y Y, Ma X, Chen S F, Yu C L, Wang Y M, Zhang D H, Miao M H. Nat Sustain, 2020, 3(1): 29-34. doi:10.1038/s41893-019-0444-6http://dx.doi.org/10.1038/s41893-019-0444-6
Li Y, Liu T, Zhang S, Shao L, Fei M, Yu H, Zhang J. Green Chem, 2020, 22(3): 870-881. doi:10.1039/c9gc04080chttp://dx.doi.org/10.1039/c9gc04080c
Albertsson A C, Hakkarainen M. Science, 2017, 358(6365): 872. doi:10.1126/science.aap8115http://dx.doi.org/10.1126/science.aap8115
Wang Yiming(王一明), Liu Jie(刘杰), Wu Guangfeng(吴广峰), Tang Tao(唐涛). Chin J Appl Chem(应用化学), 2013, (30): 643-647. doi:10.3724/sp.j.1095.2013.20326http://dx.doi.org/10.3724/sp.j.1095.2013.20326
Liu T, Guo X, Liu W, Hao C, Wang L, Hiscox W C, Liu C, Jin C, Xin J, Zhang J W. Green Chem, 2017, 19(18): 4364-4372. doi:10.1039/c7gc01737ehttp://dx.doi.org/10.1039/c7gc01737e
Li Y, Liu T, Zhang S, Shao L, Fei M, Yu H, Zhang J. Green Chem, 2020, 22(3): 870-881. doi:10.1039/c9gc04080chttp://dx.doi.org/10.1039/c9gc04080c
Reddy K S K, Gao W J, Chen C H, Juang T Y, Abu-Omar M M, Lin C H. ACS Sustain Chem Eng, 2021, 9(15): 5304-5314. doi:10.1021/acssuschemeng.0c08998http://dx.doi.org/10.1021/acssuschemeng.0c08998
Ma X, Liang Y, Xu Z, Chen S, Cheng J, Miao M, Zhang D. Compos Pt B-Eng, 2020, 196: 108-109. doi:10.1016/j.compositesb.2020.108109http://dx.doi.org/10.1016/j.compositesb.2020.108109
Ma S Q, Wei J J, Jia Z, Yu T, Yuan W C, Li Q, Wang S, You S S, Liu R, Zhu J. J Mater Chem A, 2019, 7(3): 1233-1243. doi:10.1039/c8ta07140chttp://dx.doi.org/10.1039/c8ta07140c
Ge M, Miao J T, Zhang K, Wu Y, Zheng L, Wu L. Polym Chem, 2021, 12(4): 564-571. doi:10.1039/d0py01407ahttp://dx.doi.org/10.1039/d0py01407a
Miao J T, Ge M, Wu Y, Peng S, Zheng L, Chou T Y, Wu L. Chem Eng J, 2022, 427: 131580. doi:10.1016/j.cej.2021.131580http://dx.doi.org/10.1016/j.cej.2021.131580
Rahman M A, Bam M, Luat E, Jui M S, Ganewatta M S, Shokfai T, Nagarkatti M, Decho A W, Tang C B. Nat Commun, 2018, 9(1): 5231. doi:10.1038/s41467-018-07651-7http://dx.doi.org/10.1038/s41467-018-07651-7
Mora A S, Tayouo R, Boutevin B, David G, Caillol S. Green Chem, 2018, 20(17): 4075-4084. doi:10.1039/c8gc02006jhttp://dx.doi.org/10.1039/c8gc02006j
Siedenbiedel F, Tiller J C. Polymers, 2012, 4(1): 46-71. doi:10.3390/polym4010046http://dx.doi.org/10.3390/polym4010046
Fried J R. Polymer Science and Technology. New Jersey: Pearson Education, 2014. 891-995
Ramsdale-Capper R, Foreman J P. Polymer, 2018, 146: 321-330. doi:10.1016/j.polymer.2018.05.048http://dx.doi.org/10.1016/j.polymer.2018.05.048
Ma S Q, Webster D C, Jabeen F. Macromolecules, 2016, 49(10): 3780-3788. doi:10.1021/acs.macromol.6b00594http://dx.doi.org/10.1021/acs.macromol.6b00594
Pavithra D, Doble M. Biomed Mater, 2008, 3(3): 034003. doi:10.1088/1748-6041/3/3/034003http://dx.doi.org/10.1088/1748-6041/3/3/034003
M.El Saeed A, Abd El-Fattah M, Azzam A M, Dardir M M, Bader M M. Int J Biol Macromol, 2016, 89: 190-197. doi:10.1016/j.ijbiomac.2016.04.043http://dx.doi.org/10.1016/j.ijbiomac.2016.04.043
Wang M H, Li Q, Li X, Liu Y, Fan L Z. Appl Surf Sci, 2018, 448: 351-361. doi:10.1016/j.apsusc.2018.04.141http://dx.doi.org/10.1016/j.apsusc.2018.04.141
Tew G N, Liu D, Chen B, Doerksen R J, Kaplan J, Carroll P J, Klein M L, DeGrado W F. Proc Nati Acad Sci, 2002, 99(8): 5110. doi:10.1073/pnas.082046199http://dx.doi.org/10.1073/pnas.082046199
Fan X, Wagner K, Sokorai K J B, Ngo H. J Food Prot, 2017, 80(1): 6-14. doi:10.4315/0362-028x.jfp-16-080http://dx.doi.org/10.4315/0362-028x.jfp-16-080
Göpferich A. Biomaterials, 1996, 17(2): 103-114. doi:10.1016/0142-9612(96)85755-3http://dx.doi.org/10.1016/0142-9612(96)85755-3
Vaidergorn M M, Carneiro Z A, Lopes C D, de Albuquerque S, Reis F C C, Nikolaou S, Mello J F R, Genesi G L, Trossini G H G, Ganesan A, Emery F S. Eur J Med Chem, 2018, 157: 657-664. doi:10.1016/j.ejmech.2018.07.055http://dx.doi.org/10.1016/j.ejmech.2018.07.055
Kunioka M, Taguchi K, Ninomiya F, Nakajima M, Saito A, Araki S. Polymers, 2014, 6(2): 815-839. doi:10.3390/polym6020423http://dx.doi.org/10.3390/polym6020423
Shen M, Almallahi R, Rizvi Z, Gonzalez-Martinez E, Yang G, Robertson M L. Polym Chem, 2019, 10(23): 3217-3229. doi:10.1039/c9py00240ehttp://dx.doi.org/10.1039/c9py00240e
0
浏览量
234
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构