浏览全部资源
扫码关注微信
北京化工大学材料科学与工程学院 北京 100029
[ "俞丙然,男,1983年生. 北京化工大学材料科学与工程学院教授,博士生导师. 2006年、2010年、2013年于兰州大学分别获学士、硕士、博士学位. 2014年加入北京化工大学材料科学与工程学院. 在《Journal of the American Chemical Society》《Advanced Functional Materials》《Biomaterials》等国际期刊上发表论文50余篇. 2021年获批国家自然科学基金优秀青年基金项目,并主持国家自然基金面上项目2项,青年基金项目1项. 参与国家自然基金重点项目1项,重点研发计划1项. 主要从事生物医用高分子方面的基础研究工作,在基于药物、基因控释生物材料以及抗菌抗感染生物医用材料等方面开展了广泛的研究." ]
[ "徐福建,男,1976年生. 教授,博士生导师,现任北京化工大学材料科学与工程学院院长、生物医用材料北京实验室执行主任、天然高分子医用材料教育部重点实验室主任. 获国家杰出青年科学基金 (2013年)、长江学者奖励计划特聘教授(2014年)和北京高校卓越青年科学家计划(2018年)资助,任《Biomaterials Science》副主编. 在《Chem Rev》《Nat Commun》《Adv Mater》等期刊发表论文250余篇. 主要从事医用材料的研究工作." ]
纸质出版日期:2022-07-20,
网络出版日期:2022-04-29,
收稿日期:2022-01-20,
录用日期:2022-02-23
移动端阅览
王元琛,王俊凯,俞丙然等.基于胺基与环氧的开环反应构建医用阳离子聚合物[J].高分子学报,2022,53(07):828-841.
Wang Yuan-chen,Wang Jun-kai,Yu Bing-ran,et al.Biomedical Cationic Polymers Based on the Amino-epoxide Ring-opening Reaction[J].ACTA POLYMERICA SINICA,2022,53(07):828-841.
王元琛,王俊凯,俞丙然等.基于胺基与环氧的开环反应构建医用阳离子聚合物[J].高分子学报,2022,53(07):828-841. DOI: 10.11777/j.issn1000-3304.2022.22022.
Wang Yuan-chen,Wang Jun-kai,Yu Bing-ran,et al.Biomedical Cationic Polymers Based on the Amino-epoxide Ring-opening Reaction[J].ACTA POLYMERICA SINICA,2022,53(07):828-841. DOI: 10.11777/j.issn1000-3304.2022.22022.
近些年,阳离子聚合物在生物医用材料方面的研究与应用得到了广泛的关注. 通过胺基与环氧的开环反应,可以得到伯胺、仲胺、叔胺等含氮阳离子,同时也会产生丰富的羟基,这赋予了所得聚合物优异的生物相容性以及穿透细胞的能力. 本文主要就近些年来通过胺基与环氧的开环反应,所得到的基于乙醇胺功能化的聚甲基丙烯酸缩水甘油酯(PGEA)的阳离子聚合物和支化阳离子聚合物的构建策略,以及其在核酸递送、抗菌等方面的应用进行总结阐述.
Cationic polymers have been widely used as biomedical materials in recent years. Cationic polymers possess an outstanding capability to bind to cell membranes owing to their positive charge
following which they can penetrate the cell membranes. Among such polymers
nitrogenous cations
such as primary amines
secondary amines
and tertiary amines
are obtained through the ring-opening reaction of amine groups with epoxy functionalities. Moreover
abundant hydroxyl groups can be generated because of such reaction
endowing the obtained polymers with good biocompatibility. This article introduces three strategies for t
he construction of cationic polymers based on the ring-opening reaction of amine groups with epoxy groups and verifies the applicability of the strategies in bio-based applications (
e.g
.
gene delivery and antibacterial activity): (1) Poly-(glycidyl methacrylate) (PGMA)
which is rich in the epoxy functionality
is synthesized by atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) reactions and reacts with amine groups for further modification. A series of functional and hydroxy-rich ethanolamine-functionalized PGMA (denoted by PGEA) were synthesized by the ATRP polymerization of glycidyl methacrylate using designed small functional molecules as initiators or introducing functional molecules using amine groups to conduct ring-opening reactions with PGMA. (2) Based on the host-guest assembly
hydrophilic and hydrophobic assembly
and electrostatic assembly
a series of cationic polymers coupled with macromolecules were designed by assembling PGEA-based cationic polymers with native polysaccharides or native proteins. (3) By designing degradable monomers with multiple amine or epoxy groups
reducible branched cationic polymers with abundant hydroxyl groups were synthesized
via
the “one-pot” ring-opening reaction of amine groups and epoxy groups. These biodegradable branched cationic polymers can be responsively and tunably degraded in specific microenvironments
which is favorable for gene release and biosafety. These findings are greatly significant for the future development of biomaterials.
阳离子聚合物开环反应多羟基核酸递送载体抗菌材料
Cationic polymersRing-opening reactionHydroxyl-richNucleic acid delivery vectorAntibacterial materials
Choi J L, Tan J K Y, Sellers D L, Wei H, Horner P J, Pun S H. Biomaterials, 2015, 54: 87-96. doi:10.1016/j.biomaterials.2015.03.008http://dx.doi.org/10.1016/j.biomaterials.2015.03.008
Plank C, Mechtler K, Szoka F C, Wagner E. Hum Gene Ther, 1996, 7(12): 1437-1446. doi:10.1089/hum.1996.7.12-1437http://dx.doi.org/10.1089/hum.1996.7.12-1437
Fan Q, Yang Z, Li Y, Cheng Y, Li Y. Adv Funct Mater, 2021, 31(24): 2101646. doi:10.1002/adfm.202101646http://dx.doi.org/10.1002/adfm.202101646
Wu G, Hsu S. Colloids Surf B, 2016, 146: 825-832. doi:10.1016/j.colsurfb.2016.07.011http://dx.doi.org/10.1016/j.colsurfb.2016.07.011
Zhang Y, Zhang Z, Li S, Zhao L, Li D, Cao Z, Xu Z, Yang X. ACS Nano, 2021,15(10): 16030-16042. doi:10.1021/acsnano.1c04458http://dx.doi.org/10.1021/acsnano.1c04458
Wang Y, Xu C, Meng M, Lin L, Hu Y, Hao K, Sheng S, Zhang S, Wu J, Liu F, Jiang X, Tian H, Chen X. Nano Today, 2021, 40: 101266. doi:10.1016/j.nantod.2021.101266http://dx.doi.org/10.1016/j.nantod.2021.101266
Zhang Y, Yue S, Haag R, Sun H, Zhong Z. J Control Release, 2021, 340: 331-341. doi:10.1016/j.jconrel.2021.11.014http://dx.doi.org/10.1016/j.jconrel.2021.11.014
Yan S, Chen S, Gou X, Yang J, An J, Jin X, Yang Y W, Chen L, Gao H. Adv Funct Mater, 2019, 29(38): 1904683. doi:10.1002/adfm.201904683http://dx.doi.org/10.1002/adfm.201904683
Ornelas Megiatto C, Wich P R, Frechet J M J. J Am Chem Soc, 2012, 134(4): 1902-1905. doi:10.1021/ja207366khttp://dx.doi.org/10.1021/ja207366k
Hemp S T, Allen M H, Smith A E, Long T E. ACS Macro Lett, 2013, 2(8): 731-735. doi:10.1021/mz4002172http://dx.doi.org/10.1021/mz4002172
Koppu S, Oh Y J, Edrada Ebel R, Blatchford D R, Tetley L, Tate R J, Dufes C. J Control Release, 2010, 143(2): 215-221. doi:10.1016/j.jconrel.2009.11.015http://dx.doi.org/10.1016/j.jconrel.2009.11.015
Kim Y, Binauld S, Stenzel M H. Biomacromolecules, 2012, 13(10): 3418-3426. doi:10.1021/bm301351ehttp://dx.doi.org/10.1021/bm301351e
Nelson A M, Pekkanen A M, Forsythe N L, Herlihy J H, Zhang M, Long T E. Biomacromolecules, 2017, 18(1): 68-76. doi:10.1021/acs.biomac.6b01316http://dx.doi.org/10.1021/acs.biomac.6b01316
Liu C, Xie Y, Li X, Yao X, Wang X, Wang M, Li Z, Cao F. Mol Biotechnol, 2021, 63(1): 63-79. doi:10.1007/s12033-020-00285-5http://dx.doi.org/10.1007/s12033-020-00285-5
Ma K, Li W, Zhu G, Sun S, Chi H, Yin Y, Diao H, Xing X J, Guo Z, Wang L, Xu W, Cui C, Xu J. Biomed Pharmacother, 2021, 142: 112061. doi:10.1016/j.biopha.2021.112061http://dx.doi.org/10.1016/j.biopha.2021.112061
Yang W, Guo W, Zhang T, Yang W, Su L, Fang L, Wang H, Gong X, Chang J. J Mater Chem B, 2015, 3(43): 8518-8527. doi:10.1039/c5tb01333jhttp://dx.doi.org/10.1039/c5tb01333j
Yu Xia(余霞). Modern Food(现代食品), 2019, (14): 91-93. doi:10.16736/j.cnki.cn41-1434/ts.2019.14.029http://dx.doi.org/10.16736/j.cnki.cn41-1434/ts.2019.14.029
Zhang Baozhen(张宝臻), Yu Jiankun(余涧坤). Shandong Medical Journal(山东医药), 2019, 59: 85-88. doi:10.3969/j.issn.1002-266X.2019.29.026http://dx.doi.org/10.3969/j.issn.1002-266X.2019.29.026
Cohen J L, Schubert S, Wich P R, Cui L, Cohen J A, Mynar J L, Frechet J M J. Bioconjugate Chem, 2011, 22(6): 1056-1065. doi:10.1021/bc100542rhttp://dx.doi.org/10.1021/bc100542r
Gao J Q, Zhao Q Q, Lv T F, Shuai W P, Zhou J, Tang G P, Liang W Q, Tabata Y, Hu Y L. Int J Pharmaceut, 2010, 387: 286-294. doi:10.1016/j.ijpharm.2009.12.033http://dx.doi.org/10.1016/j.ijpharm.2009.12.033
Kostina N, Gorshkova M, Izumrudov V. Polym Sci Ser A, 2011, 53(10): 947-954. doi:10.1134/s0965545x11090045http://dx.doi.org/10.1134/s0965545x11090045
Zhang Q F, Yi W J, Wang B, Zhang J, Ren L, Chen Q M, Guo L, Yu X Q. Biomaterials, 2013, 34(21): 5391-5401. doi:10.1016/j.biomaterials.2013.03.083http://dx.doi.org/10.1016/j.biomaterials.2013.03.083
Hou X, Ganbold T, Baigude H. Int J Polym Mater Polym Biomater, 2018, 67(3): 174-180. doi:10.1080/00914037.2017.1320652http://dx.doi.org/10.1080/00914037.2017.1320652
Ong Z Y, Fukushima K, Coady D J, Yang Y Y, Ee P L R, Hedrick J L. J Control Release, 2011, 152(1): 120-126. doi:10.1016/j.jconrel.2011.01.020http://dx.doi.org/10.1016/j.jconrel.2011.01.020
Edelstein M L, Abedi M R, Wixon J. J Gene Med, 2007, 9(10): 833-842. doi:10.1002/jgm.1100http://dx.doi.org/10.1002/jgm.1100
Khan M, Ong Z Y, Wiradharma N, Attia A B E, Yang Y Y. Adv Healthcare Mater, 2012, 1(4): 373-392. doi:10.1002/adhm.201200109http://dx.doi.org/10.1002/adhm.201200109
Xu F J, Yang W T. Prog Polym Sci, 2011, 36(9): 1099-1131. doi:10.1016/j.progpolymsci.2010.11.005http://dx.doi.org/10.1016/j.progpolymsci.2010.11.005
Ma M, Chen Y, Zhao M, Sui J, Guo Z, Yang Y, Xu Z, Sun Y, Fan Y, Zhang X. Biomaterials, 2021, 271: 120741. doi:10.1016/j.biomaterials.2021.120741http://dx.doi.org/10.1016/j.biomaterials.2021.120741
Li Q L, Gu W X, Gao H, Yang Y W. Chem Commun, 2014, 50(87): 13201-13215. doi:10.1039/c4cc03036bhttp://dx.doi.org/10.1039/c4cc03036b
Li Y, Yu H, Qian Y, Hu J, Liu S. Adv Mater, 2014, 26(39): 6734-6741. doi:10.1002/adma.201402797http://dx.doi.org/10.1002/adma.201402797
Zhang S, Li R, Huang D, Ren X, Huang T S. Mat Sci Eng C-Mater, 2018, 85: 123-129. doi:10.1016/j.msec.2017.12.010http://dx.doi.org/10.1016/j.msec.2017.12.010
Zhang Y, Li Y, Li J, Gao Y, Tan H, Wang K, Li J, Fu Q. Sci Bull, 2015, 60(12): 1114-1121. doi:10.1007/s11434-015-0811-2http://dx.doi.org/10.1007/s11434-015-0811-2
Chen Xinzhang(陈新章), Yang Minghua(杨明华). Guangzhou Chemical Industry(广州化工), 2016, 44: 41-43
Wang Y, Chen H, Xu H, Wang W, Bai L. Mater Chem Phys, 2016, 183, 534-541. doi:10.1016/j.matchemphys.2016.09.012http://dx.doi.org/10.1016/j.matchemphys.2016.09.012
Wang Y, Zhang Y, Hou C, He X, Liu M. J Taiwan Inst Chem Eng, 2016, 58: 283-289. doi:10.1016/j.jtice.2015.05.044http://dx.doi.org/10.1016/j.jtice.2015.05.044
Yildirim E, Choi H, Schulte A, Schonherr H. Eur Polym J, 2021, 148: 110370. doi:10.1016/j.eurpolymj.2021.110370http://dx.doi.org/10.1016/j.eurpolymj.2021.110370
Li R Q, Song H Q, Xu F J. Polym Chem, 2015, 6(34): 6208-6218. doi:10.1039/c5py00819khttp://dx.doi.org/10.1039/c5py00819k
Song H Q, Pan W, Li R Q, Yu B, Liu W, Yang M, Xu F J. Small, 2018, 14(9): 1703152. doi:10.1002/smll.201703152http://dx.doi.org/10.1002/smll.201703152
Zhao Y, Yu B, Hu H, Hu Y, Zhao N N, Xu F J. ACS Appl Mater Interfaces, 2014, 6(20): 17911-17919. doi:10.1021/am5046179http://dx.doi.org/10.1021/am5046179
Xu C, Yu B, Hu H, Nizam M N, Yuan W, Ma J, Xu F J. Biomater Sci, 2016, 4(8): 1233-1243. doi:10.1039/c6bm00360ehttp://dx.doi.org/10.1039/c6bm00360e
Zhi Y, Xu C, Sui D, Du J, Xu F J, Li Y. Adv Sci, 2019, 6(11): 1900023 doi:10.1002/advs.201900023http://dx.doi.org/10.1002/advs.201900023
Qi Y, Xu C, Nizam M N, Li Y, Yu B, Xu F J. Polym Chem, 2016, 7(36): 5630-5640. doi:10.1039/c6py00998khttp://dx.doi.org/10.1039/c6py00998k
Sun Y, Hu H, Yu B, Xu F J. Bioconjugate Chem, 2016, 27(11): 2744-2754. doi:10.1021/acs.bioconjchem.6b00509http://dx.doi.org/10.1021/acs.bioconjchem.6b00509
Kheir G B, Aoun F, Roumeguere T. Transl Androl Urol, 2019, 8(6): 779-780. doi:10.21037/tau.2019.07.10http://dx.doi.org/10.21037/tau.2019.07.10
Sun Y, Hu H, Zhao N, Xia T, Yu B, Shen C, Xu F J. Biomaterials, 2017, 117: 77-91. doi:10.1016/j.biomaterials.2016.11.055http://dx.doi.org/10.1016/j.biomaterials.2016.11.055
Yuan H, Yu B, Fan L H, Wang M, Zhu Y, Ding X, Xu F J. Polym Chem, 2016, 7(36): 5709-5718. doi:10.1039/c6py01242fhttp://dx.doi.org/10.1039/c6py01242f
Zhu Y, Wu S, Sun Y, Zou X, Zheng L, Wang J, Duan S, Wang J, Yu B, Sui R, Xu F J. Adv Funct Mater, 2022, 32(14): 499-518. doi:10.1002/adfm.202111066http://dx.doi.org/10.1002/adfm.202111066
Yuan H, Xu C, Zhao Y, Yu B, Cheng G, Xu F J. Adv Funct Mater, 2016, 26(17): 2855-2865. doi:10.1002/adfm.201504980http://dx.doi.org/10.1002/adfm.201504980
Zhao Y, Duan S, Yu B, Liu F S, Cheng G, Xu F J. NPG Asia Mater, 2015, 7: e197. doi:10.1038/am.2015.67http://dx.doi.org/10.1038/am.2015.67
Xu C, Hu W, Zhang N, Qi Y, Nie J J, Zhao N, Yu B, Xu F J. Biomaterials, 2020, 248: 120031. doi:10.1016/j.biomaterials.2020.120031http://dx.doi.org/10.1016/j.biomaterials.2020.120031
Yu D, Zhang N, Liu S, Hu W, Nie J J, Zhang K, Yu B, Wang Z G, Xu F J. ACS Mater Lett, 2020, 2(5): 550-556. doi:10.1021/acsmaterialslett.0c00089http://dx.doi.org/10.1021/acsmaterialslett.0c00089
Zhang N, Wang Y, Wu R, Xu C, Nie J J, Zhao N, Yu B, Liu Z, Xu F J. Small, 2019, 15(45): 1904017. doi:10.1002/smll.201904017http://dx.doi.org/10.1002/smll.201904017
Wu R, Ding X, Qi Y, Zeng Q, Wu Y W, Yu B, Xu F J. Small, 2018, 14(22): 1800201. doi:10.1002/smll.201800201http://dx.doi.org/10.1002/smll.201800201
Wu S, Xu C, Zhu Y, Zheng L, Zhang L, Hu Y, Yu B, Wang Y, Xu F J. Adv Funct Mater, 2021, 31(33): 2103591. doi:10.1002/adfm.202103591http://dx.doi.org/10.1002/adfm.202103591
Huang Y, Ding X, Qi Y, Yu B, Xu F J. Biomaterials, 2016, 106: 134-143. doi:10.1016/j.biomaterials.2016.08.025http://dx.doi.org/10.1016/j.biomaterials.2016.08.025
Anderson N M, Simon M C. Curr Biol, 2020, 30(16): R921-R925. doi:10.1016/j.cub.2020.06.081http://dx.doi.org/10.1016/j.cub.2020.06.081
Jiang X, Shao M, Liu X, Liu X, Yang Z. Adv Sci, 2021, 8(5): 2003706. doi:10.1002/advs.202003706http://dx.doi.org/10.1002/advs.202003706
Ye W, Chen Y, Tang W, Zhang N, Li Z, Liu Z, Yu B, Xu F J. ACS Appl Mater Interfaces, 2019, 11(31): 28307-28316. doi:10.1021/acsami.9b08544http://dx.doi.org/10.1021/acsami.9b08544
Chen Yiming(陈艺铭), Qi Yu(祁宇), Hu Wenting(胡文婷), Zheng Di(郑迪), Yu Bingran(俞丙然), Xu Fujian(徐福建). Acta Polymerica Sinica(高分子学报), 2019, 50(6): 602-612. doi:10.11777/j.issn1000-3304.2019.18260http://dx.doi.org/10.11777/j.issn1000-3304.2019.18260
Qi Y, Song H, Xiao H, Cheng G, Yu B, Xu F J. Small, 2018, 14(42): 1803061. doi:10.1002/smll.201803061http://dx.doi.org/10.1002/smll.201803061
Shao M, Fan Y, Zhang K, Hu Y, Xu F J. Nano Today, 2021, 39: 101224. doi:10.1016/j.nantod.2021.101224http://dx.doi.org/10.1016/j.nantod.2021.101224
Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu Y, Tang Z, Xu F J. Biomacromolecules, 2018, 19(7): 2805-2811. doi:10.1021/acs.biomac.8b00399http://dx.doi.org/10.1021/acs.biomac.8b00399
Zhu Y, Xu C, Zhang N, Ding X, Yu B, Xu F J. Adv Funct Mater, 2018, 28(14): 1706709. doi:10.1002/adfm.201706709http://dx.doi.org/10.1002/adfm.201706709
0
浏览量
436
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构