浏览全部资源
扫码关注微信
山西大学分子科学研究所 能量转换与存储材料山西省重点实验室 太原 030006
E-mail: hhzhou@sxu.edu.cn
hj.zhai@sxu.edu.cn
纸质出版日期:2022-08-20,
网络出版日期:2022-06-09,
收稿日期:2022-01-26,
修回日期:2022-03-14,
移动端阅览
周海涵,任梦瑶,翟华金.机械剥离石墨片/聚3,4-乙烯二氧噻吩电极的制备及其超电容性能研究[J].高分子学报,2022,53(08):952-961.
Zhou Hai-han,Ren Meng-yao,Zhai Hua-jin.Preparation of Mechanically Exfoliated Graphite Sheet/Poly(3,4-ethylenedioxythiophene) Electrodes and the Study on Their Supercapacitive Properties[J].ACTA POLYMERICA SINICA,2022,53(08):952-961.
周海涵,任梦瑶,翟华金.机械剥离石墨片/聚3,4-乙烯二氧噻吩电极的制备及其超电容性能研究[J].高分子学报,2022,53(08):952-961. DOI: 10.11777/j.issn1000-3304.2022.22032.
Zhou Hai-han,Ren Meng-yao,Zhai Hua-jin.Preparation of Mechanically Exfoliated Graphite Sheet/Poly(3,4-ethylenedioxythiophene) Electrodes and the Study on Their Supercapacitive Properties[J].ACTA POLYMERICA SINICA,2022,53(08):952-961. DOI: 10.11777/j.issn1000-3304.2022.22032.
石墨片(graphite sheet,GS)由于其低成本和高导电性的特征,在超级电容器中具有很好的商业应用前景. 然而,GS的二维光滑表面会与电活性材料之间形成不理想的界面,从而限制了它们之间的电荷传输. 这项工作提出了一种简单的机械剥离方法来对GS进行处理,获得了具有独特分层微结构的机械剥离石墨片(mechanically exfoliated graphite sheet,MEGS)集流体. 同时,详细研究了电聚合参数对作为电活性材料的聚3
4-乙烯二氧噻吩(PEDOT)超电容性能的影响. 电化学测试表明,通过优化电聚合参数能使得PEDOT电极的电化学性能得到显著提高. 更重要的是,与GS集流体相比,通过使用MEGS集流体,能使得所制备的PEDOT电极的电化学性能被进一步显著提升. 这能归因于PEDOT膜与MEGS集流体之间所构建的三维界面. 所制备的MEGS/PEDOT电极在0.5 mA·cm
-2
充放电电流密度下获得了96.2 mF·cm
-2
的面积电容,并具有高的倍率性能以及优异的循环稳定性(10000次循环后保持了初始电容的90.6%). 这些特征使其在高性能超级电容器具有大的应用潜力.
Graphite sheet (GS) is very promising for commercial use in SCs
due to its low cost and high conductivity. Nevertheless
the 2D flat surface of GS would limit the charge transport between GS and electroactive materials
because of the dissatisfactory interface being formed. Here
a facile mechanically exfoliated method is p
roposed to treat GS to obtain mechanically exfoliated GS (MEGS) as current collector
which shows a unique layered microstructures. And meanwhile
the electropolymerization parameter-dependent supercapacitive performance of the poly(3
4-ethylenedioxythiophene) (PEDOT) films as the electroactive material is investigated in detail. Electrochemical measurements verify that the electrochemical properties of PEDOT electrodes are substantially enhanced by using optimized electropolymerization parameters. More importantly
the electrochemical properties of PEDOT electrodes are further observably boosted through using MEGS current collector compared to GS
attributed to the 3D interface established between the PEDOT films and MEGS. The resulting MEGS/PEDOT electrodes yield areal capacitance of 96.2 mF·cm
-2
at 0.5 mA·cm
-2
superior rate performance
and remarkable cycling stability (90.6% of capacitance retention for 10000 cycles). Such characteristics of MEGS/PEDOT electrodes offer great promise in high performance supercapacitor applications.
电荷存储电化学电容器柔性器件电化学性能
Charge storageElectrochemical capacitorsFlexible devicesElectrochemical properties
Chang X, El-Kady M F, Huang A, Lin C W, Aguilar S, Anderson M, Zhu J Z J, Richard B K. Adv Funct Mater, 2021, 31(32): 2102397. doi:10.1002/adfm.202102397http://dx.doi.org/10.1002/adfm.202102397
Gong Y, Xu ZQ, Li D, Zhang J, Aharonovich I, Zhang Y. ACS Energy Lett, 2021, 6(3): 985-996. doi:10.1021/acsenergylett.0c02427http://dx.doi.org/10.1021/acsenergylett.0c02427
Gao Huimin(高慧敏), Wang Qian(王千), Cao Zuolin(曹作林), Ren Shijie(任世杰). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1160. doi:10.11777/j.issn1000-3304.2020.20067http://dx.doi.org/10.11777/j.issn1000-3304.2020.20067
Zheng L, Tang B, Dai X, Xing T, Ouyang Y, Wang Y, Chang B, Shu H, Wang X. Chem Eng J, 2020, 399: 125671. doi:10.1016/j.cej.2020.125671http://dx.doi.org/10.1016/j.cej.2020.125671
Zhang Y Z, Wang Y, Cheng T, Yao L Q, Li X, Lai W Y, Huang W. Chem Soc Rev, 2019, 48(12): 3229-3264. doi:10.1039/c7cs00819hhttp://dx.doi.org/10.1039/c7cs00819h
Isacfranklin M, Yuvakkumar R, Ravi G, Hong S I, Velauthapillai D, Thambidurai M, Dang C, Algarni T S, Al-Mohaimeed A M. Carbon, 2021, 172: 613-623. doi:10.1016/j.carbon.2020.10.081http://dx.doi.org/10.1016/j.carbon.2020.10.081
Yuan Z, Wang H, Shen J, Ye P, Ning J, Zhong Y, Hu Y. J Mater Chem A, 2020, 8(42): 22163-22174. doi:10.1039/d0ta08006chttp://dx.doi.org/10.1039/d0ta08006c
Chen F, Liu C, Cui B, Dou S, Xu J, Liu S, Zhang H, Deng Y, Chen Y, Hu W. J Power Sources, 2021, 482: 228910. doi:10.1016/j.jpowsour.2020.228910http://dx.doi.org/10.1016/j.jpowsour.2020.228910
Tavakoli F, Rezaei B, Taghipour Jahromi A R, Ensafi A A. ACS Appl Mater Inter, 2020, 12(1): 418-427. doi:10.1021/acsami.9b12805http://dx.doi.org/10.1021/acsami.9b12805
Sun Mingxiao(孙明晓), Kuang Puxing(邝普兴), Xie Zengqi(解增旗), Liu Linlin(刘琳琳), Ma Yuguang(马於光). Acta Polymerica Sinica(高分子学报), 2018, (2): 231-238. doi:10.11777/j.issn1000-3304.2018.17128http://dx.doi.org/10.11777/j.issn1000-3304.2018.17128
Andikaey Z, Ensafi A A, Rezaei B. Electrochim Acta, 2021, 393: 139061. doi:10.1016/j.electacta.2021.139061http://dx.doi.org/10.1016/j.electacta.2021.139061
Hao Z, He X, Li H, Trefilov D, Song Y, Li Y, Fu X, Cui Y, Tang S, Ge H, Chen Y. ACS Nano, 2020, 14(10): 12719-12731. doi:10.1021/acsnano.0c02973http://dx.doi.org/10.1021/acsnano.0c02973
Liu X, Liu C F, Lai W Y, Huang W. Adv Mater Technol, 2020, 5: 2000154
Cai Y, Xu L, Kang H, Zhou W, Xu J, Duan X, Lu X, Xu Q. Electrochim Acta, 2021, 370: 137791. doi:10.1016/j.electacta.2021.137791http://dx.doi.org/10.1016/j.electacta.2021.137791
Cheng T, Zhang Y Z, Zhang J D, Lai W Y, Huang W. J Mater Chem A, 2016, 4(27): 10493-10499. doi:10.1039/c6ta03537jhttp://dx.doi.org/10.1039/c6ta03537j
Rajesh M, Manikandan R, Kim B C, Becuwe M, Yu K H, Raj C J. Electrochim Acta, 2020, 354: 136669. doi:10.1016/j.electacta.2020.136669http://dx.doi.org/10.1016/j.electacta.2020.136669
Chu C Y, Tsai J T, Sun C L. Int J Hydrogen Energy, 2012, 37(18): 13880-13886. doi:10.1016/j.ijhydene.2012.05.017http://dx.doi.org/10.1016/j.ijhydene.2012.05.017
Zhang Y, Suslick K S. Chem Mater, 2015, 27(22): 7559-7563. doi:10.1021/acs.chemmater.5b03423http://dx.doi.org/10.1021/acs.chemmater.5b03423
Zhao Q, Jamal R, Zhang L, Wang M, Abdiryim T. Nanoscale Res Lett, 2014, 9(1): 557. doi:10.1186/1556-276x-9-557http://dx.doi.org/10.1186/1556-276x-9-557
Wolfart F, Dubal D P, Vidotti M, Holze R, Gómez-Romero P. J Solid State Electr, 2015, 20(4): 901-910. doi:10.1007/s10008-015-2960-2http://dx.doi.org/10.1007/s10008-015-2960-2
Ali G A M, Yusoff M M, Ng Y H, Lim H N, Chong K F. Curr Appl Phys, 2015, 15(10): 1143-1147. doi:10.1016/j.cap.2015.06.022http://dx.doi.org/10.1016/j.cap.2015.06.022
Wang S, Sun C, Shao Y, Wu Y, Zhang L, Hao X. Small, 2017, 13(8): 1603330. doi:10.1002/smll.201603330http://dx.doi.org/10.1002/smll.201603330
Ramadoss A, Yoon K Y, Kwak M J, Kim S I, Ryu S T, Jang J H. J Power Sources, 2017, 337: 159-165. doi:10.1016/j.jpowsour.2016.10.091http://dx.doi.org/10.1016/j.jpowsour.2016.10.091
Zhang G, Hu J, Nie Y, Zhao Y, Wang L, Li Y, Liu H, Tang L, Zhang X, Li D, Sun L, Duan. H. Adv Funct Mater, 2021, 31(24): 2100290. doi:10.1002/adfm.202100290http://dx.doi.org/10.1002/adfm.202100290
Yang Z, Tian J, Ye Z, Jin Y, Cui C, Xie Q, Wang J, Zhang G, Dong Z, Miao Y, Yu X, Qian W, Wei F. Energy Storage Mater, 2020, 33: 18-25. doi:10.1016/j.ensm.2020.07.020http://dx.doi.org/10.1016/j.ensm.2020.07.020
Mandal D, Routh P, Mahato A K, Nandi A K. J Mater Chem A, 2019, 7(29): 17547-17560. doi:10.1039/c9ta04496ehttp://dx.doi.org/10.1039/c9ta04496e
Li HY, Yu Y, Liu L, Liu L, Wu Y. Electrochim Acta, 2017, 228: 553-561. doi:10.1016/j.electacta.2017.01.063http://dx.doi.org/10.1016/j.electacta.2017.01.063
Chu X, Meng F, Deng T, Zhang W. Nanoscale, 2021, 13(11): 5570-5593. doi:10.1039/d1nr00160dhttp://dx.doi.org/10.1039/d1nr00160d
Yeon C, Kim G, Lim J W, Yun S J. RSC Adv, 2017, 7(10): 5888-5897. doi:10.1039/c6ra24749khttp://dx.doi.org/10.1039/c6ra24749k
Cai Y, Wang R, Xu L, Jiang F, Liang A, Duan X, Xu J, Zhou W, Xu Q, Lu X. J Electrochem Soc, 2020, 167(8): 080538. doi:10.1149/1945-7111/ab91c6http://dx.doi.org/10.1149/1945-7111/ab91c6
Ge J, Zhu M, Eisner E, Yin Y, Dong H, Karnaushenko D D, Karnaushenko D, Zhu F, Ma L, Schmidt O G. Small, 2021, 17(24): 2101704. doi:10.1002/smll.202101704http://dx.doi.org/10.1002/smll.202101704
Wang L, Shu T, Guo S, Lu Y, Li M, Nzabahimana J, Hu X. Energy Storage Mater, 2020, 27: 150-158. doi:10.1016/j.ensm.2020.01.026http://dx.doi.org/10.1016/j.ensm.2020.01.026
Liang J, Sheng H, Wang Q, Yuan J, Zhang X, Su Q, Xie E, Lan W, Zhang C. Nanoscale Adv, 2021, 3(12): 3502-3512. doi:10.1039/d1na00121chttp://dx.doi.org/10.1039/d1na00121c
Liu W, Li X, Li W, Ye Y, Wang H, Su P, Yang W, Yang Y. J Energy Chem, 2022, 66: 30-37. doi:10.1016/j.jechem.2021.07.007http://dx.doi.org/10.1016/j.jechem.2021.07.007
Liu H, Chen N, Umar A, Li H, Li S, Bai P, Frans de Rooij N, Wang Y, Zhou G. ACS Appl Energy Mater, 2020, 3(12): 11792-11802. doi:10.1021/acsaem.0c01963http://dx.doi.org/10.1021/acsaem.0c01963
Xue T, Liu P, Zhang J, Xu J, Zhang G, Zhou P, Li Y, Zhu Y, Lu X, Wen Y. ACS Omega, 2020, 5(44): 28452-28462. doi:10.1021/acsomega.0c02224http://dx.doi.org/10.1021/acsomega.0c02224
Kiran S K, Shukla S, Struck A, Saxena S. Carbon, 2020, 158: 527-535. doi:10.1016/j.carbon.2019.11.021http://dx.doi.org/10.1016/j.carbon.2019.11.021
Zhao Y, Chen P, Tao S, Zu X, Li S, Qiao L. J Power Sources, 2020, 479: 228835. doi:10.1016/j.jpowsour.2020.228835http://dx.doi.org/10.1016/j.jpowsour.2020.228835
Packham D E. Int J Adhes Adhes, 2003, 23(6): 437-448
Kogut L, Komvopoulos K. J Appl Phys, 2003, 94(5): 3153. doi:10.1063/1.1592628http://dx.doi.org/10.1063/1.1592628
Li Y, Xie H, Li J, Yamauchi Y, Henzie J. ACS Appl Mater Interfaces, 2021, 13(35): 41649-41656. doi:10.1021/acsami.1c10998http://dx.doi.org/10.1021/acsami.1c10998
0
浏览量
97
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构