浏览全部资源
扫码关注微信
上海交通大学化学化工学院 高分子科学与工程系 上海 200240
E-mail: wyu@sjtu.edu.cn
纸质出版日期:2022-08-20,
网络出版日期:2022-06-20,
收稿日期:2022-02-17,
录用日期:2022-04-08
移动端阅览
王一名,尤伟,俞炜.聚甲基丙烯酸甲酯/聚醋酸乙烯酯/纳米二氧化硅体系的相分离行为研究[J].高分子学报,2022,53(08):962-972.
Wang Yi-ming,You Wei,Yu Wei.Phase Separation Behavior of Poly(methyl methacrylate)/ Poly(vinyl acetate)/Silica Blends[J].ACTA POLYMERICA SINICA,2022,53(08):962-972.
王一名,尤伟,俞炜.聚甲基丙烯酸甲酯/聚醋酸乙烯酯/纳米二氧化硅体系的相分离行为研究[J].高分子学报,2022,53(08):962-972. DOI: 10.11777/j.issn1000-3304.2022.22041.
Wang Yi-ming,You Wei,Yu Wei.Phase Separation Behavior of Poly(methyl methacrylate)/ Poly(vinyl acetate)/Silica Blends[J].ACTA POLYMERICA SINICA,2022,53(08):962-972. DOI: 10.11777/j.issn1000-3304.2022.22041.
研究了聚甲基丙烯酸甲酯/聚醋酸乙烯酯/纳米二氧化硅(PMMA/PVAc/silica)体系的相分离行为. 通过傅里叶变换红外光谱和链缠结行为的研究发现PMMA和PVAc间存在较强的分子间相互作用,加入纳米二氧化硅导致2种聚合物在纳米粒子表面吸附,从而改变了分子间相互作用. 体系中复杂的分子间相互作用以及纳米粒子-聚合物相互作用使得时温叠加严重失效,因此提出用归一化Cole-Cole图分析该体系的相分离过程. 纳米粒子对不同组成体系相分离行为的影响不同,近临界组成中纳米粒子促进相分离并最终分布于两相界面,远临界组成中纳米粒子起成核作用并始终分布于海岛相中,这种由相分离机理决定的纳米粒子选择性分布为调控纳米粒子在聚合物中的组装结构提供了新的思路.
The phase separation of poly(methyl methacrylate)/poly(vinyl acetate)/silica (PMMA/PVAc/SiO
2
) blends was investigated by optical microscope
rheology
morphological observation and Fourier transform infrared spectroscopy. Strong inter-molecular interaction between PMMA and PVAc was found by the shift of the carbonyl peak position compared to the FTIR of pure polymer and the reduction of chain entanglements inferred from the rheological curves. The addition of nano-silica led to the adsorption of chains of both polymers on the particle surfaces
which changed the inter-molecular interaction between pure PMMA and PVAc. The complex inter-molecular interaction and polymer-particle interaction resulted in the failure of time-temperature superposition over the entire temperature range. So the normalized Cole-Cole plot was proposed to analyze the phase separation process of the blend. Due to the inter-molecular interaction
the normalized Cole-Cole plot of the PMMA/PVAc blend deviates from the polymer
and secondary deviation occurs at the end of the curve during the heating process
which is the contribution of the phase interface. The nanoparticles have different influences on the phase separation behavior of the blend
depending on the blend composition. In the near-critical blends
nano-silica promoted the phase separation and was finally located at the interface of the two phases. In the off-critical blends
nano-silica had little effect on phase separation and was finally located in the island domains. The effect of nanoparticles on phase separation of different blends is related to the mechanism of phase separation: the near-critical blends form discontinuous shapes through the decomposition of the spiral nodal line. The phase separation speed is faster than the Brownian motion speed of nanoparticles
which results in the initial distribution of nano-silica in the two phases
and the subsequent movement towards the interface of two phases. The off-critical blends form island shapes through nucleation growth mechanism. Due to the slow phase separation rate
the nano-slica play the role of nuclei during the phase separation. In other words
the phase separation mechanism
Broenian motion of nanoparticles and dynamic adsorption and desorption of polymer chains on the surface of nanoparticles jointly determine the distribution of nanoparticles. Such selective location of nanoparticles determined by the phase separation mechanism supplied a new approach for the control of aggregation of nanoparticles in polymers.
纳米粒子相分离流变学选择性分布
NanoparticlePhase separationRheologySelective location
Liu B E, Yu W. Chinese J Polym Sci, 2020, 38: 908-914. doi:10.1007/s10118-020-2396-8http://dx.doi.org/10.1007/s10118-020-2396-8
Huang C W, Gao J P, Yu W, Zhou C X. Macromolecules, 2012, 45: 8420-8429. doi:10.1021/ma301186bhttp://dx.doi.org/10.1021/ma301186b
Gao J P, Huang C W, Wang N, Yu W, Zhou C X. Polymer, 2012, 53(8): 1772-1782. doi:10.1016/j.polymer.2012.02.027http://dx.doi.org/10.1016/j.polymer.2012.02.027
Lipatov Y S, Nesterov A E, Ignatova T D, Nesterov D A. Polymer, 2002, 43(3): 875-880
Gharachorlou A, Goharpey F. Macromolecules, 2008, 41(9): 3276-3283. doi:10.1021/ma7020985http://dx.doi.org/10.1021/ma7020985
Nesterov A E, Lipatov Y S, Horichko V V, Gritsenko O T. Polymer, 1992, 33(3): 619-622. doi:10.1016/0032-3861(92)90740-nhttp://dx.doi.org/10.1016/0032-3861(92)90740-n
Du M, Wu Q, Zuo M, Zheng Q. Eur Polym J, 2013, 49(9): 2721-2729. doi:10.1016/j.eurpolymj.2013.06.006http://dx.doi.org/10.1016/j.eurpolymj.2013.06.006
Gharachorlou A, Goharpey F. Macromolecules, 2008, 41(9): 3276-3283. doi:10.1021/ma7020985http://dx.doi.org/10.1021/ma7020985
Pawar S P, Bose S. Phys Chem Chem Phys, 2015, 17(22): 14470-14478. doi:10.1039/c5cp01644dhttp://dx.doi.org/10.1039/c5cp01644d
Fenouillot F, Cassagnau P, Majeste J. Polymer, 2009, 50: 1333-1350. doi:10.1016/j.polymer.2008.12.029http://dx.doi.org/10.1016/j.polymer.2008.12.029
Huang C W, Yu W. Rheology and processing of nanoparticle filled polymer blend nanocomposites. In: Thomas S, Muller R, Abraham J, ed. Rheology and Processing of Polymer Nanocomposites. John Wiley & Sons, Inc. 2016. 491-550
Jeon H S, Nakatani A I, Han C C, Colby R H. Macromolecules, 2000, 33(26): 9732-9739. doi:10.1021/ma000714uhttp://dx.doi.org/10.1021/ma000714u
Niu Y H, Wang Z G. Macromolecules, 2006, 39(12): 4175-4183. doi:10.1021/ma060103nhttp://dx.doi.org/10.1021/ma060103n
Du M, Gong J H, Zheng Q. Polymer, 2004, 45(19): 6725-6730. doi:10.1016/j.polymer.2004.07.069http://dx.doi.org/10.1016/j.polymer.2004.07.069
Li R M, Yu W, Zhou C X. Polym Bull, 2006, 56(4): 455-466. doi:10.1007/s00289-005-0499-6http://dx.doi.org/10.1007/s00289-005-0499-6
Yu W, Zhou W, Zhou C X. Polymer, 2010, 51(9): 2091-2098. doi:10.1016/j.polymer.2010.03.005http://dx.doi.org/10.1016/j.polymer.2010.03.005
Xu Y F, Huang C W, Yu W, Zhou C X. Polymer, 2015, 67: 101-110. doi:10.1016/j.polymer.2015.04.052http://dx.doi.org/10.1016/j.polymer.2015.04.052
Yu W, Li R M, Zhou C X. Polymer, 2011, 52(12): 2693-2700. doi:10.1016/j.polymer.2011.04.024http://dx.doi.org/10.1016/j.polymer.2011.04.024
Sharma J, Clarke N. J Phys Chem B, 2004, 108(35): 13220-13230. doi:10.1021/jp048552hhttp://dx.doi.org/10.1021/jp048552h
Zhang R Y, Cheng H, Zhang C G, Sun T C, Dong X, Han C C. Macromolecules, 2008, 41(18): 6818-6829. doi:10.1021/ma800646shttp://dx.doi.org/10.1021/ma800646s
Xu Y F, Yu W, Zhou C X. Macromolecules, 2018, 51: 7338-7349. doi:10.1021/acs.macromol.8b01214http://dx.doi.org/10.1021/acs.macromol.8b01214
Coleman M M, Zarian J, Varnell D F, Painter P C. J Polym Sci: Polym Lett Edn, 1977, 15(12): 745-750. doi:10.1002/pol.1977.130151207http://dx.doi.org/10.1002/pol.1977.130151207
Cui W Z, You W, Sun Z Y, Yu W. Macromolecules, 2021, 54(12): 5484-5497. doi:10.1021/acs.macromol.1c00264http://dx.doi.org/10.1021/acs.macromol.1c00264
Chen Q, Matsumiya Y, Masubuchi Y, Watanabe H, Inoue T. Macromolecules, 2008, 41(22): 8694-8711. doi:10.1021/ma8013417http://dx.doi.org/10.1021/ma8013417
Pathak J A, Colby R H, Floudas G, Jérôme R. Macromolecules, 1999, 32 (8): 2553-2561. doi:10.1021/ma9817121http://dx.doi.org/10.1021/ma9817121
0
浏览量
98
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构