浏览全部资源
扫码关注微信
1.山东省高等学校生物基高分子材料重点实验室 青岛科技大学高分子科学与工程学院
2.青岛科技大学化工学院 青岛 266042
E-mail: shenyong@qust.edu.cn
zbli@qust.edu.cn
纸质出版日期:2022-08-20,
网络出版日期:2022-06-20,
收稿日期:2022-02-17,
录用日期:2022-03-24
移动端阅览
马钰琨,沈勇,李志波.高热稳定Lewis酸碱对催化L-丙交酯均聚及与乙交酯共聚的本体开环聚合研究[J].高分子学报,2022,53(08):923-932.
Ma Yu-kun,Shen Yong,Li Zhi-bo.Bulk Ring-opening Polymerization of L-Lactide and Its Copolymerization with Glycolide Catalyzed by Highly Thermal Stable Lewis Pairs[J].ACTA POLYMERICA SINICA,2022,53(08):923-932.
马钰琨,沈勇,李志波.高热稳定Lewis酸碱对催化L-丙交酯均聚及与乙交酯共聚的本体开环聚合研究[J].高分子学报,2022,53(08):923-932. DOI: 10.11777/j.issn1000-3304.2022.22042.
Ma Yu-kun,Shen Yong,Li Zhi-bo.Bulk Ring-opening Polymerization of L-Lactide and Its Copolymerization with Glycolide Catalyzed by Highly Thermal Stable Lewis Pairs[J].ACTA POLYMERICA SINICA,2022,53(08):923-932. DOI: 10.11777/j.issn1000-3304.2022.22042.
聚丙交酯(PLA)和乙交酯-丙交酯共聚酯(PLGA)是性能优异的可降解聚酯材料,发展绿色、环境友好的催化剂实现丙交酯和乙交酯的本体熔融聚合具有重要的科学意义和实际应用价值. 本文研究了ZnCl
2
、MgCl
2
和FeCl
3
与3种有机碱构成的Lewis酸碱对在丙交酯(LA)本体熔融聚合的催化作用. 研究了包括Lewis酸碱对类型、比例和反应时间对LA开环聚合反应的影响. 这3类Lewis酸碱对在180 ℃高温下表现出较好的热稳定性和催化活性. 其中FeCl
3
/DBU催化体系能够同时实现高单体转化率和分子量. 同时,FeCl
3
/DBU能够有效催化LA和GA的随机共聚,通过调控LA和GA的单体投料比可以制备不同摩尔组成的PLGA共聚酯.
Polylactide (PLA) and poly(lactic-
co
-glycolic acid) (PLGA) are degradable polyesters with excellent properties. It is p
ractically important to develop green and environment friendly catalysts that can realize the bulk melt ring opening polymerization (ROP) of lactide and its copolymerization with glycolide. In this work
we report the bulk polymerization of lactide catalyzed by Lewis pairs composed of ZnCl
2
MgCl
2
or FeCl
3
and three different oganobases. We then systematically studied the effects of Lewis pair structures
mixing ratios and polymerization time on the ROP of lactide. The three types of Lewis pairs all showed great thermal stability and high catalytic activities at 180 ℃. In particular
the combination of FeCl
3
/DBU can effectively catalyze the ROP of lactide and its copolymerization with glycolide at 180 ℃ to obtain high monomer conversion and high molecular weight at the same time. The resulting PLA homopolymer can reach molecular weight as high as 64.2 kg/mol
via
bulk polymerization
which are comparable to other metal catalytic systems. The molecular structures of PLLA and PLGA copolymer were verified by
1
H-NMR spectroscopy and MALDI-TOF MS. The microstructures of the PLGA copolymers were carefully analyzed by
13
C-NMR
and the results showed that the monomer sequence lengths can be easily modulated by varying the feeding ratio of two monomers. The resulting PLGA copolymer were all amorphous solids
and the glass transition temperature decreased with the increase of GA contents.
聚乳酸丙交酯开环聚合路易斯酸碱对可降解高分子
PolylactideLactideRing opening polymerizationLewis acid-base pairDegradable polymer
An Zesheng(安泽胜), Chen Changle(陈昶乐), He Junpo(何军坡), Hong Chunyan(洪春雁), Li Zhibo(李志波), Li Zichen(李子臣), Liu Chao(刘超), Lv Xiaobing(吕小兵), Qin Anjun(秦安军), Qu Chengke(曲程科), Tang Benzhong (唐本忠), Tao Youhua(陶友华), Wan Xinhua(宛新华), Wang Guowei(王国伟), Wang Jia(王佳), Zheng Ke(郑轲), Zou Wenkai(邹文凯). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1083-1132. doi:10.11777/j.issn1000-3304.2019.19136http://dx.doi.org/10.11777/j.issn1000-3304.2019.19136
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Farah S, Anderson D G, Langer R. Adv Drug Delivery Rev, 2016, 107: 367-392. doi:10.1016/j.addr.2016.06.012http://dx.doi.org/10.1016/j.addr.2016.06.012
Ramot Y, Haim-Zada M, Domb A J, Nyska A. Adv Drug Delivery Rev, 2016, 107: 153-162. doi:10.1016/j.addr.2016.03.012http://dx.doi.org/10.1016/j.addr.2016.03.012
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem Rev, 2004, 104(12): 6147-6176. doi:10.1021/cr040002shttp://dx.doi.org/10.1021/cr040002s
Wang Yadi(王雅琪), Yang Yang(杨洋), Wang Liudi(王柳迪), Li Yulin(李玉林), Liu Changsheng(刘昌胜). Journal of Functional Polymers(功能高分子学报), 2020, 33(4): 399-406
Schäfer P M, Dankhoff K, Rothemund M, Ksiazkiewicz A N, Pich A, Schobert R, Weber B, Herres-Pawlis S. Chemistry Open, 2019, 8(7): 1020-1026. doi:10.1002/open.201900199http://dx.doi.org/10.1002/open.201900199
Stjerndahl A, Finne-Wistrand A, Albertsson A C, Backesjo C M, Lindgren U. J Biomed Mater Res Part A, 2008, 87(4): 1086-1091. doi:10.1002/jbm.a.31733http://dx.doi.org/10.1002/jbm.a.31733
Shen Ting(沈婷), Ni Xufeng(倪旭峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 445-455. doi:10.11777/j.issn1000-3304.2020.20267http://dx.doi.org/10.11777/j.issn1000-3304.2020.20267
Zhong Z, Dijkstra P J, Feijen J. Angew Chem Int Ed, 2002, 41(23): 4510-4513. doi:10.1002/1521-3773(20021202)41:23<4510::aid-anie4510>3.0.co;2-lhttp://dx.doi.org/10.1002/1521-3773(20021202)41:23<4510::aid-anie4510>3.0.co;2-l
Hermann A, Hill S, Metz A, Heck J, Hoffmann A, Hartmann L, Herres-Pawlis S. Angew Chem Int Ed, 2020, 59(48): 21778-21784. doi:10.1002/anie.202008473http://dx.doi.org/10.1002/anie.202008473
Wang L, Ma H. Macromolecules, 2010, 43(16): 6535-6537. doi:10.1021/ma101263ghttp://dx.doi.org/10.1021/ma101263g
Thevenon A, Romain C, Bennington M S, White A J P, Davidson H J, Brooker S, Williams C K. Angew Chem Int Ed, 2016, 55(30): 8680-8685. doi:10.1002/anie.201602930http://dx.doi.org/10.1002/anie.201602930
Duan R, Hu C, Li X, Pang X, Sun Z, Chen X, Wang X. Macromolecules, 2017, 50(23): 9188-9195. doi:10.1021/acs.macromol.7b01766http://dx.doi.org/10.1021/acs.macromol.7b01766
McKeown P, McCormick S N, Mahon M F, Jones M D. Polym Chem, 2018, 9(44): 5339-5347. doi:10.1039/c8py01369ahttp://dx.doi.org/10.1039/c8py01369a
Rittinghaus R D, Schäfer P M, Albrecht P, Conrads C, Hoffmann A, Ksiazkiewicz A N, Bienemann O, Pich A, Herres-Pawlis S. ChemSusChem, 2019, 12(10): 2161-2165. doi:10.1002/cssc.201900481http://dx.doi.org/10.1002/cssc.201900481
Platel R, Hodgson L, Williams C. Polym Rev, 2008, 48(1): 11-63. doi:10.1080/15583720701834166http://dx.doi.org/10.1080/15583720701834166
Kou Xinhui(寇新慧), Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1121-1129. doi:10.11777/j.issn1000-3304.2020.20117http://dx.doi.org/10.11777/j.issn1000-3304.2020.20117
Jiang X, Zhao N, Li Z. Chin J Chem, 2021, 39(9): 2403-2409. doi:10.1002/cjoc.202100230http://dx.doi.org/10.1002/cjoc.202100230
Orhan B, Tschan M J L, Wirotius A L, Dove A P, Coulembier O, Taton D. ACS Macro Lett, 2018, 7(12): 1413-1419. doi:10.1021/acsmacrolett.8b00852http://dx.doi.org/10.1021/acsmacrolett.8b00852
Sarazin Y, Carpentier J F. Chem Rev, 2015, 115(9): 3564-3614. doi:10.1021/acs.chemrev.5b00033http://dx.doi.org/10.1021/acs.chemrev.5b00033
Osten K M, Mehrkhodavandi P. Acc Chem Res, 2017, 50(11): 2861-2869. doi:10.1021/acs.accounts.7b00447http://dx.doi.org/10.1021/acs.accounts.7b00447
Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 777-790. doi:10.11777/j.issn1000-3304.2020.20050http://dx.doi.org/10.11777/j.issn1000-3304.2020.20050
Kreiser-Saunders I, Kricheldo H R. Macromol Chem Phys, 1998, 199: 1081-1087. doi:10.1002/(sici)1521-3935(19980601)199:6<1081::aid-macp1081>3.0.co;2-2http://dx.doi.org/10.1002/(sici)1521-3935(19980601)199:6<1081::aid-macp1081>3.0.co;2-2
Stephan D W. Acc Chem Res, 2015, 48(2): 306-316. doi:10.1021/ar500375jhttp://dx.doi.org/10.1021/ar500375j
Stephan D W, Erker G. Angew Chem Int Ed, 2015, 54(22): 6400-6441. doi:10.1002/anie.201409800http://dx.doi.org/10.1002/anie.201409800
Bai Yun(白云), Zhang Yuetao(张越涛). Acta Polymerica Sinica(高分子学报), 2019, 50(3): 233-246. doi:10.11777/j.issn1000-3304.2019.18269http://dx.doi.org/10.11777/j.issn1000-3304.2019.18269
Wang Bin(王彬), Ji Heyuan(季鹤源), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1104-1120. doi:10.11777/j.issn1000-3304.2020.20111http://dx.doi.org/10.11777/j.issn1000-3304.2020.20111
Hong M, Chen J, Chen E Y X. Chem Rev, 2018, 118(20): 10551-10616. doi:10.1021/acs.chemrev.8b00352http://dx.doi.org/10.1021/acs.chemrev.8b00352
McGraw M L, Chen E Y X. Macromolecules, 2020, 53(15): 6102-6122. doi:10.1021/acs.macromol.0c01156http://dx.doi.org/10.1021/acs.macromol.0c01156
Piedra-Arroni E, Ladaviere C, Amgoune A, Bourissou D. J Am Chem Soc, 2013, 135(36): 13306-13309. doi:10.1021/ja4069968http://dx.doi.org/10.1021/ja4069968
Naumann S, Scholten P B, Wilson J A, Dove A P. J Am Chem Soc, 2015, 137(45): 14439-14445. doi:10.1021/jacs.5b09502http://dx.doi.org/10.1021/jacs.5b09502
Li X, Wang B, Ji H, Li Y. Catal Sci Technol, 2016, 6(21): 7763-7772. doi:10.1039/c6cy01587ehttp://dx.doi.org/10.1039/c6cy01587e
Wang B, Wei Y, Li Z, Pan L, Li Y. ChemCatChem, 2018, 10(22): 5287-5296. doi:10.1002/cctc.201801488http://dx.doi.org/10.1002/cctc.201801488
Wang Q, Zhao W, He J, Zhang Y, Chen E Y X. Macromolecules, 2017, 50(1): 123-136. doi:10.1021/acs.macromol.6b02398http://dx.doi.org/10.1021/acs.macromol.6b02398
Basterretxea A, Gabirondo E, Jehanno C, Zhu H, Coulembier O, Mecerreyes D, Sardon H. Macromolecules, 2021, 54(13): 6214-6225. doi:10.1021/acs.macromol.1c01060http://dx.doi.org/10.1021/acs.macromol.1c01060
Delle Chiaie K R, McMahon F R, Williams E J, Price M J, Dove A P. Polym Chem, 2020, 11(8): 1450-1453. doi:10.1039/c9py01920khttp://dx.doi.org/10.1039/c9py01920k
Kricheldorf H R, Kreiser I. Makromol Chem, 1987, 188(8): 1861-1873. doi:10.1002/macp.1987.021880810http://dx.doi.org/10.1002/macp.1987.021880810
0
浏览量
159
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构