浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 先进材料实验室 上海 200438
[ "孙雪梅,女,1986年生. 复旦大学高分子科学系副教授,博士生导师. 2008年毕业于华东理工大学高分子材料与工程专业,获工学学士学位;2013年在复旦大学获得高分子化学与物理专业博士学位;毕业后在复旦大学从事博士后研究. 2015年加入复旦大学高分子科学系和聚合物分子工程国家重点实验室. 2021年获得国家自然科学基金优秀青年基金资助. 主要研究方向是功能高分子复合材料及其在柔性纤维生物电子器件领域的应用." ]
纸质出版日期:2022-07-20,
网络出版日期:2022-06-01,
收稿日期:2022-02-24,
录用日期:2022-04-11
移动端阅览
郭悦,王佳佳,王立媛等.柔性纤维生物电子复合材料与器件[J].高分子学报,2022,53(07):707-721.
Guo Yue,Wang Jia-jia,Wang Li-yuan,et al.Flexible Fiber Bioelectronic Composite Materials and Devices[J].ACTA POLYMERICA SINICA,2022,53(07):707-721.
郭悦,王佳佳,王立媛等.柔性纤维生物电子复合材料与器件[J].高分子学报,2022,53(07):707-721. DOI: 10.11777/j.issn1000-3304.2022.22051.
Guo Yue,Wang Jia-jia,Wang Li-yuan,et al.Flexible Fiber Bioelectronic Composite Materials and Devices[J].ACTA POLYMERICA SINICA,2022,53(07):707-721. DOI: 10.11777/j.issn1000-3304.2022.22051.
可穿戴和可植入的纤维生物电子器件可以实现对人体生理体征的实时监测和精准调控,在健康监测和疾病诊疗等领域发挥了革新作用. 然而,传统的纤维生物电子器件柔性不足而与生物软组织的力学性能不匹配,难以形成稳定的器件/组织界面,最终无法实现长期稳定工作. 本文重点介绍了近年来课题组针对上述问题在柔性纤维生物电子复合材料与器件方面的研究进展. 首先制备了具有杂化结构和芯鞘结构的柔性高分子复合纤维电极,并面向柔性生物电子器件要求,对纤维材料的电学和力学性能及生物安全性进行表征. 进一步,基于所制备的复合纤维电极,发展出一系列可穿戴和可植入的纤维生物电子器件,具有传感、能源、调控等功能,并通过建立稳定的器件/组织界面,实现了在体长期工作,在生物医学研究和智慧医疗等领域展现出良好的应用前景. 最后,展望了柔性纤维生物电子领域的未来发展方向.
Wearable and implantable fiber bioelectronics can continuously collect physiological information and accurately modulate physiological environment
which have revolutionized the conventional way of health monitoring
disease diagnosis and treatment. However
most of the fiber bioelectronics reported so far have insufficient flexibility. They do not match the soft tissues mechanically and cannot form stable device/tissue interface
limiting their long-term use. In this feature article
we mainly introduced our recent progress on flexible fiber bioelectronic composite materials and devices
aiming to solve the problem above. We first introduced the fabrication of flexible polymer composite fibers with hybrid or core-sheath structure
which possess good electrical and mechanical properties as well as biocompatibility. Based on the high-performance flexible polymer composite fibers
a series of fiber bioelectronics with functions of biosensing
energy-harvesting and storage
and electrochemical modulating were constructed for wearable and implantable applications
which showed promising prospects in healthcare and medicine. Finally
we discussed the future development direction of flexible fiber bioelectronics.
高分子复合纤维碳纳米管柔性纤维生物电子器件
Polymer composite fiberCarbon nanotubeFlexibleFiber bioelectronics
Gao W, Ota H, Kiriya D, Takei K, Javey A. Acc Chem Res, 2019, 52(3): 523-533. doi:10.1021/acs.accounts.8b00500http://dx.doi.org/10.1021/acs.accounts.8b00500
Kim J, Campbell A S, de Ávila B E-F, Wang J. Nat Biotechnol, 2019, 37(4): 389-406. doi:10.1038/s41587-019-0045-yhttp://dx.doi.org/10.1038/s41587-019-0045-y
Song E, Li J, Won S M, Bai W, Rogers J A. Nat Mater, 2020, 19(6): 590-603. doi:10.1038/s41563-020-0679-7http://dx.doi.org/10.1038/s41563-020-0679-7
Peng H. Fiber Electronics. Singapore: Springer, 2020. 291-326. doi:10.1007/978-981-15-9945-3_10http://dx.doi.org/10.1007/978-981-15-9945-3_10
Xu X, Xie S, Zhang Y, Peng H. Angew Chem Int Ed, 2019, 58(39): 13643-13653. doi:10.1002/anie.201902425http://dx.doi.org/10.1002/anie.201902425
Feng J, Chen C, Sun X, Peng H. Acc Mater Res, 2021, 2(3): 138-146. doi:10.1021/accountsmr.0c00109http://dx.doi.org/10.1021/accountsmr.0c00109
Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Adv Fiber Mater, 2021, 3(1): 47-58. doi:10.1007/s42765-020-00061-9http://dx.doi.org/10.1007/s42765-020-00061-9
Park S, Loke G, Fink Y, Anikeeva P. Chem Soc Rev, 2019, 48(6): 1826-1852. doi:10.1039/c8cs00710ahttp://dx.doi.org/10.1039/c8cs00710a
Feiner R, Dvir T. Nat Rev Mater, 2017, 3(1): 17076. doi:10.1038/natrevmats.2017.76http://dx.doi.org/10.1038/natrevmats.2017.76
Lacour S P, Courtine G, Guck J. Nat Rev Mater, 2016, 1(10): 16063. doi:10.1038/natrevmats.2016.63http://dx.doi.org/10.1038/natrevmats.2016.63
Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H. Adv Mater, 2018, 30(13): 1704261. doi:10.1002/adma.201704261http://dx.doi.org/10.1002/adma.201704261
Yao S, Zhu Y. Adv Mater, 2015, 27(9): 1480-1511. doi:10.1002/adma.201404446http://dx.doi.org/10.1002/adma.201404446
Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M. Chem Soc Rev, 2012, 41(6): 2323-2343. doi:10.1039/c1cs15188fhttp://dx.doi.org/10.1039/c1cs15188f
Sun X, Sun H, Li H, Peng H. Adv Mater, 2013, 25(37): 5153-5176. doi:10.1002/adma.201301926http://dx.doi.org/10.1002/adma.201301926
Sun X, Chen T, Yang Z, Peng H. Acc Chem Res, 2013, 46(2): 539-549. doi:10.1021/ar300221rhttp://dx.doi.org/10.1021/ar300221r
Sun H, Zhang Y, Zhang J, Sun X, Peng H. Nat Rev Mater, 2017, 2(6): 17023. doi:10.1038/natrevmats.2017.23http://dx.doi.org/10.1038/natrevmats.2017.23
Zhang Jing(张静). Mechanochromic composite fiber with core-sheath structure(具有芯鞘结构的应力变色复合纤维). Master Dissertation of Fudan University(复旦大学硕士学位论文), 2017
Deng J, Xu Y, He S, Chen P, Bao L, Hu Y, Wang B, Sun X, Peng H. Nat Protoc, 2017, 12(7): 1349-1358. doi:10.1038/nprot.2017.038http://dx.doi.org/10.1038/nprot.2017.038
Chen P, Xu Y, He S, Sun X, Pan S, Deng J, Chen D, Peng H. Nat Nanotechnol, 2015, 10(12): 1077-1083. doi:10.1038/nnano.2015.198http://dx.doi.org/10.1038/nnano.2015.198
Sun X, Zhang Z, Lu X, Guan G, Li H, Peng H. Angew Chem Int Ed, 2013, 125(30): 7930-7934. doi:10.1002/ange.201303209http://dx.doi.org/10.1002/ange.201303209
Guo W, Liu C, Sun X, Yang Z, Kia H G, Peng H. J Mater Chem, 2012, 22(3): 903-908. doi:10.1039/c1jm13769ghttp://dx.doi.org/10.1039/c1jm13769g
Peng H, Sun X, Cai F, Chen X, Zhu Y, Liao G, Chen D, Li Q, Lu Y, Zhu Y, Jia Q. Nat Nanotechnol, 2009, 4(11): 738-741. doi:10.1038/nnano.2009.264http://dx.doi.org/10.1038/nnano.2009.264
Sun X, Wang W, Qiu L, Guo W, Yu Y, Peng H. Angew Chem Int Ed, 2012, 124(34): 8648-8652. doi:10.1002/ange.201201975http://dx.doi.org/10.1002/ange.201201975
Cai Z, Li L, Ren J, Qiu L, Lin H, Peng H. J Mater Chem A, 2013, 1(2): 258-261. doi:10.1039/c2ta00274dhttp://dx.doi.org/10.1039/c2ta00274d
Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H. Sci China Mater, 2019, 62(7): 955-964. doi:10.1007/s40843-018-9408-3http://dx.doi.org/10.1007/s40843-018-9408-3
Fang B, Chang D, Xu Z, Gao C. Adv Mater, 2020, 32(5): 1902664. doi:10.1002/adma.201902664http://dx.doi.org/10.1002/adma.201902664
Chen S, Qiu L, Cheng H M. Chem Rev, 2020, 120(5): 2811-2878. doi:10.1021/acs.chemrev.9b00466http://dx.doi.org/10.1021/acs.chemrev.9b00466
Cheng H, Hu C, Zhao Y, Qu L. NPG Asia Mater, 2014, 6(7): e113. doi:10.1038/am.2014.48http://dx.doi.org/10.1038/am.2014.48
Hu X, Rajendran S, Yao Y, Liu Z, Gopalsamy K, Peng L, Gao C. Nano Res, 2016, 9(3): 735-744. doi:10.1007/s12274-015-0952-2http://dx.doi.org/10.1007/s12274-015-0952-2
Yang Z, Deng J, Chen X, Ren J, Peng H. Angew Chem Int Ed, 2013, 125(50): 13695-13699. doi:10.1002/ange.201307619http://dx.doi.org/10.1002/ange.201307619
Sun X, Zhang J, Lu X, Fang X, Peng H. Angew Chem Int Ed, 2015, 127(12): 3701-3705. doi:10.1002/ange.201412475http://dx.doi.org/10.1002/ange.201412475
Lu X, Zhang Z, Sun X, Chen P, Zhang J, Guo H, Shao Z, Peng H. Chem Sci, 2016, 7(8): 5113-5117. doi:10.1039/c6sc00414hhttp://dx.doi.org/10.1039/c6sc00414h
Xu Y, Chen P, Zhang J, Xie S, Wan F, Deng J, Cheng X, Hu Y, Liao M, Wang B, Sun X, Peng H. Angew Chem Int Ed, 2017, 56(42): 12940-12945. doi:10.1002/anie.201706620http://dx.doi.org/10.1002/anie.201706620
Zhang Z, Guo K, Li Y, Li X, Guan G, Li H, Luo Y, Zhao F, Zhang Q, Wei B, Pei Q, Peng H. Nat Photon, 2015, 9(4): 233-238. doi:10.1038/nphoton.2015.37http://dx.doi.org/10.1038/nphoton.2015.37
Chen X, Lin H, Deng J, Zhang Y, Sun X, Chen P, Fang X, Zhang Z, Guan G, Peng H. Adv Mater, 2014, 26(48): 8126-8132. doi:10.1002/adma.201403243http://dx.doi.org/10.1002/adma.201403243
Yang Z, Deng J, Sun X, Li H, Peng H. Adv Mater, 2014, 26(17): 2643-2647. doi:10.1002/adma.201400152http://dx.doi.org/10.1002/adma.201400152
Yang Z, Deng J, Sun H, Ren J, Pan S, Peng H. Adv Mater, 2014, 26(41): 7038-7042. doi:10.1002/adma.201401972http://dx.doi.org/10.1002/adma.201401972
Wu X, Feng J, Deng J, Cui Z, Wang L, Xie S, Chen C, Tang C, Han Z, Yu H, Sun X, Peng H. Sci China Chem, 2020, 63(9): 1281-1288. doi:10.1007/s11426-020-9779-1http://dx.doi.org/10.1007/s11426-020-9779-1
Liu L, Weng W, Dai X, Liu N, Yang J, Liang Y, Ding X. RSC Adv, 2016, 6(110): 108362-108368. doi:10.1039/c6ra24206ehttp://dx.doi.org/10.1039/c6ra24206e
Wang X, Meng S, Ma W, Pionteck J, Gnanaseelan M, Zhou Z, Sun B, Qin Z, Zhu M. React Funct Polym, 2017, 112: 74-80. doi:10.1016/j.reactfunctpolym.2017.01.007http://dx.doi.org/10.1016/j.reactfunctpolym.2017.01.007
Zhang Z, Deng J, Li X, Yang Z, He S, Chen X, Guan G, Ren J, Peng H. Adv Mater, 2015, 27(2): 356-362. doi:10.1002/adma.201404573http://dx.doi.org/10.1002/adma.201404573
Deng J, Zhuang W, Bao L, Wu X, Gao J, Wang B, Sun X, Peng H. Carbon, 2019, 149: 63-70. doi:10.1016/j.carbon.2019.04.019http://dx.doi.org/10.1016/j.carbon.2019.04.019
Deng J, Zhang Y, Zhao Y, Chen P, Cheng X, Peng H. Angew Chem Int Ed, 2015, 54(51): 15419-15423. doi:10.1002/anie.201508293http://dx.doi.org/10.1002/anie.201508293
Sun H, You X, Jiang Y, Guan G, Fang X, Deng J, Chen P, Luo Y, Peng H. Angew Chem Int Ed, 2014, 126(36): 9680-9685. doi:10.1002/ange.201405145http://dx.doi.org/10.1002/ange.201405145
Lu W, Zu M, Byun J H, Kim B S, Chou T W. Adv Mater, 2012, 24(14): 1805-1833. doi:10.1002/adma.201104672http://dx.doi.org/10.1002/adma.201104672
Jacobs C B, Peairs M J, Venton B J. Anal Chim Acta, 2010, 662(2): 105-127. doi:10.1016/j.aca.2010.01.009http://dx.doi.org/10.1016/j.aca.2010.01.009
Vitale F, Summerson S R, Aazhang B, Kemere C, Pasquali M. ACS Nano, 2015, 9(4): 4465-4474. doi:10.1021/acsnano.5b01060http://dx.doi.org/10.1021/acsnano.5b01060
Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Nat Biomed Eng, 2020, 4(2): 159-171. doi:10.1038/s41551-019-0462-8http://dx.doi.org/10.1038/s41551-019-0462-8
Polikov V S, Tresco P A, Reichert W M. J Neurosci Methods, 2005, 148(1): 1-18. doi:10.1016/j.jneumeth.2005.08.015http://dx.doi.org/10.1016/j.jneumeth.2005.08.015
Sharafkhani N, Kouzani A Z, Adams S D, Long J M, Lissorgues G, Rousseau L, Orwa J O. J Neurosci Methods, 2022, 365: 109388. doi:10.1016/j.jneumeth.2021.109388http://dx.doi.org/10.1016/j.jneumeth.2021.109388
Sankar V, Patrick E, Dieme R, Sanchez J C, Prasad A, Nishida T. Front Neuroeng, 2014, 7: 13. doi:10.3389/fneng.2014.00013http://dx.doi.org/10.3389/fneng.2014.00013
Liu Y, Li J, Song S, Kang J, Tsao Y, Chen S, Mottini V, McConnell K, Xu W, Zheng Y Q, Tok J B H, George P M, Bao Z. Nat Biotechnol, 2020, 38(9): 1031-1036. doi:10.1038/s41587-020-0495-2http://dx.doi.org/10.1038/s41587-020-0495-2
Minev I R, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud E M, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres R F, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Vörös J, Micera S, Suo Z, Courtine G, Lacour S P. Science, 2015, 347(6218): 159-163. doi:10.1126/science.1260318http://dx.doi.org/10.1126/science.1260318
Hong G, Lieber C M. Nat Rev Neurosci, 2019, 20(6): 330-345. doi:10.1038/s41583-019-0140-6http://dx.doi.org/10.1038/s41583-019-0140-6
Wu X, Peng H. Sci Bull, 2019, 64(9): 634-640. doi:10.1016/j.scib.2019.04.011http://dx.doi.org/10.1016/j.scib.2019.04.011
Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, Zou L, Gao L, Du M, Li C, Fang Y. Sci Adv, 2019, 5(3): eaav2842. doi:10.1126/sciadv.aav2842http://dx.doi.org/10.1126/sciadv.aav2842
Chen R, Canales A, Anikeeva P. Nat Rev Mater, 2017, 2(2): 16093. doi:10.1038/natrevmats.2016.93http://dx.doi.org/10.1038/natrevmats.2016.93
Hejazi M, Tong W, Ibbotson M R, Prawer S, Garrett D J. Front Neurosci, 2021, 15: 403. doi:10.3389/fnins.2021.658703http://dx.doi.org/10.3389/fnins.2021.658703
Tang C, Xie S, Wang M, Feng J, Han Z, Wu X, Wang L, Chen C, Wang J, Jiang L, Chen P, Sun X, Peng H. J Mater Chem B, 2020, 8(20): 4387-4394. doi:10.1039/d0tb00508hhttp://dx.doi.org/10.1039/d0tb00508h
Spencer K C, Sy J C, Ramadi K B, Graybiel A M, Langer R, Cima M J. Sci Rep, 2017, 7(1): 1952. doi:10.1038/s41598-017-12312-8http://dx.doi.org/10.1038/s41598-017-12312-8
Castagnola E, Maggiolini E, Ceseracciu L, Ciarpella F, Zucchini E, de Faveri S, Fadiga L, Ricci D. Front Neurosci, 2016, 10: 151. doi:10.3389/fnins.2016.00151http://dx.doi.org/10.3389/fnins.2016.00151
Ma Z, Yang Z, Gao Q, Bao G, Valiei A, Yang F, Huo R, Wang C, Song G, Ma D, Gao Z H, Li J. Sci Adv, 2021, 7(15): eabc3012. doi:10.1126/sciadv.abc3012http://dx.doi.org/10.1126/sciadv.abc3012
Deng J, Yuk H, Wu J, Varela C E, Chen X, Roche E T, Guo C F, Zhao X. Nat Mater, 2021, 20(2): 229-236. doi:10.1038/s41563-020-00814-2http://dx.doi.org/10.1038/s41563-020-00814-2
Park S, Yuk H, Zhao R, Yim Y S, Woldeghebriel E W, Kang J, Canales A, Fink Y, Choi G B, Zhao X, Anikeeva P. Nat Commun, 2021, 12(1): 3435. doi:10.1038/s41467-021-23802-9http://dx.doi.org/10.1038/s41467-021-23802-9
Han S H, Park B J, Ahn H S, Kim Y H, Go H J, Lee J B, Park S Y, Song C S, Lee S W, Choi Y K, Choi I S. Viruses, 2020, 12(1): 53. doi:10.3390/v12010053http://dx.doi.org/10.3390/v12010053
Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Proc Natl Acad Sci USA, 2008, 105(5): 1410. doi:10.1073/pnas.0707654105http://dx.doi.org/10.1073/pnas.0707654105
Kostarelos K, Bianco A, Prato M. Nat Nanotechnol, 2009, 4(10): 627-633. doi:10.1038/nnano.2009.241http://dx.doi.org/10.1038/nnano.2009.241
Shieh Y T, Wang W W. Carbon, 2014, 79: 354-362. doi:10.1016/j.carbon.2014.07.077http://dx.doi.org/10.1016/j.carbon.2014.07.077
Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. Carbon, 2007, 45(7): 1419-1424. doi:10.1016/j.carbon.2007.03.035http://dx.doi.org/10.1016/j.carbon.2007.03.035
Salatino J W, Ludwig K A, Kozai T D Y, Purcell E K. Nat Biomed Eng, 2017, 1(11): 862-877. doi:10.1038/s41551-017-0154-1http://dx.doi.org/10.1038/s41551-017-0154-1
Liu Y, Zhao Y, Sun B, Chen C. Acc Chem Res, 2013, 46(3): 702-713. doi:10.1021/ar300028mhttp://dx.doi.org/10.1021/ar300028m
Wang L, Wang L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H. Adv Funct Mater, 2018, 28(42): 1804456. doi:10.1002/adfm.201804456http://dx.doi.org/10.1002/adfm.201804456
Liu L, Zhao F, Liu W, Zhu T, Zhang J Z H, Chen C, Dai Z, Peng H, Huang J L, Hu Q, Bu W, Tian Y. Angew Chem Int Ed, 2017, 56(35): 10471-10475. doi:10.1002/anie.201705615http://dx.doi.org/10.1002/anie.201705615
Manjakkal L, Dervin S, Dahiya R. RSC Adv, 2020, 10(15): 8594-8617. doi:10.1039/d0ra00016ghttp://dx.doi.org/10.1039/d0ra00016g
Xu J, Zhang Z, Gan S, Gao H, Kong H, Song Z, Ge X, Bao Y, Niu L. ACS Sens, 2020, 5(9): 2834-2842. doi:10.1021/acssensors.0c00960http://dx.doi.org/10.1021/acssensors.0c00960
Reid D O, Smith R E, Garcia-Torres J, Watts J F, Crean C. Sensors, 2019, 19(19): 4213. doi:10.3390/s19194213http://dx.doi.org/10.3390/s19194213
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Prog Neurobiol, 2020, 193101802. doi:10.1016/j.pneurobio.2020.101802http://dx.doi.org/10.1016/j.pneurobio.2020.101802
Kumar P, Kumar D, Jha S K, Jha N K, Ambasta R K. Adv Protein Chem Struct Biol, 2016, 103: 97-136. doi:10.1016/bs.apcsb.2015.10.006http://dx.doi.org/10.1016/bs.apcsb.2015.10.006
Zhao L, Jiang Y, Wei H, Jiang Y, Ma W, Zheng W, Cao A M, Mao L. Anal Chem, 2019, 91(7): 4421-4428. doi:10.1021/acs.analchem.8b04944http://dx.doi.org/10.1021/acs.analchem.8b04944
Zhao F, Liu Y, Dong H, Feng S, Shi G, Lin L, Tian Y J A C. Angew Chem Int Ed, 2020, 132(26): 10512-10516. doi:10.1002/ange.202002417http://dx.doi.org/10.1002/ange.202002417
Liu Y, Liu Z, Zhao F, Tian Y. Angew Chem Int Ed, 2021, 60(26): 14429-14437. doi:10.1002/anie.202102833http://dx.doi.org/10.1002/anie.202102833
Napier B S, Matzeu G, Presti M L, Omenetto F G. Adv Mater Technol, 2021: 2101508. doi:10.1002/admt.202101508http://dx.doi.org/10.1002/admt.202101508
Clark J J, Sandberg S G, Wanat M J, Gan J O, Horne E A, Hart A S, Akers C A, Parker J G, Willuhn I, Martinez V, Evans S B, Stella N, Phillips P E M. Nat Methods, 2010, 7(2): 126-129. doi:10.1038/nmeth.1412http://dx.doi.org/10.1038/nmeth.1412
Wang L, Chen J, Wang J, Li H, Chen C, Feng J, Guo Y, Yu H, Sun X, Peng H. Sci China Chem, 2021, 64(10): 1763-1769. doi:10.1007/s11426-021-1039-7http://dx.doi.org/10.1007/s11426-021-1039-7
Lei Y, Butler D, Lucking Michael C, Zhang F, Xia T, Fujisawa K, Granzier-Nakajima T, Cruz-Silva R, Endo M, Terrones H, Terrones M, Ebrahimi A. Sci Adv, 2020, 6(32): eabc4250. doi:10.1126/sciadv.abc4250http://dx.doi.org/10.1126/sciadv.abc4250
Perry M, Li Q, Kennedy R T. Anal Chim Acta, 2009, 653(1): 1-22. doi:10.1016/j.aca.2009.08.038http://dx.doi.org/10.1016/j.aca.2009.08.038
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma P L. Eur J Pharmacol, 2013, 698(1): 6-18. doi:10.1016/j.ejphar.2012.10.032http://dx.doi.org/10.1016/j.ejphar.2012.10.032
Teymourian H, Barfidokht A, Wang J. Chem Soc Rev, 2020, 49(21): 7671-7709. doi:10.1039/d0cs00304bhttp://dx.doi.org/10.1039/d0cs00304b
Xie X, Doloff J C, Yesilyurt V, Sadraei A, McGarrigle J J, Omami M, Veiseh O, Farah S, Isa D, Ghani S, Joshi I, Vegas A, Li J, Wang W, Bader A, Tam H H, Tao J, Chen H J, Yang B, Williamson K A, Oberholzer J, Langer R, Anderson D G. Nat Biomed Eng, 2018, 2(12): 894-906. doi:10.1038/s41551-018-0273-3http://dx.doi.org/10.1038/s41551-018-0273-3
Kovatchev B, Breton M, Clarke W. Methods Enzymol, 2009, 454: 69-86. doi:10.1016/s0076-6879(08)03803-2http://dx.doi.org/10.1016/s0076-6879(08)03803-2
Zhuo X, Zhang P, Barker L, Albright A, Thompson T J, Gregg E. Diabetes Care, 2014, 37(9): 2557-2564. doi:10.2337/dc13-2484http://dx.doi.org/10.2337/dc13-2484
Clar C, Barnard K, Cummins E, Royle P, Waugh N. Health Technol Assess, 2010, 14(12): 1-140. doi:10.3310/hta14120http://dx.doi.org/10.3310/hta14120
Zhao Y, Mei T, Ye L, Li Y, Wang L, Zhang Y, Chen P, Sun X, Wang C, Peng H. J Mater Chem A, 2021, 9(3): 1463-1470. doi:10.1039/d0ta10357hhttp://dx.doi.org/10.1039/d0ta10357h
Mei T, Wang C, Liao M, Li J, Wang L, Tang C, Sun X, Wang B, Peng H. J Mater Chem A, 2021, 9(16): 10104-10109. doi:10.1039/d1ta01507ahttp://dx.doi.org/10.1039/d1ta01507a
Guo Y, Chen C, Feng J, Wang L, Wang J, Tang C, Sun X, Peng H. Small Methods, 2022: 2200142. doi:10.1002/smtd.202200142http://dx.doi.org/10.1002/smtd.202200142
Zhao Y, Chen C, Qiu Y, Mei T, Ye L, Feng H, Zhang Y, Wang L, Guo Y, Sun X, Wu J, Peng H. Adv Fiber Mater, 2021, doi: 10.1007/s42765-021-00099-3http://dx.doi.org/10.1007/s42765-021-00099-3
Park J, Jin K, Sahasrabudhe A, Chiang P H, Maalouf J H, Koehler F, Rosenfeld D, Rao S, Tanaka T, Khudiyev T, Schiffer Z J, Fink Y, Yizhar O, Manthiram K, Anikeeva P. Nat Nanotechnol, 2020, 15(8): 690-697. doi:10.1038/s41565-020-0701-xhttp://dx.doi.org/10.1038/s41565-020-0701-x
Jalili R, Razal J M, Innis P C, Wallace G G. Adv Funct Mater, 2011, 21(17): 3363-3370. doi:10.1002/adfm.201100785http://dx.doi.org/10.1002/adfm.201100785
Zhang J, Seyedin S, Qin S, Lynch P A, Wang Z, Yang W, Wang X, Razal J M. J Mater Chem A, 2019, 7(11): 6401-6410. doi:10.1039/c9ta00022dhttp://dx.doi.org/10.1039/c9ta00022d
Kalidasan V, Yang X, Xiong Z, Li R R, Yao H, Godaba H, Obuobi S, Singh P, Guan X, Tian X, Kurt S A, Li Z, Mukherjee D, Rajarethinam R, Chong C S, Wang J W, Ee P L R, Loke W, Tee B C K, Ouyang J, Charles C J, Ho J S. Nat Biomed Eng, 2021, 5(10): 1217-1227. doi:10.1038/s41551-021-00802-0http://dx.doi.org/10.1038/s41551-021-00802-0
He J, Lu C, Jiang H, Han F, Shi X, Wu J, Wang L, Chen T, Wang J, Zhang Y, Yang H, Zhang G, Sun X, Wang B, Chen P, Wang Y, Xia Y, Peng H. Nature, 2021, 597(7874): 57-63. doi:10.1038/s41586-021-03772-0http://dx.doi.org/10.1038/s41586-021-03772-0
0
浏览量
216
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构