浏览全部资源
扫码关注微信
华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 武汉 430074
[ "彭海炎,男,1984年生. 华中科技大学副教授、博士生导师,国家自然科学基金优秀青年科学基金获得者. 2008年、2014年分别获得华中科技大学学士和博士学位,2012~2014年在美国科罗拉多大学波尔德分校公派联合培养,2015~2016年在中国科学院先进技术研究所和香港城市大学从事科学研究,2016年入职华中科技大学. 主持了国家自然科学基金青年科学基金、面上项目、优秀青年科学基金等项目4项. 曾获中国流变学青年奖(2014年)、湖北省优秀博士学位论文(2015年)、华中科技大学学术新人奖(2019年). 以第一/通讯作者身份在Nat Commun、JACS、Angew Chem Int Ed等期刊发表SCI论文30多篇,获授权中国发明专利20余件、美国发明专利3件,合著《全息高分子材料》,研究成果获国际著名企业关注. 主要从事激光全息高分子材料研究." ]
[ "解孝林,男,1965年生. 华中科技大学教授、博士生导师,兼任国务院学位委员会学科评议组成员、教育部科技委化学化工学部委员、教育部高等学校化工类专业教学指导委员会委员. 1987年,武汉化工学院(现武汉工程大学)化工系本科毕业;1995年,四川联合大学(现四川大学)获工学博士学位;1997年12月浙江大学博士后出站并加盟华中科技大学. 曾赴香港城市大学、香港理工大学进行合作研究,曾为澳大利亚悉尼大学和美国科罗拉多大学波尔德分校访问教授. 发表论文300余篇,获授权发明专利100余件. 2008年获国家杰出青年科学基金,2015年入选科技部重点领域创新团队负责人,2017年入选“万人计划”科技领军人才. 2010年获国家自然科学二等奖(排名第一),2020年获中国石油和化学工业联合会技术发明一等奖(排名第一). 主要从事高分子复合材料、功能材料化学、高分子材料绿色加工与资源利用的研究." ]
纸质出版日期:2022-07-20,
网络出版日期:2022-06-01,
收稿日期:2022-02-25,
录用日期:2022-04-19
移动端阅览
郭红喜,姚铭,赵晔等.全息高分子材料的正交反应设计[J].高分子学报,2022,53(07):722-736.
Guo Hong-xi,Yao Ming,Zhao Ye,et al.Design of Orthogonal Reactions in Holographic Polymer Materials[J].ACTA POLYMERICA SINICA,2022,53(07):722-736.
郭红喜,姚铭,赵晔等.全息高分子材料的正交反应设计[J].高分子学报,2022,53(07):722-736. DOI: 10.11777/j.issn1000-3304.2022.22053.
Guo Hong-xi,Yao Ming,Zhao Ye,et al.Design of Orthogonal Reactions in Holographic Polymer Materials[J].ACTA POLYMERICA SINICA,2022,53(07):722-736. DOI: 10.11777/j.issn1000-3304.2022.22053.
全息高分子材料通常是指基于相干激光技术制备,能够同时存储光波振幅、相位等全部信息的结构有序高分子材料,在裸眼三维显示、增强现实、高端防伪、高密度数据存储等高新技术领域具有重要应用价值. 高性能化与多功能化是全息高分子材料的发展方向,正交反应设计提供了有效途径. 本文简要介绍正交反应的概念、设计原理及在高分子材料先进制造中的应用,重点论述正交反应设计对于优化全息高分子材料加工工艺、提高折射率调制度和光栅衍射效率、降低雾度、抑制聚合反应引起的体积收缩、增加全息数据存储容量及构筑全息/发光双重图像功能新材料的重要性. 为获得高性能多功能全息高分子材料,亟需发展更加丰富的正交反应体系.
Holographic polymer materials usually refer to structurally ordered polymer materials
which can store the whole information of light including the amplitude and phase upon laser interference. They have exhibited transformative potential for high-tech applications such as naked-eye recognizable three-dimensional display
augmented reality
high-security level anticounterfeiting and high-density data storage. With the development of these high-tech fields
it is highly desired to boost the performance and functionalities of holographic polymer materials. Toward this end
mediating reaction orthogonality can be an effective approach. Starting from the concept and design principle of orthogonal reactions
in this minireview
recent progresses of advanced manufacturing based on orthogonal reactions are highlighted. Furthermore
the significance of orthogonal reactions in holographic polymer materials are discussed in detail
for instances
to optimize material processing
to increase the refractive index modulation and grating diffraction efficiency
to decrease haze
to reduce volumetric shrinkage during polymerization
to increase the data storage capacity
and to non-interferingly integrate holographic and emissive dual images. Yet
new orthogonal reaction systems are still highly awaited to design high performance and multifunctional holographic polymer materials.
全息光聚合物正交反应先进制造
HolographyPhotopolymerOrthogonal reactionsAdvanced manufacturing
Xie Xiaolin(解孝林), Peng Haiyan(彭海炎), Ni Mingli(倪名立). Holographic Polymer Materials(全息高分子材料). Beijing(北京): Science Press(科学出版社), 2020. 16-20
Wang Dan(王丹), Peng Haiyan(彭海炎), Zhou Xingping(周兴平), Xie Xiaolin(解孝林). Chin J Appl Chem(应用化学), 2021, 38(10): 1268-1298. doi:10.19894/j.issn.1000-0518.210385http://dx.doi.org/10.19894/j.issn.1000-0518.210385
Wang Yixuan(王艺璇), Hao Xingtian(郝兴天), Peng Haiyan(彭海炎), Zhou Xingping(周兴平), Xie Xiaolin(解孝林). Chin Sci Bull(科学通报), 2022, 67: doi 10.1360/TB2021-1116. doi:10.1360/tb-2021-1116http://dx.doi.org/10.1360/tb-2021-1116
An J, Won K, Kim Y, Hong J Y, Kim H, Kim Y, Song H, Choi C, Kim Y, Seo J, Morozov A, Park H, Hong S, Hwang S, Kim K, Lee H S. Nat Commun, 2020, 11(1): 5568-5574. doi:10.1038/s41467-020-19298-4http://dx.doi.org/10.1038/s41467-020-19298-4
Chen J S, Chu D. Appl Opt, 2016, 55(3): 127-134. doi:10.1364/ao.55.00a127http://dx.doi.org/10.1364/ao.55.00a127
Blanche P A, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh W Y, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. Nature, 2010, 468(7320): 80-83. doi:10.1038/nature09521http://dx.doi.org/10.1038/nature09521
Tay S, Blanche P A, Voorakaranam R, Tunç A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. Nature, 2008, 451(7179): 694-698. doi:10.1038/nature06596http://dx.doi.org/10.1038/nature06596
Xiong J, Hsiang E L, He Z, Zhan T, Wu S T. Light: Sci Appl, 2021, 10(1): 216. doi:10.1038/s41377-021-00658-8http://dx.doi.org/10.1038/s41377-021-00658-8
Xiong J, Yin K, Li K, Wu S T. Adv Photonics Res, 2021, 2(1): 2000049. doi:10.1002/adpr.202000049http://dx.doi.org/10.1002/adpr.202000049
Chang C, Bang K, Wetzstein G, Lee B, Gao L. Optica, 2020, 7(11): 1563-1578. doi:10.1364/optica.406004http://dx.doi.org/10.1364/optica.406004
Jonathan D W, Shibu A, Milan M P. Proc SPIE, 2020, 11367: 113670O
Jonathan D W, Alastair J G, Milan M P. Proc SPIE, 2018, 10676: 106760G
Hu Y, Mavila S, Podgórski M, Kowalski J E, McLeod R R, Bowman C N. Macromolecules, 2022, 55(5): 1822-1833. doi:10.1021/acs.macromol.1c02528http://dx.doi.org/10.1021/acs.macromol.1c02528
Zhao Y, Zhao X Y, Li M D, Li Z A, Peng H Y, Xie X L. Angew Chem Int Ed, 2020, 59(25): 10066-10072. doi:10.1002/anie.201915053http://dx.doi.org/10.1002/anie.201915053
Hu Y X, Hao X T, Xu L, Xie X L, Xiong B J, Hu Z B, Sun H T, Yin G Q, Li X P, Peng H Y, Yang H B. J Am Chem Soc, 2020, 142(13): 6285-6294. doi:10.1021/jacs.0c00698http://dx.doi.org/10.1021/jacs.0c00698
Ni M L, Luo W, Wang D, Zhang Y, Peng H Y, Zhou X P, Xie X L. ACS Appl Mater Interfaces, 2021, 13(16): 19159-19167. doi:10.1021/acsami.1c02561http://dx.doi.org/10.1021/acsami.1c02561
Zhao Y, Peng H Y, Zhou X Y, Li Z A, Xie X L. Adv Sci, 2022, 9: 2105903. doi:10.1002/advs.202105903http://dx.doi.org/10.1002/advs.202105903
Hardwick B, Jackson W, Wilson G, Mau A W H. Adv Mater, 2001, 13(12-13): 980-984. doi:10.1002/1521-4095(200107)13:12/13<980::aid-adma980>3.0.co;2-fhttp://dx.doi.org/10.1002/1521-4095(200107)13:12/13<980::aid-adma980>3.0.co;2-f
Prime E L, Solomon D H. Angew Chem Int Ed, 2010, 49(22): 3726-3736. doi:10.1002/anie.200904538http://dx.doi.org/10.1002/anie.200904538
Lin X, Liu J, Hao J, Wang K, Zhang Y, Li H, Horimai H, Tan X. Opto-Electron Adv, 2020, 3(3): 190004. doi:10.29026/oea.2020.190004http://dx.doi.org/10.29026/oea.2020.190004
Bruder F K, Hagen R, Rolle T, Weiser M S, Facke T. Angew Chem Int Ed, 2011, 50(20): 4552-4573. doi:10.1002/anie.201002085http://dx.doi.org/10.1002/anie.201002085
Dhar L, Curtis K, Fäcke T. Nat Photonics, 2008, 2(7): 403-405. doi:10.1038/nphoton.2008.120http://dx.doi.org/10.1038/nphoton.2008.120
Graham-Rowe D. Nat Photonics, 2007, 1(4): 197-200. doi:10.1038/nphoton.2007.36http://dx.doi.org/10.1038/nphoton.2007.36
Hu P, Chen Y, Li J, Wang J, Liu J, Wu T, Tan X. Compos Sci Technol, 2022: 109335. doi:10.1016/j.compscitech.2022.109335http://dx.doi.org/10.1016/j.compscitech.2022.109335
Chen Y, Hu P, Huang Z, Wang J, Song H, Chen X, Lin X, Wu T, Tan X. ACS Appl Mater Interfaces, 2021, 13(23): 27500-27512. doi:10.1021/acsami.1c07390http://dx.doi.org/10.1021/acsami.1c07390
Hesselink L, Orlov S S, Bashaw M C. Proc IEEE, 2004, 92(8): 1231-1280. doi:10.1109/jproc.2004.831212http://dx.doi.org/10.1109/jproc.2004.831212
Hao J, Ren Y, Zhang Y, Wang K, Li H, Tan X, Lin X. Opt Rev, 2020, 27(5): 419-426. doi:10.1007/s10043-020-00611-xhttp://dx.doi.org/10.1007/s10043-020-00611-x
Yetisen A K, Naydenova I, Vasconcellos F d C, Blyth J, Lower C R. Chem Rev, 2014, 114(20): 10654-10696. doi:10.1021/cr500116ahttp://dx.doi.org/10.1021/cr500116a
Yetisen A K, Butt H, Yun S H. ACS Sensors, 2016, 1(5): 493-497. doi:10.1021/acssensors.6b00108http://dx.doi.org/10.1021/acssensors.6b00108
Jiang N, Davies S, Jiao Y, Blyth J, Butt H, Montelongo Y, Yetisen A K. ACS Sensors, 2021, 6(3): 915-924. doi:10.1021/acssensors.0c02109http://dx.doi.org/10.1021/acssensors.0c02109
Davies S, Hu Y, Jiang N, Blyth J, Kaminska M, Liu Y, Yetisen A K. Adv Funct Mater, 2021, 31(47). doi:10.1002/adfm.202105645http://dx.doi.org/10.1002/adfm.202105645
Ni Mingli(倪名立), Peng Haiyan(彭海炎), Xie Xiaolin(解孝林). Acta Polymerica Sinica(高分子学报), 2017, (10): 1557-1573. doi:10.11777/j.issn1000-3304.2017.17120http://dx.doi.org/10.11777/j.issn1000-3304.2017.17120
Ozaki M, Kato J I, Kawata S. Science, 2011, 332(6026): 218-220. doi:10.1126/science.1201045http://dx.doi.org/10.1126/science.1201045
Close D H, Jacobson A D, Margerum J D, Brault R G, McClung F J. Appl Phys Lett, 1969, 14(5): 159-160. doi:10.1063/1.1652756http://dx.doi.org/10.1063/1.1652756
David J, Friedrich-Karl B, Francois D, Thomas F, Rainer H, Dennis H, Thomas R, Marc-Stephan W, Andy V. Proc SPIE, 2009, 7233: 149-158
Friedrich-Karl B, Thomas F, Fabian G, Rainer H, Dennis H, Eberhard K, Christian R, Günther W, Brita W. Proc SPIE, 2017, 10127: 101270A
William J G, Jr., Andrew M W, Trout T J. Proc SPIE, 1994, 2043: 2-13
Sadlej N, Smolinska B. Opt Laser Technol, 1975, 7(4): 175-179. doi:10.1016/0030-3992(75)90056-0http://dx.doi.org/10.1016/0030-3992(75)90056-0
Calixto S. Appl Opt, 1987, 26(18): 3904-3910. doi:10.1364/ao.26.003904http://dx.doi.org/10.1364/ao.26.003904
Trentler T J, Boyd J E, Colvin V L. Chem Mater, 2000, 12(5): 1431-1438. doi:10.1021/cm9908062http://dx.doi.org/10.1021/cm9908062
Kowalski B A, McLeod R R. J Polym Sci, Part B: Polym Phys, 2016, 54(11): 1021-1035. doi:10.1002/polb.24011http://dx.doi.org/10.1002/polb.24011
Cheben P, Calvo M L. Appl Phys Lett, 2001, 78(11): 1490-1492. doi:10.1063/1.1354665http://dx.doi.org/10.1063/1.1354665
Khan A, Daugaard A E, Bayles A, Koga S, Miki Y, Sato K, Enda J, Hvilsted S, Stucky G D, Hawker C J. Chem Commun, 2009, (4): 425-427. doi:10.1039/b816298khttp://dx.doi.org/10.1039/b816298k
Peng H Y, Nair D P, Kowalski B A, Xi W X, Gong T, Wang C, Cole M, Cramer N B, Xie X L, McLeod R R, Bowman C N. Macromolecules, 2014, 47(7): 2306-2315. doi:10.1021/ma500167xhttp://dx.doi.org/10.1021/ma500167x
Choi K, Chon J W M, Gu M, Malic N, Evans R A. Adv Funct Mater, 2009, 19(22): 3560-3566. doi:10.1002/adfm.200900437http://dx.doi.org/10.1002/adfm.200900437
Corrigan N, Ciftci M, Jung K, Boyer C. Angew Chem Int Ed, 2021, 60(4): 1748-1781. doi:10.1002/anie.201912001http://dx.doi.org/10.1002/anie.201912001
Teator A J, Lastovickova D N, Bielawski C W. Chem Rev, 2016, 116(4): 1969-1992. doi:10.1021/acs.chemrev.5b00426http://dx.doi.org/10.1021/acs.chemrev.5b00426
Leibfarth F A, Mattson K M, Fors B P, Collins H A, Hawker C J. Angew Chem Int Ed, 2013, 52(1): 199-210. doi:10.1002/anie.201206476http://dx.doi.org/10.1002/anie.201206476
Merrifield R B. Angew Chem Int Ed, 1985, 24(10): 799-810. doi:10.1002/anie.198507993http://dx.doi.org/10.1002/anie.198507993
Carmean R N, Figg C A, Becker T E, Sumerlin B S. Angew Chem Int Ed, 2016, 55(30): 8624-8629. doi:10.1002/anie.201603129http://dx.doi.org/10.1002/anie.201603129
Fairbanks B D, Macdougall L J, Mavila S, Sinha J, Kirkpatrick B E, Anseth K S, Bowman C N. Chem Rev, 2021, 121(12): 6915-6990. doi:10.1021/acs.chemrev.0c01212http://dx.doi.org/10.1021/acs.chemrev.0c01212
Hoekstra D C, van der Lubbe B P A C, Bus T, Yang L, Grossiord N, Debije M G, Schenning A P H J. Angew Chem Int Ed, 2021, 60(19): 10935-10941. doi:10.1002/anie.202101322http://dx.doi.org/10.1002/anie.202101322
Irshadeen I M, Walden S L, Wegener M, Truong V X, Frisch H, Blinco J P, Barner-Kowollik C. J Am Chem Soc, 2021, 143(50): 21113-21126. doi:10.1021/jacs.1c09419http://dx.doi.org/10.1021/jacs.1c09419
Bialas S, Michalek L, Marschner D E, Krappitz T, Wegener M, Blinco J, Blasco E, Frisch H, Barner-Kowollik C. Adv Mater, 2019, 31(8): 1807288. doi:10.1002/adma.201807288http://dx.doi.org/10.1002/adma.201807288
Gauthier M A, Gibson M I, Klok H A. Angew Chem Int Ed, 2009, 48(1): 48-58. doi:10.1002/anie.200801951http://dx.doi.org/10.1002/anie.200801951
Liu S, Dicker K T, Jia X. Chem Commun, 2015, 51(25): 5218-5237. doi:10.1039/c4cc09568ehttp://dx.doi.org/10.1039/c4cc09568e
Dolinski N D, Page Z A, Callaway E B, Eisenreich F, Garcia R V, Chavez R, Bothman D P, Hecht S, Zok F W, Hawker C J. Adv Mater, 2018, 30(31): 1800364. doi:10.1002/adma.201800364http://dx.doi.org/10.1002/adma.201800364
Barany G, Merrifield R B. J Am Chem Soc, 1977, 99(22): 7363-7365. doi:10.1021/ja00464a050http://dx.doi.org/10.1021/ja00464a050
Barany G, Albericio F. J Am Chem Soc, 1985, 107(17): 4936-4942. doi:10.1021/ja00303a019http://dx.doi.org/10.1021/ja00303a019
Reuther J F, Dahlhauser S D, Anslyn E V. Angew Chem Int Ed, 2019, 58(1): 74-85. doi:10.1002/anie.201808371http://dx.doi.org/10.1002/anie.201808371
Hu Y, Schomaker J M. ChemBioChem, 2021, 22(23): 3254-3262. doi:10.1002/cbic.202100164http://dx.doi.org/10.1002/cbic.202100164
Hansen M J, Velema W A, Lerch M M, Szymanski W, Feringa B L. Chem Soc Rev, 2015, 44(11): 3358-3377. doi:10.1039/c5cs00118hhttp://dx.doi.org/10.1039/c5cs00118h
Xia T, SantaLucia J, Burkard M E, Kierzek R, Schroeder S J, Jiao X, Cox C, Turner D H. Biochemistry, 1998, 37(42): 14719-14735. doi:10.1021/bi9809425http://dx.doi.org/10.1021/bi9809425
Zhang L, Meggers E. J Am Chem Soc, 2005, 127(1): 74-75. doi:10.1021/ja043904jhttp://dx.doi.org/10.1021/ja043904j
Chen Z, Boyken S E, Jia M, Busch F, Flores-Solis D, Bick M J, Lu P, VanAernum Z L, Sahasrabuddhe A, Langan R A, Bermeo S, Brunette T J, Mulligan V K, Carter L P, DiMaio F, Sgourakis N G, Wysocki V H, Baker D. Nature, 2019, 565(7737): 106-111. doi:10.1038/s41586-018-0802-yhttp://dx.doi.org/10.1038/s41586-018-0802-y
Lundeen J S, Sutherland B, Patel A, Stewart C, Bamber C. Nature, 2011, 474(7350): 188-191. doi:10.1038/nature10120http://dx.doi.org/10.1038/nature10120
Krappitz T, Feist F, Lamparth I, Moszner N, John H, Blinco J P, Dargaville T R, Barner-Kowollik C. Mater Horiz, 2019, 6(1): 81-89. doi:10.1039/c8mh00951ahttp://dx.doi.org/10.1039/c8mh00951a
Marschner D E, Frisch H, Offenloch J T, Tuten B T, Becer C R, Walther A, Goldmann A S, Tzvetkova P, Barner-Kowollik C. Macromolecules, 2018, 51(10): 3802-3807. doi:10.1021/acs.macromol.8b00613http://dx.doi.org/10.1021/acs.macromol.8b00613
del Monte F, Martínez O, Rodrigo J A, Calvo M L, Cheben P. Adv Mater, 2006, 18(15): 2014-2017. doi:10.1002/adma.200502675http://dx.doi.org/10.1002/adma.200502675
Kawabata M, Sato A, Sumiyoshi I, Kubota T J A O. Appl Opt, 1994, 33(11): 2152-2156. doi:10.1364/ao.33.002152http://dx.doi.org/10.1364/ao.33.002152
Friedrich-Karl B, Johannes F, Sven H, Alexander L, Christel M, Richard M, Jack M, Lena P, Igor P, Thomas R. Proc SPIE, 2021, 11710: 1171003
Alim M D, Glugla D J, Mavila S, Wang C, Nystrom P D, Sullivan A C, McLeod R R, Bowman C N. ACS Appl Mater Interfaces, 2018, 10(1): 1217-1224. doi:10.1021/acsami.7b15063http://dx.doi.org/10.1021/acsami.7b15063
Hu Y, Kowalski B A, Mavila S, Podgórski M, Sinha J, Sullivan A C, McLeod R R, Bowman C N. ACS Appl Mater Interfaces, 2020, 12(39): 44103-44109. doi:10.1021/acsami.0c08872http://dx.doi.org/10.1021/acsami.0c08872
Peng H Y, Wang C, Xi W X, Kowalski B A, Gong T, Xie X L, Wang W T, Nair D P, McLeod R R, Bowman C N. Chem Mater, 2014, 26(23): 6819-6826. doi:10.1021/cm5034436http://dx.doi.org/10.1021/cm5034436
Liu J, Lam J W Y, Jim C K W, Ng J C Y, Shi J, Su H, Yeung K F, Hong Y, Faisal M, Yu Y, Wong K S, Tang B Z. Macromolecules, 2011, 44(1): 68-79. doi:10.1021/ma1023473http://dx.doi.org/10.1021/ma1023473
Soars S M, Bongiardina N J, Fairbanks B D, Podgórski M, Bowman C N. Macromolecules, 2022, 55(5): 1811-1821. doi:10.1021/acs.macromol.1c02464http://dx.doi.org/10.1021/acs.macromol.1c02464
Mavila S, Sinha J, Hu Y, Podgórski M, Shah P K, Bowman C N. ACS Appl Mater Interfaces, 2021, 13(13): 15647-15658. doi:10.1021/acsami.1c00831http://dx.doi.org/10.1021/acsami.1c00831
Hoyle C E, Bowman C N. Angew Chem Int Ed, 2010, 49(9): 1540-1573. doi:10.1002/anie.200903924http://dx.doi.org/10.1002/anie.200903924
Jin Jiake(金佳科), Chen Xiujuan(陈秀娟), Liu Yi(刘一), Qin Anjun(秦安军), Sun Jingzhi(孙景志), Tang Benzhong(唐本忠). Acta Polymerica Sinica(高分子学报), 2011, (9): 1079-1085. doi:10.3724/sp.j.1105.2011.11116http://dx.doi.org/10.3724/sp.j.1105.2011.11116
Hu Rong(胡蓉), Xin Dehua(辛德华), Qin Anjun(秦安军), Tang Benzhong(唐本忠). Acta Polymerica Sinica(高分子学报), 2018, (2): 132-144. doi:10.11777/j.issn1000-3304.2018.17280http://dx.doi.org/10.11777/j.issn1000-3304.2018.17280
Liu Shunjie(刘顺杰), Tang Benzhong(唐本忠). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 456-466. doi:10.11777/j.issn1000-3304.2021.21013http://dx.doi.org/10.11777/j.issn1000-3304.2021.21013
0
浏览量
200
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构