浏览全部资源
扫码关注微信
厦门大学材料学院 福建省防火阻燃材料重点实验室 厦门 361005
[ "袁丛辉,男,1983年生. 厦门大学材料学院教授. 2006和2009年毕业于华侨大学材料科学与工程学院,分别获学士和硕士学位;2013年毕业于厦门大学材料学院,获博士学位,师从戴李宗教授;2011~2012年美国马萨诸塞州立大学(阿默斯特)化学系联合培养博士研究生,师从S. Thayumanavan教授. 2020年获福建省自然科学基金杰青项目资助,2021年获国家自然科学基金优秀青年科学基金资助. 主要从事智能高分子、固体表面聚合物程控黏附领域的研究,包括刺激-响应水凝胶、聚合物-无机杂化材料、智能/软体机器人等." ]
lzdai@xmu.edu.cn
纸质出版日期:2022-07-20,
网络出版日期:2022-06-06,
收稿日期:2022-02-28,
录用日期:2022-04-06
移动端阅览
武彤,何柳,郑丹丹等.动态硼酸酯键管控邻苯二酚基团与功能黏附性高分子设计[J].高分子学报,2022,53(07):796-811.
Wu Tong,He Liu,Zheng Dan-dan,et al.Dynamic Boronate Ester Bond Manipulating Catechol Groups for the Design of Functional Adhesive Polymers[J].ACTA POLYMERICA SINICA,2022,53(07):796-811.
武彤,何柳,郑丹丹等.动态硼酸酯键管控邻苯二酚基团与功能黏附性高分子设计[J].高分子学报,2022,53(07):796-811. DOI: 10.11777/j.issn1000-3304.2022.22061.
Wu Tong,He Liu,Zheng Dan-dan,et al.Dynamic Boronate Ester Bond Manipulating Catechol Groups for the Design of Functional Adhesive Polymers[J].ACTA POLYMERICA SINICA,2022,53(07):796-811. DOI: 10.11777/j.issn1000-3304.2022.22061.
“黏附”是一种普遍存在的多尺度相互作用,其实质是界面处化学键、氢键或范德华力等的形成. 近年来,在贻贝仿生的基础上将黏性因子邻苯二酚基团嵌入到动态硼酸酯聚合物中,成为了功能黏附性高分子的重要发展方向. 本专论从分子黏附、微/纳表面黏附和宏观表面黏附3个尺度,介绍硼酸酯键管控邻苯二酚基团在高分子材料功能化方面的研究进展. 分子黏附,主要讨论硼酸酯聚合物中邻苯二酚基团与分子或离子相互作用规律及其对材料形貌和刺激响应性能的调控;微/纳表面黏附,论述硼酸酯聚合物体系超分子驱动力和组装机制,介绍其在微/纳材料功能化改性方面的研究进展;宏观表面黏附,讨论硼酸酯键管控邻苯二酚基团与黏附性能调控的关联规律,介绍硼酸酯聚合物功能黏附材料在宏观组装、攀爬机器人领域的应用. 最后,从新型硼酸酯聚合物设计、动态键精准管控和器件化应用的角度,对该领域未来前景和发展趋势做出了展望.
"Adhesion" is essentially the formation of chemical bonds
hydrogen bonds or van der Waals forces at the interface
which is considered as a universal multi-scale interaction. In recent years
on the basis of mussel biomimetic
incorporation of catechol groups into the dynamic boronate ester polymers
has become an important developing direction of functional polymer adhesives. This feature article focuses on the molecular adhesion
micro/nano surface adhesion and macroscopic surface adhesion
as well as introduces the research progress in the functionalization of polymer materials related to the manipulation of catechol groups by using boronate ester bonds. For molecular adhesion
the interaction between catechol groups and guest molecules or ions in the boronate ester polymers
and the corresponding material morphology control and stimuli-responsive behavior are discussed. For micro/nano surface adhesion
the supramolecular driving forces and self-assembly mechanism of boronate ester polymers are analyzed
and the related application in the modification of micro/nano materials is introduced. For macroscopic surface adhesion
the relationship between the manipulation of catechol groups by using boronate ester bonds and the control of adhesion performance is discussed
and the application of boronate ester polymer adhesives in the field of macro-assembly and climbing robot is introduced. Finally
the future and development trend of this field are prospected from the perspective of new boronate ester polymers
precise control over dynamic bonds
and device design and applications.
硼酸酯聚合物邻苯二酚基聚合物贻贝仿生表界面调控智能高分子
Boronate ester polymerCatechol-based polymerMussel-inspired bionicsSurface and interface controlIntelligent polymer
Bravo L. Nutr Rev, 1998, 56(11): 317-333. doi:10.1111/j.1753-4887.1998.tb01670.xhttp://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x
Leri M, Scuto M, Ontario M L, Calabrese V, Calabrese E J, Bucciantini M, Stefani M. Int J Mol Sci, 2020, 21(4): 1250. doi:10.3390/ijms21041250http://dx.doi.org/10.3390/ijms21041250
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Adv Mater, 2013, 25(5): 653-701. doi:10.1002/adma.201202343http://dx.doi.org/10.1002/adma.201202343
Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C. Prog Polym Sci, 2013, 38(1): 236-270. doi:10.1016/j.progpolymsci.2012.06.004http://dx.doi.org/10.1016/j.progpolymsci.2012.06.004
Zhang W, Wang R, Sun Z, Zhu X, Zhao Q, Zhang T, Cholewinski A, Yang F, Zhao B, Pinnaratip R, Forooshani P K, Lee B P. Chem Soc Rev, 2020, 49(2): 433-464. doi:10.1039/c9cs00285ehttp://dx.doi.org/10.1039/c9cs00285e
Waite J H, Tanzer M L. Science, 1981, 212(4498): 1038-1040. doi:10.1126/science.212.4498.1038http://dx.doi.org/10.1126/science.212.4498.1038
Benedict C V, Waite J H J. J Morphol, 1986, 189(2): 171-181. doi:10.1002/jmor.1051890207http://dx.doi.org/10.1002/jmor.1051890207
Lee B P, Messersmith P B, Israelachvili J N, Waite J H. Annu Rev Mater Res, 2011, 41: 99-132. doi:10.1146/annurev-matsci-062910-100429http://dx.doi.org/10.1146/annurev-matsci-062910-100429
Patil N, Jérôme C, Detrembleur C. Prog Polym Sci, 2018, 82: 34-91. doi:10.1016/j.progpolymsci.2018.04.002http://dx.doi.org/10.1016/j.progpolymsci.2018.04.002
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426-430. doi:10.1126/science.1147241http://dx.doi.org/10.1126/science.1147241
Lin Q, Gourdon D, Sun C, Holten-Andersen N, Anderson T H, Waite J H, Israelachvili J N. Proc Natl Acad Sci USA, 2007, 104(10): 3782-3786. doi:10.1073/pnas.0607852104http://dx.doi.org/10.1073/pnas.0607852104
Lee H, Scherer N F, Messersmith P B. Proc Natl Acad Sci USA, 2006, 103(35): 12999-13003. doi:10.1073/pnas.0605552103http://dx.doi.org/10.1073/pnas.0605552103
Ahn B K. J Am Chem Soc, 2017, 139(30): 10166-10171. doi:10.1021/jacs.6b13149http://dx.doi.org/10.1021/jacs.6b13149
Kubo Y, Nishiyabu R, James T D. Chem Commun, 2015, 51(11): 2005-2020. doi:10.1039/c4cc07712ahttp://dx.doi.org/10.1039/c4cc07712a
Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Chem Soc Rev, 2020, 49(11): 3605-3637. doi:10.1039/c9cs00849ghttp://dx.doi.org/10.1039/c9cs00849g
Dai Q, Geng H, Yu Q, Hao J, Cui J. Theranostics, 2019, 9(11): 3170-3190. doi:10.7150/thno.31847http://dx.doi.org/10.7150/thno.31847
Wang H, Wang C, Zou Y, Hu J, Li Y, Cheng Y. Giant, 2020, 3: 100022. doi:10.1016/j.giant.2020.100022http://dx.doi.org/10.1016/j.giant.2020.100022
Lee H, Lee B P, Messersmith P B. Nature, 2007, 448: 338-341. doi:10.1038/nature05968http://dx.doi.org/10.1038/nature05968
Ye Q, Zhou F, Liu W. Chem Soc Rev, 2011, 40(7): 4244-4258. doi:10.1039/c1cs15026jhttp://dx.doi.org/10.1039/c1cs15026j
Ran Y, Liu Y, Sun H, Zhang H, Dong H, Yang Y, Zhao N, Xu J. Appl Surf Sci, 2021, 565: 150566. doi:10.1016/j.apsusc.2021.150566http://dx.doi.org/10.1016/j.apsusc.2021.150566
White J D, Wilker J J. Macromolecules, 2011, 44(13): 5085-5088. doi:10.1021/ma201044xhttp://dx.doi.org/10.1021/ma201044x
Jiménez N, Ruipérez F, González de San Román E, Asua J M, Ballard N. Macromolecules, 2022, 55(1): 49-64. doi:10.1021/acs.macromol.1c02103http://dx.doi.org/10.1021/acs.macromol.1c02103
Yu J, Wei W, Danner E, Ashley R K, Israelachvili J N, Waite J H. Nat Chem Biol, 2011, 7: 588-590. doi:10.1038/nchembio.630http://dx.doi.org/10.1038/nchembio.630
Liu Y, Ai K, Lu L. Chem Rev, 2014, 114(9): 5057-5115. doi:10.1021/cr400407ahttp://dx.doi.org/10.1021/cr400407a
Bull S D, Davidson M G, van den Elsen J M H, Fossey J S, Jenkins A T A, Jiang Y B, Kubo Y, Marken F, Sakurai K, Zhao J, James T D. Acc Chem Res, 2013, 46(2): 312-326. doi:10.1021/ar300130whttp://dx.doi.org/10.1021/ar300130w
Brooks W L A, Sumerlin B S. Chem Rev, 2016, 116(3): 1375-1397. doi:10.1021/acs.chemrev.5b00300http://dx.doi.org/10.1021/acs.chemrev.5b00300
He Liu(何柳), Wei Wenkang(魏文康), Luo Yu(罗雨), Xu Yiting(许一婷), Zeng Birong(曾碧榕), Luo Weiang(罗伟昂), Chen Guorong(陈国荣), Yuan Conghui(袁丛辉), Dai Lizong(戴李宗). Chinese Science Bulletin(科学通报), 2021, 66(10): 1208-1219. doi:10.1360/tb-2020-1328http://dx.doi.org/10.1360/tb-2020-1328
Lorand J P, Edwards J O. J Org Chem, 1959, 24(6): 769-774. doi:10.1021/jo01088a011http://dx.doi.org/10.1021/jo01088a011
Springsteen G, Wang B. Tetrahedron, 2002, 58(26): 5291-5300. doi:10.1016/s0040-4020(02)00489-1http://dx.doi.org/10.1016/s0040-4020(02)00489-1
Yan J, Springsteen G, Deeter S, Wang B. Tetrahedron, 2004, 60(49): 11205-11209. doi:10.1016/j.tet.2004.08.051http://dx.doi.org/10.1016/j.tet.2004.08.051
Yuan C, Chang Y, Mao J, Yu S, Luo W, Xu Y, Thayumanavan S, Dai L. J Mater Chem B, 2015, 3(14): 2858-2866. doi:10.1039/c4tb01880jhttp://dx.doi.org/10.1039/c4tb01880j
Yuan C, Hong B, Chang Y, Mao J, Li Y, Xu Y, Zeng B, Luo W, Gérard J F, Dai L. ACS Appl Mater Interfaces, 2017, 9(17): 14700-14708. doi:10.1021/acsami.7b02252http://dx.doi.org/10.1021/acsami.7b02252
Wu X, Li Z, Chen X X, Fossey J S, James T D, Jiang Y B. Chem Soc Rev, 2013, 42(20): 8032-8048. doi:10.1039/c3cs60148jhttp://dx.doi.org/10.1039/c3cs60148j
Ma R, Shi L. Polym Chem, 2014, 5(5): 1503-1518. doi:10.1039/c3py01202fhttp://dx.doi.org/10.1039/c3py01202f
Yang Bohan(杨伯涵), Zhao Waiou(赵外鸥), Li Caijin(李采金), Li Yapeng(李亚鹏), Wang Jingyuan(王静媛). Acta Polymerica Sinica(高分子学报), 2014, (5): 636-642. doi:10.3724/SP.J.1105.2014.13336http://dx.doi.org/10.3724/SP.J.1105.2014.13336
Côté A P, Benin A I, Ockwig N W, OʹKeeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166-1170 doi:10.1126/science.1120411http://dx.doi.org/10.1126/science.1120411
Li L, Yuan C, Dai L, Thayumanavan S. Macromolecules, 2014, 47(17): 5869-5876. doi:10.1021/ma5015808http://dx.doi.org/10.1021/ma5015808
Iwasawa N, Takahagi H. J Am Chem Soc, 2007, 129(25): 7754-7755. doi:10.1021/ja072319qhttp://dx.doi.org/10.1021/ja072319q
Liu C, Shen W, Li B, Li T, Chang H, Cheng Y. Chem Mater, 2019, 31(6): 1956-1965. doi:10.1021/acs.chemmater.8b04672http://dx.doi.org/10.1021/acs.chemmater.8b04672
Yuan C, Wu T, Mao J, Chen T, Li Y, Li M, Xu Y, Zeng B, Luo W, Yu L, Zheng G, Dai L. J Am Chem Soc, 2018, 140(24): 7629-7636. doi:10.1021/jacs.8b03010http://dx.doi.org/10.1021/jacs.8b03010
Huang J, Liu Y, Yang Y, Zhou Z, Mao J, Wu T, Liu J, Cai Q, Peng C, Xu Y, Zeng B, Luo W, Chen G, Yuan C, Dai L. Sci Robot, 2021, 6(53): eabe1858. doi:10.1126/scirobotics.abe1858http://dx.doi.org/10.1126/scirobotics.abe1858
Li L, Yuan C, Zhou D, Ribbe A E, Kittilstved K R, Thayumanavan S. Angew Chem, 2015, 127(44): 13183-13187. doi:10.1002/ange.201505242http://dx.doi.org/10.1002/ange.201505242
Mao J, Li Y, Cai Q, Tang Z, Yang Y, Yuan C, Xu Y, Zeng B, Luo W, Kuo S, Dai L. Chem Eng J, 2021, 405: 126690. doi:10.1016/j.cej.2020.126690http://dx.doi.org/10.1016/j.cej.2020.126690
Wu Y, Cai Q, Li Y, Liu H, Mao J, Lu Z, Zeng B, Xu Y, Yuan C, Dai L. J Alloy Compd, 2020, 824: 153655. doi:10.1016/j.jallcom.2020.153655http://dx.doi.org/10.1016/j.jallcom.2020.153655
Wu T, Hong J, Lu Z, Wu H, Wu C, Tang Z, Liu X, Zeng B, Xu Y, Chen G, Yuan C, Dai L. Appl Catal B-Environ, 2021, 285: 119795. doi:10.1016/j.apcatb.2020.119795http://dx.doi.org/10.1016/j.apcatb.2020.119795
Lee B P, Konst S. Adv Mater, 2014, 26(21): 3415-3419. doi:10.1002/adma.201306137http://dx.doi.org/10.1002/adma.201306137
Lee B P, Narkar A, Wilharm R. Sensor Actuat B-Chem, 2016, 227: 248-254. doi:10.1016/j.snb.2015.12.038http://dx.doi.org/10.1016/j.snb.2015.12.038
Golden E B, Lam P Y, Kardosh A, Gaffney K J, Cadenas E, Louie S G, Petasis N A, Chen T C, Schönthal A H. Blood, 2009, 113(23): 5927-5937. doi:10.1182/blood-2008-07-171389http://dx.doi.org/10.1182/blood-2008-07-171389
Wang C, Sang H, Wang Y, Zhu F, Hu X, Wang X, Wang X, Li Y, Cheng Y. Nano Lett, 2018, 18(11): 7045-7051. doi:10.1021/acs.nanolett.8b03015http://dx.doi.org/10.1021/acs.nanolett.8b03015
Liu R, Guo Y, Odusote G, Qu F, Priestley R D. ACS Appl Mater Interfaces, 2013, 5(18): 9167-9171. doi:10.1021/am402585yhttp://dx.doi.org/10.1021/am402585y
Moulay S. Polym Rev, 2014, 54(3): 436-513. doi:10.1080/15583724.2014.881373http://dx.doi.org/10.1080/15583724.2014.881373
Zhao Han(赵晗), Shang Qing(尚晴), Yang Meng(杨萌), Jin Shuai(金帅), Wang Yangyang(王洋洋), Zhao Ning(赵宁), Yin Pinxiao(尹品晓), Ding Cailing(丁彩玲), Xu Jian(徐坚). Acta Polymerica Sinica(高分子学报), 2020, 51(3): 287-294. doi:10.11777/j.issn1000-3304.2019.19208http://dx.doi.org/10.11777/j.issn1000-3304.2019.19208
Ejima H, Richardson J J, Liang K, Best J P, van Koeverden M P, Such G K, Cui J, Caruso F. Science, 2013, 341(6142): 154-157. doi:10.1126/science.1237265http://dx.doi.org/10.1126/science.1237265
Wei Q, Achazi K, Liebe H, Schulz A, Noeske P L M, Grunwald I, Haag R. Angew Chem Int Ed, 2014, 53(43):11650-11655. doi:10.1002/anie.201407113http://dx.doi.org/10.1002/anie.201407113
Li D, Yang Z, Yang J, Xu X, Wang X, Wang J, Wang W, Yang X, Chen J, Zhao N, Xu J. Chem Eng J, 2022, 429: 132363. doi:10.1016/j.cej.2021.132363http://dx.doi.org/10.1016/j.cej.2021.132363
Chang Y, Yuan C, Li Y, Liu C, Wu T, Zeng B, Xu Y, Dai L. J Mater Chem A, 2017, 5(4): 1672-1678. doi:10.1039/c6ta09239jhttp://dx.doi.org/10.1039/c6ta09239j
Zhang H, Mao J, Li M, Cai Q, Li W, Huang C, Yuan C, Xu Y, Zeng B, Dai L. Compos Part A-Appl S, 2020, 130: 105751. doi:10.1016/j.compositesa.2019.105751http://dx.doi.org/10.1016/j.compositesa.2019.105751
Liu S, Pan J, Liu J, Ma Y, Qiu F, Mei L, Zeng X, Pan G. Small, 2018, 14(13): 1703968. doi:10.1002/smll.201703968http://dx.doi.org/10.1002/smll.201703968
Guo J, Sun H, Alt K, Tardy B L, Richardson J J, Suma T, Ejima H, Cui J, Hagemeyer C E, Caruso F. Adv Healthc Mater, 2015, 4(12): 1796-1801. doi:10.1002/adhm.201500332http://dx.doi.org/10.1002/adhm.201500332
Narkar A R, Kendrick C, Bellur K, Leftwich T, Zhang Z, Lee B P. Soft Matter, 2019, 15(27): 5474-5482. doi:10.1039/c9sm00649dhttp://dx.doi.org/10.1039/c9sm00649d
Peng H, Wang D, Fu S. Compos Part B-Eng, 2021, 215: 108742. doi:10.1016/j.compositesb.2021.108742http://dx.doi.org/10.1016/j.compositesb.2021.108742
Cheng M, Zhang Q, Shi F. Chinese J Polym Sci, 2018, 36: 306-321. doi:10.1007/s10118-018-2069-zhttp://dx.doi.org/10.1007/s10118-018-2069-z
Yang J, Bai R, Chen B, Suo Z. Adv Funct Mater, 2020, 30(2): 1901693. doi:10.1002/adfm.201901693http://dx.doi.org/10.1002/adfm.201901693
Cheng M, Shi F. Chem-Eur J, 2020, 26(68): 15763-15778. doi:10.1002/chem.202001881http://dx.doi.org/10.1002/chem.202001881
Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. Angew Chem Int Ed, 2019, 58(3): 696-714. doi:10.1002/anie.201801063http://dx.doi.org/10.1002/anie.201801063
Narkar A R, Barker B, Clisch M, Jiang J, Lee B P. Chem Mater, 2016, 28(15): 5432-5439. doi:10.1021/acs.chemmater.6b01851http://dx.doi.org/10.1021/acs.chemmater.6b01851
Narkar A R, Lee B P. Langmuir, 2018, 34(32): 9410-9417. doi:10.1021/acs.langmuir.8b00373http://dx.doi.org/10.1021/acs.langmuir.8b00373
Graule M A, Chirarattananon P, Fuller S B, Jafferis N T, Ma K Y, Spenko M, Kornbluh R, Wood R J. Science, 2016, 352(6288): 978-982. doi:10.1126/science.aaf1092http://dx.doi.org/10.1126/science.aaf1092
Fujita M, Ikeda S, Fujimoto T, Shimizu T, Ikemoto S, Miyamoto T. Adv Robotics, 2018, 32(6): 283-296. doi:10.1080/01691864.2018.1447238http://dx.doi.org/10.1080/01691864.2018.1447238
Jiang H, Hawkes E W, Fuller C, Estrada M A, Suresh S A, Abcouwer N, Han A K, Wang S, Ploch C J, Parness A, Cutkosky M R. Sci Robot, 2017, 2(7): eaan4545. doi:10.1126/scirobotics.aan4545http://dx.doi.org/10.1126/scirobotics.aan4545
Bhuiyan M S A, Liu B, Manuel J, Zhao B, Lee B P. Biomacromolecules, 2021, 22(9): 4004-4015. doi:10.1021/acs.biomac.1c00802http://dx.doi.org/10.1021/acs.biomac.1c00802
Zhang Y S, Khademhosseini A. Science, 2017, 356(6337): eaaf3627. doi:10.1126/science.aaf3627http://dx.doi.org/10.1126/science.aaf3627
Liu J, Huang J, Cai Q, Yang Y, Luo W, Zeng B, Xu Y, Yuan C, Dai L. ACS Appl Mater Interfaces, 2020, 12(18): 20479-20489. doi:10.1021/acsami.0c03224http://dx.doi.org/10.1021/acsami.0c03224
Zhang Y Z, Lee K H, Anjum D H, Sougrat R, Jiang Q, Kim H, Alshareef H N. Sci Adv, 2018, 4(6): eaat0098. doi:10.1126/sciadv.aat0098http://dx.doi.org/10.1126/sciadv.aat0098
Shan M, Gong C, Li B, Wu G. Polym Chem, 2017, 8(19): 2997-3005. doi:10.1039/c7py00519ahttp://dx.doi.org/10.1039/c7py00519a
Chen J, Su Q, Guo R, Zhang J, Dong A, Lin C, Zhang J. Macromol Chem Phys, 2017, 218(15): 1700166. doi:10.1002/macp.201770046http://dx.doi.org/10.1002/macp.201770046
Nakahata M, Mori S, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. ACS Macro Lett, 2014, 3(4): 337-340. doi:10.1021/mz500035whttp://dx.doi.org/10.1021/mz500035w
Xia N N, Rong M Z, Zhang M Q. J Mater Chem A, 2016, 4(37): 14122-14131. doi:10.1039/c6ta05121ahttp://dx.doi.org/10.1039/c6ta05121a
Lu J, Zhuang W, Li L, Zhang B, Yang L, Liu D, Yu H, Luo R, Wang Y. ACS Appl Mater Interfaces, 2019, 11(10): 10337-10350. doi:10.1021/acsami.9b01253http://dx.doi.org/10.1021/acsami.9b01253
0
浏览量
443
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构