浏览全部资源
扫码关注微信
1.深圳大学材料学院 AIE研究中心 深圳 518060
2.香港中文大学(深圳)理工学院 深圳 518172
[ "王东,男,1985年生. 深圳大学特聘教授. 分别获得兰州大学和法国波尔多大学博士学位,之后先后在加拿大多伦多大学和香港科技大学从事博士后研究,于2018年4月加入深圳大学材料学院. 现任深圳大学AIE研究中心主任(执行)、深圳大学青年科学家联谊会副理事长、科学出版社《聚集诱导发光丛书》副总主编、中国化学会分子聚集发光专业委员会委员、《Aggregate》《发光学报》和《Exploration》期刊青年编委. 获得国家自然科学基金优秀青年科学基金、广东省杰出青年科学基金、深圳市优秀青年科学基金等项目资助. 入选《Biomaterial Science》《Science China Chemistry》新锐科学家. 主要研究方向为聚集诱导发光(AIE)材料的开发,及其在传感、生物成像和治疗等方面的应用研究." ]
[ "唐本忠,男,1957年生. 现任香港中文大学(深圳)理工学院院长,深圳大学AIE研究中心荣誉主任. 1982年本科毕业于华南理工大学,1985、1988年在日本京都大学分别获硕士和博士学位,1989~1994年在加拿大多伦多大学从事博士后研究,1994年加入香港科技大学从事学术研究工作,2008年晋升为讲席教授. 2007年获国家自然科学二等奖、Croucher基金会高级研究员奖、中国化学会王葆仁奖和Elsevier杂志社冯新德奖. 2009年当选中国科学院院士. 2012年获Science China Chemistry杰出贡献奖. 2013年入选英国皇家化学会会士. 2017年获国家自然科学奖一等奖以及何梁何利基金科学技术进步奖,并获得科技盛典-CCTV 2018年度科技创新人物. 期刊《Aggregate》主编以及二十多家国际科学杂志顾问、编委或客座编辑等. 主要从事高分子科学和聚集诱导发光(AIE)的研究." ]
纸质出版日期:2022-07-20,
网络出版日期:2022-06-06,
收稿日期:2022-03-11,
修回日期:2022-04-11,
移动端阅览
李丹,孙盼盼,李建高等.聚集诱导发光高分子在光学诊疗应用中的研究进展[J].高分子学报,2022,53(07):856-872.
Li Dan,Sun Pan-pan,Li Jian-gao,et al.Recent Advances of Polymers with Aggregation-induced Emission Characteristics in Phototheranostics[J].ACTA POLYMERICA SINICA,2022,53(07):856-872.
李丹,孙盼盼,李建高等.聚集诱导发光高分子在光学诊疗应用中的研究进展[J].高分子学报,2022,53(07):856-872. DOI: 10.11777/j.issn1000-3304.2022.22079.
Li Dan,Sun Pan-pan,Li Jian-gao,et al.Recent Advances of Polymers with Aggregation-induced Emission Characteristics in Phototheranostics[J].ACTA POLYMERICA SINICA,2022,53(07):856-872. DOI: 10.11777/j.issn1000-3304.2022.22079.
高分子因其优异的光学特性、良好的生物相容性和分子结构易于调控等优势,在光学诊疗领域表现出巨大应用潜力. 然而,传统荧光分子的聚集导致荧光淬灭现象限制了其生物应用. 聚集诱导发光(AIE)分子因其聚集态高效发光的优势而备受关注. 本文从AIE高分子的构建出发,重点介绍了D-A型共轭聚合物的构建策略、构-效关系以及相对于小分子的性能和应用优势,并从生物成像、肿瘤诊疗和抗菌三个方面总结了AIE高分子在光学诊疗领域的最新研究进展. 生物成像方面主要总结了NIR-II区AIE高分子在深部组织高分辨率荧光成像中的应用;肿瘤诊疗方面主要介绍了AIE高分子在光动力治疗、光热治疗及联合治疗中的应用;以及介绍了AIE高分子在细菌感染光动力治疗中的应用. 最后对AIE高分子在光学诊疗领域的未来发展前景进行了展望.
Phototheranostics
as an emerging treatment integrating the functions of light-driven diagnostic imaging and therapy
has aroused extensive attention for both fundamental research and clinical application in recent years because of its advantages of high temporal and spatial selectivity
low side effects
small trauma and high controllability. The conjugated polymers have distinct advantages including excellent optical properties
easy chemical structure regulation
good biocompatibility and solution processability
showing great potential application in the field of phototheranostics. However
traditional fluorescent molecules including the conjugated polymers suffer from the phenomenon of aggregation-caused quenching (ACQ) in aggregate state resulted from their rigid planar structures
thus hindering their biological applications. Luminogens with aggregation-induced emission (AIE) characteristics have attracted much attention because of their high fluorescence quantum efficiency in aggregate. This review is aimed to summarize the state-of-the-art advancements of AIE polymers in phototheranostics
especially the D-A type conjugated polymers
involving the construction strategies of AIE polymers and their applications in three aspects of biological imaging
tumor diagnosis and therapy
and bacterial eradication. According to the practical applications
the different requirements of construction strategies for AIE polymers
as well as the comparisons of the structure and properties advantages between the small molecules and polymers are also discussed. For biological imaging
the review is mainly focused on the development of AIE polymers with NIR-II fluorescence emission and high brightness to achieve high-resolution fluorescence imaging in deep tissues. In the aspect of tumor diagnosis and treatment
the review illustrates the AIE polymers with great advantages compared with small molecules in photon absorption and photosensitization performance
and their applications in photodynamic therapy
photothermal therapy and combined therapy. Also
the applications of AIE polymers for photodynamic therapy of bacterial infections are illustrated. Although the development of AIE polymers have lagged behind that of small molecules mainly due to their complex molecular structures and more difficult AIE mechanism studies
it is necessary to pay more attention to pushing forward the studies on AIE polymers and having in-depth understanding about structure-properties relationship. Additionally
the future development in the field of AIE polymers is prospected at the end of this review.
聚集诱导发光高分子光学诊疗
Aggregation-induced emissionPolymerPhototheranostics
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang B Z. Chem Soc Rev, 2022, 51(6): 1983-2030. doi:10.1039/d1cs01138chttp://dx.doi.org/10.1039/d1cs01138c
Feng G, Zhang G, Ding D. Chem Soc Rev, 2020, 49(22): 8179-8234. doi:10.1039/d0cs00671hhttp://dx.doi.org/10.1039/d0cs00671h
Zhang Y, Xu C, Yang X, Pu K. Adv Mater, 2020, 32(34): 2002661. doi:10.1002/adma.202002661http://dx.doi.org/10.1002/adma.202002661
Cheng P, Pu K. ACS Appl Mater Interfaces, 2020, 12(5): 5286-5299. doi:10.1021/acsami.9b15064http://dx.doi.org/10.1021/acsami.9b15064
Rajesh K, Weon S S, Kyoung S, Kim W Y, Koo S, Bhuniya S, Kim J S. Chem Soc Rev, 2015, 44(19): 6670-6683 doi:10.1039/C5CS00224Ahttp://dx.doi.org/10.1039/C5CS00224A
Smith B R, Gambhir S S. Chem Rev, 2017, 117(3): 901-986. doi:10.1021/acs.chemrev.6b00073http://dx.doi.org/10.1021/acs.chemrev.6b00073
Xie J, Lee S, Chen X. Adv Drug Deliv Rev, 2010, 62(11): 1064-1079. doi:10.1016/j.addr.2010.07.009http://dx.doi.org/10.1016/j.addr.2010.07.009
Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Small, 2018, 14(25): 1704247. doi:10.1002/smll.201704247http://dx.doi.org/10.1002/smll.201704247
Wolfbeis O S. Chem Soc Rev, 2015, 44(14): 4743-4768. doi:10.1039/c4cs00392fhttp://dx.doi.org/10.1039/c4cs00392f
Elsabahy M, Heo G S, Lim S M, Sun G R, Wooley K L. Chem Rev, 2015, 115(19): 10967-11011. doi:10.1021/acs.chemrev.5b00135http://dx.doi.org/10.1021/acs.chemrev.5b00135
Ueno M, Hayami S, Sonomura T, Tanaka R, Kawai M, Hirono S, Okada K, Yamaue H. Surg Endosc, 2018, 32(2): 1051-1055. doi:10.1007/s00464-017-5997-8http://dx.doi.org/10.1007/s00464-017-5997-8
Reima H, Saar H, Innos K, Soplepmann J. Ejso, 2016, 42(11): 1642-1646. doi:10.1016/j.ejso.2016.06.001http://dx.doi.org/10.1016/j.ejso.2016.06.001
Ethirajan M, Chen Y, Joshi P, Pandey R K. Chem Soc Rev, 2011, 40(1): 340-362. doi:10.1039/b915149bhttp://dx.doi.org/10.1039/b915149b
Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem Commun, 2001, 18: 1740-1741. doi:10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
Li Q, Li Z. Acc Chem Res, 2020, 53(4): 962-973. doi:10.1021/acs.accounts.0c00060http://dx.doi.org/10.1021/acs.accounts.0c00060
Wang D, Tang B Z. Acc Chem Res, 2019, 52(9): 2559-2570. doi:10.1021/acs.accounts.9b00305http://dx.doi.org/10.1021/acs.accounts.9b00305
Kang M, Zhang Z, Song N, Li M, Sun P, Chen X, Wang D, Tang B Z. Aggregate, 2020, 1(1): 80-106. doi:10.1002/agt2.7http://dx.doi.org/10.1002/agt2.7
Song N, Zhang Z, Liu P, Yang Y W, Wang L, Wang D, Tang B Z. Adv Mater, 2020, 32: 2004208. doi:10.1002/adma.202004208http://dx.doi.org/10.1002/adma.202004208
Li D, Li Y, Wu Q, Xiao P, Wang L, Wang D, Tang B Z. Small, 2021, 17(37): 2102044. doi:10.1002/smll.202102044http://dx.doi.org/10.1002/smll.202102044
Wu W, Mao D, Hu F, Xu S, Chen C, Zhang C, Cheng X, Yuan Y, Ding D, Kong D, Liu B. Adv Mater, 2017, 29(33): 1700548. doi:10.1002/adma.201700548http://dx.doi.org/10.1002/adma.201700548
Zhao Z, Chen C, Wu W, Wang F, Du L, Zhang X, Xiong Y, He X, Cai Y, Kwok R T K, Lam J W Y, Gao X, Sun P, Phillips D L, Ding D, Tang B Z. Nat Commun, 2019, 10: 768. doi:10.1038/s41467-019-08722-zhttp://dx.doi.org/10.1038/s41467-019-08722-z
Hu F, Xu S D, Liu B. Adv Mater, 2018, 30(45): 1801350. doi:10.1002/adma.201801350http://dx.doi.org/10.1002/adma.201801350
Wu W, Mao D, Xu S, Kenry, Hu F, Li X, Kong D, Liu B, Chem, 2018, 4(8): 1937-1951. doi:10.1016/j.chempr.2018.06.003http://dx.doi.org/10.1016/j.chempr.2018.06.003
Liu S, Zhang H, Li Y, Liu J, Du L, Chen M, Kwok R T K, Lam J W Y, Phillips D L, Tang B Z. Angew Chem, 2018, 130(46): 15409-15413. doi:10.1002/ange.201810326http://dx.doi.org/10.1002/ange.201810326
Wu W, Liu B. Mater Horiz, 2022, 9(1): 99-111. doi:10.1039/d1mh01030ahttp://dx.doi.org/10.1039/d1mh01030a
Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Angew Chem Int Ed, 2020, 59(9): 3691-3698. doi:10.1002/anie.201914397http://dx.doi.org/10.1002/anie.201914397
Liu S, Ou H, Li Y, Zhang H, Liu J, Lu X, Kwok R T K, Lam J W Y, Ding D, Tang B Z. J Am Chem Soc, 2020, 142(35): 15146-15156. doi:10.1021/jacs.0c07193http://dx.doi.org/10.1021/jacs.0c07193
Liu Y, Liu J, Chen D, Wang X, Zhang Z, Yang Y, Jiang L, Qi W, Ye Z, He S, Liu Q, Xi L, Zou Y, Wu C. Angew Chem Int Ed, 2020, 59(47): 21049-21057. doi:10.1002/anie.202007886http://dx.doi.org/10.1002/anie.202007886
Wang S, Wu W, Manghnani P, Xu S, Wang Y, Goh C, Ng L, Liu B. ACS Nano, 2019, 13(3): 3095-3105. doi:10.1021/acsnano.8b08398http://dx.doi.org/10.1021/acsnano.8b08398
Deng G, Peng X, Sun Z, Zheng W, Yu J, Du L, Chen H, Gong P, Zhang P, Cai L, Tang B Z. ACS Nano, 2020, 14(9): 11452-11462. doi:10.1021/acsnano.0c03824http://dx.doi.org/10.1021/acsnano.0c03824
Zhou T, Hu R, Wang L, Qiu Y, Zhang G, Deng Q, Zhang H, Yin P, Situ B, Zhan C, Qin A, Tang B Z. Angew Chem Int Ed, 2020, 59(25): 9952-9956. doi:10.1002/anie.201916704http://dx.doi.org/10.1002/anie.201916704
Su X, Liu R, Li Y, Han T, Zhang Z, Niu N, Kang M, Fu S, Wang D, Wang D, Tang B Z. Adv Healthcare Mater, 2021, 10(24): 2101167. doi:10.1002/adhm.202101167http://dx.doi.org/10.1002/adhm.202101167
Diao S, Blackburn J L, Hong G, Antaris A L, Chang J, Wu J, Zhang B, Cheng K, Kuo C, Dai H. Angew Chem Int Ed, 2015, 54(1): 1-6. doi:10.1002/anie.201507473http://dx.doi.org/10.1002/anie.201507473
Kenry, Duan Y, Liu B. Adv Mater, 2018, 30(47): 1802394 doi:10.1002/adma.201802394http://dx.doi.org/10.1002/adma.201802394
Yan D, Xie W, Zhang J, Wang L, Wang D, Tang B Z. Angew Chem Int Ed, 2021, 60(51): 26769-26776. doi:10.1002/anie.202111767http://dx.doi.org/10.1002/anie.202111767
Englman R, Jortner J. Mol Phys, 1970, 18(2): 145-164. doi:10.1080/00268977000100171http://dx.doi.org/10.1080/00268977000100171
Zhang Y, Yu J, Gallina M E, Sun W, Rong Y, Chiu D. Commun Chem, 2013, 49(74): 8256-8256. doi:10.1039/c3cc44048fhttp://dx.doi.org/10.1039/c3cc44048f
Lan M, Zhao S, Liu W, Lee C S, Zhang W, Wang P. Adv Healthc Mater, 2019, 8(13): 1900132. doi:10.1002/adhm.201900132http://dx.doi.org/10.1002/adhm.201900132
Li J, Pu K. Chem Soc Rev, 2019, 48(1): 38-71. doi:10.1039/c8cs00001hhttp://dx.doi.org/10.1039/c8cs00001h
Yao H, Dai J, Zhuang Z, Yao J, Wu Z, Wang S, Xia F, Zhou J, Lou X, Zhao Z. Sci China Chem, 2020, 63(12): 1815-1824. doi:10.1007/s11426-020-9824-2http://dx.doi.org/10.1007/s11426-020-9824-2
Zhi D, Yang T, O'Hagan J, Zhang S, Donnelly R F. J Control Release, 2020, 325(10): 52-71. doi:10.1016/j.jconrel.2020.06.032http://dx.doi.org/10.1016/j.jconrel.2020.06.032
Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. ACS Appl Mater Interfaces, 2019, 11(20): 18691-18700. doi:10.1021/acsami.9b02346http://dx.doi.org/10.1021/acsami.9b02346
Wang Z, Wang C, Gan Q, Cao Y, Yuan H, Hua D. ACS Appl Mater Interfaces, 2019, 11(45): 41853-41861. doi:10.1021/acsami.9b11237http://dx.doi.org/10.1021/acsami.9b11237
Liow S, Dou Q, Kai D, Li Z, Sugiarto S, Yu C, Kwok R T K, Chen X, Wu Y, Ong S T, Kizhakeyil A, Verma N K, Tang B Z, Loh X. Small, 2017, 13(7): 1603404. doi:10.1002/smll.201603404http://dx.doi.org/10.1002/smll.201603404
Zhuang W, Xu Y, Li G, Hu J, Ma B, Yu T, Su X, Wang Y. ACS Appl Mater Interfaces, 2018, 10(22): 18489-18498. doi:10.1021/acsami.8b02890http://dx.doi.org/10.1021/acsami.8b02890
Borjihan Q, Wu H, Dong A.Gao H, Yang Y. Adv Healthc Mater, 2021, 10(24): 2100877. doi:10.1002/adhm.202100877http://dx.doi.org/10.1002/adhm.202100877
Zhao J, Dong Z, Cui H, Jin H, Wang C. ACS Appl Mater Interfaces, 2018, 10(49): 42058-42067. doi:10.1021/acsami.8b15921http://dx.doi.org/10.1021/acsami.8b15921
0
浏览量
368
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构