浏览全部资源
扫码关注微信
1.青岛科技大学,高分子科学与工程学院 山东省教育厅生物基高分子材料重点实验室,青岛 266042
2.青岛科技大学,化工学院,青岛 266042
[ "刘绍峰,男,1984年生. 2005年于中南大学化学化工学院获得学士学位;2011年,中国科学院化学研究所和法国斯特拉斯堡大学获博士学位. 2011~2014年,美国西北大学化学系从事博士后研究;2015年至今,青岛科技大学高分子科学与工程学院工作,任教授、博士生导师. 主要从事聚烯烃金属催化剂和开环聚合有机催化剂的设计合成,及其制备高性能聚烯烃、聚酯等高分子材料." ]
[ "李志波,男,1974年生. 1998和2001年于中国科学技术大学高分子科学与工程系分别获得学士学位和硕士学位;2006年于美国明尼苏达大学化学系获博士学位. 2006~2008年,美国加利福尼亚大学洛杉矶分校生物工程系博士后;2008~2014年,中国科学院化学研究所高分子物理与化学实验室工作,任研究员、博士生导师;2014年12月至今,任青岛科技大学高分子科学与工程学院教授. 主要从事可降解高分子材料的设计、合成与结构表征研究,致力于发展新的合成聚合方法和催化剂,制备高性能、高附加值的功能高分子新材料." ]
纸质出版日期:2022-09-20,
网络出版日期:2022-07-13,
收稿日期:2022-04-04,
录用日期:2022-05-07
移动端阅览
马钰琨,刘绍峰,李志波.有机催化CO2/环氧/酸酐交替共聚合成聚碳酸酯/聚酯及其共聚物[J].高分子学报,2022,53(09):1041-1056.
Ma Yu-kun,Liu Shao-feng,Li Zhi-bo.Organocatalytic Alternating Copolymerization of CO2/Epoxide/Anhydride for Synthesis of Polycarbonate/Polyester Copolymers[J].ACTA POLYMERICA SINICA,2022,53(09):1041-1056.
马钰琨,刘绍峰,李志波.有机催化CO2/环氧/酸酐交替共聚合成聚碳酸酯/聚酯及其共聚物[J].高分子学报,2022,53(09):1041-1056. DOI: 10.11777/j.issn1000-3304.2022.22112.
Ma Yu-kun,Liu Shao-feng,Li Zhi-bo.Organocatalytic Alternating Copolymerization of CO2/Epoxide/Anhydride for Synthesis of Polycarbonate/Polyester Copolymers[J].ACTA POLYMERICA SINICA,2022,53(09):1041-1056. DOI: 10.11777/j.issn1000-3304.2022.22112.
发展环境友好高分子材料符合当代绿色及可持续发展的理念,同时也是解决目前环境问题的有效途径之一. 二氧化碳(CO
2
)来源广泛且无毒,却是造成温室效应的主要气体. 利用CO
2
和环氧交替共聚可以制备聚碳酸酯材料,而环氧和酸酐交替共聚则可以制备聚酯材料. 聚碳酸酯/聚酯高分子材料在人们生活的诸多方面(食品包装和生物医药等)有着广泛的应用. 有机催化剂作为一种新兴的“无金属”催化剂,在近20年中发展迅速且独具特色. 近年来,我们课题组开发了一系列有机磷腈催化剂,其碱性和分子结构可调控,能够高效地催化各类环状单体的开环聚合,制备聚酯、聚醚、聚硅氧烷、聚碳酸酯等多种高分子材料. 此外,有机磷腈催化剂与路易斯酸等相结合,能够方便地构筑组成多样化的二元有机催化体系,通过协同催化效应实现独特的催化性能. 本专论主要包括CO
2
/环氧交替共聚制备聚碳酸酯、环氧/酸酐交替共聚制备聚酯、混合单体三元共聚制备聚碳酸酯/聚酯共聚物3个部分. 根据催化体系的不同,分别介绍了近年来有机催化CO
2
/环氧/酸酐交替共聚合成聚碳酸酯/聚酯及其共聚物的研究进展,对聚合机理进行了适当的解释和讨论,并展望了该领域未来的发展,包括新型高效高选择性有机催化剂、新型单体和可持续高分子材料等方向.
The synthesis of environment-friendly polymer materials
including polycarbonates and polyesters
supports the strategy of sustainable development
and it is also one of the feasible ways to solve the current environmental stress (greenhouse effect and white pollution
etc
.). Carbon dioxide (CO
2
) has a wide range of sources and is non-toxic
but it could cause the greenhouse effect. Therefore
developing efficient techniques to transform CO
2
into value-added chemicals is a promising solution for our sustainable society. CO
2
-based polycarbonate materials can be prepared by ring-opening alternating copolymerization (ROCOP) of CO
2
and epoxide
while polyester materials can be prepared by ROCOP of epoxide and anhydride. Organocatalysts
as a type of emerging "metal-free" catalysts
have developed rapidly in the past 20 years and exhibited unique properties and exceptional promises for various polymerization reactions. Recently
our group have developed a series of organic phosphazenes
which are a family of extremely strong
non-nucleophilic
and uncharged auxiliary bases and show remarkable potential as organocatalysts for ring-opening polymerization (ROP) of cyclic monomers. On the other hand
phosphazenes in combination with a Lewis acid
such as triethyleborane (TEB)
can easily construct diverse binary organocatalysts that exhibite excellent catalytic performances. Apparently
organocatalytic synthesis of polymer materials has become an important and hot research topic. This feature article reviews the recent progress in the field of ROCOP of CO
2
/epoxide/anhydride catalysed by organocatalysts followed by a proper discussion of respective polymerization mechanisms. The review includes three sub-topics
i.e.
ROCOP of CO
2
/epoxide
ROCOP of epoxide/anhydride
and terpolymerization of CO
2
/epoxide/anhydride. A short perspective viewpoint is provided at the end for readers who are interested in this area.
有机催化剂开环聚合交替共聚聚碳酸酯聚酯
OrganocatalystRing-opening polymerizationAlternating copolymerizationPolycarbonatePolyeste
Zhu Y, Romain C, Williams C K. Nature, 2016, 540(7633): 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Diaz C, Mehrkhodavandi P. Polym Chem, 2021, 12(6): 783-806. doi:10.1039/d0py01534bhttp://dx.doi.org/10.1039/d0py01534b
Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Science, 2015, 347(6223): 768-771. doi:10.1126/science.1260352http://dx.doi.org/10.1126/science.1260352
Hillmyer Marc A. Science, 2017, 358(6365): 868-870. doi:10.1126/science.aao6711http://dx.doi.org/10.1126/science.aao6711
Wang E, Cao H, Zhou Z, Wang X. Sci Sin Chim, 2020, 50(7): 847-856
Ren W, Wang R, Ren B, Gu G, Yue T. Chinese J Polym Sci, 2020, 38: 950-957. doi:10.1007/s10118-020-2413-yhttp://dx.doi.org/10.1007/s10118-020-2413-y
Kou Xinhui(寇新慧), Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2020, 51(10): 1121-1129. doi:10.11777/j.issn1000-3304.2020.20117http://dx.doi.org/10.11777/j.issn1000-3304.2020.20117
Song B, Qin A, Tang B. Chinese J Polym Sci, 2021, 39: 51-59. doi:10.1007/s10118-020-2454-2http://dx.doi.org/10.1007/s10118-020-2454-2
Shen Ting(沈婷), Ni Xufeng(倪旭峰), Ling Jun(凌君). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 445-455. doi:10.11777/j.issn1000-3304.2020.20267http://dx.doi.org/10.11777/j.issn1000-3304.2020.20267
Li C, Wang L, Yan Q, Liu F, Shen Y, Li Z. Angew Chem Int Ed, 2022, 61(16): e202201407. doi:10.1002/anie.202201407http://dx.doi.org/10.1002/anie.202201407
Wang E, Liu S, Cao H, Zhuo C, Wang X, Wang F. Science China Chemistry, 2022, 65(1): 162-169. doi:10.1007/s11426-021-1098-4http://dx.doi.org/10.1007/s11426-021-1098-4
Ji Chenlin(季晨霖), Jie Suyun(介素云), Li Bogeng(李伯耿). Acta Polymerica Sinica(高分子学报), 2022, 53(5): 488-496. doi:10.11777/j.issn1000-3304.2021.21400http://dx.doi.org/10.11777/j.issn1000-3304.2021.21400
Tian Guoqiang(田国强), Liu Wen(刘文), Chen Li(陈力), Chen Sichong(陈思翀). Acta Polymerica Sinica(高分子学报), 2022, 53(1): 30-36
An Zesheng(安泽胜), Chen Changle(陈昶乐), He Junpo(何军坡), Hong Chunyan(洪春雁), Li Zhibo(李志波), Li Zichen(李子臣), Liu Chao(刘超), Lv Xiaobing(吕小兵), Qin Anjun(秦安军), Qu Chengke(曲程科), Tang Benzhong (唐本忠), Tao Youhua(陶友华), Wan Xinhua(宛新华), Wang Guowei(王国伟), Wang Jia(王佳), Zheng Ke(郑轲), Zou Wenkai(邹文凯). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1083-1132. doi:10.11777/j.issn1000-3304.2019.19136http://dx.doi.org/10.11777/j.issn1000-3304.2019.19136
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Zhang Y, Wu G, Darensbourg D J. Trends Chem, 2020, 2(8): 750-763. doi:10.1016/j.trechm.2020.05.002http://dx.doi.org/10.1016/j.trechm.2020.05.002
Inoue S, Koinuma H, Tsuruta T. Makromol Chem, 1969, 130(1): 210-220. doi:10.1002/macp.1969.021300112http://dx.doi.org/10.1002/macp.1969.021300112
Lu X, Darensbourg D J. Chem Soc Rev, 2012, 41(4): 1462-1484. doi:10.1039/c1cs15142hhttp://dx.doi.org/10.1039/c1cs15142h
Fischer R F. Ind Eng Chem, 1960, 52(4): 321-323. doi:10.1021/ie50604a039http://dx.doi.org/10.1021/ie50604a039
Aida T, Inoue S. J Am Chem Soc, 1985, 107(5): 1358-1364. doi:10.1021/ja00291a041http://dx.doi.org/10.1021/ja00291a041
Takeuchi D, Aida T, Endo T. Macromol Rapid Commun, 1999, 20(12): 646-649. doi:10.1002/(sici)1521-3927(19991201)20:12<646::aid-marc646>3.0.co;2-nhttp://dx.doi.org/10.1002/(sici)1521-3927(19991201)20:12<646::aid-marc646>3.0.co;2-n
Jeske R C, DiCiccio A M, Coates G W. J Am Chem Soc, 2007, 129(37): 11330-11331. doi:10.1021/ja0737568http://dx.doi.org/10.1021/ja0737568
Longo J M, DiCiccio A M, Coates G W. J Am Chem Soc, 2014, 136(45): 15897-15900. doi:10.1021/ja509440ghttp://dx.doi.org/10.1021/ja509440g
Kamber N E, Jeong W, Waymouth R M, Pratt R C, Lohmeijer B G G, Hedrick J L. Chem Rev, 2007, 107(12): 5813-5840. doi:10.1021/cr068415bhttp://dx.doi.org/10.1021/cr068415b
Liu S, Ren C, Zhao N, Shen Y, Li Z. Macromol Rapid Commun, 2018, 39(24): 1800485. doi:10.1002/marc.201800485http://dx.doi.org/10.1002/marc.201800485
Wang Ying(王莹), Zhang Chengjian(张成建), Wang Zhengwen(王征文), Zhang Xinghong(张兴宏). Acta Polymerica Sinica(高分子学报), 2021, 52(5): 499-504. doi:10.11777/j.issn1000-3304.2020.20269http://dx.doi.org/10.11777/j.issn1000-3304.2020.20269
Zhang D, Boopathi S K, Hadjichristidis N, Gnanou Y, Feng X. J Am Chem Soc, 2016, 138(35): 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Zhang D, Feng X, Gnanou Y, Huang K W. Macromolecules, 2018, 51(15): 5600-5607. doi:10.1021/acs.macromol.8b00471http://dx.doi.org/10.1021/acs.macromol.8b00471
Patil N G, Boopathi S K, Alagi P, Hadjichristidis N, Gnanou Y, Feng X. Macromolecules, 2019, 52(6): 2431-2438. doi:10.1021/acs.macromol.9b00122http://dx.doi.org/10.1021/acs.macromol.9b00122
Sujith S, Min J K, Seong J E, Na S J, Lee B Y. Angew Chem Int Ed, 2008, 47(38): 7306-7309
Jia M, Hadjichristidis N, Gnanou Y, Feng X. ACS Macro Lett, 2019, 8(12): 1594-1598. doi:10.1021/acsmacrolett.9b00854http://dx.doi.org/10.1021/acsmacrolett.9b00854
Patil N, Bhoopathi S, Chidara V, Hadjichristidis N, Gnanou Y, Feng X. ChemSusChem, 2020, 13(18): 5080-5087. doi:10.1002/cssc.202001395http://dx.doi.org/10.1002/cssc.202001395
Chen Z, Yang J, Lu X, Hu L, Cao X, Wu G, Zhang X. Polym Chem, 2019, 10(26): 3621-3628. doi:10.1039/c9py00398chttp://dx.doi.org/10.1039/c9py00398c
Wang Y, Zhang J, Yang J, Zhang H, Kiriratnikom J, Zhang C, Chen K, Cao X, Hu L, Zhang X, Tang B. Macromolecules, 2021, 54(5): 2178-2186. doi:10.1021/acs.macromol.0c02377http://dx.doi.org/10.1021/acs.macromol.0c02377
Jia M, Zhang D, de Kort G W, Wilsens C H R M, Rastogi S, Hadjichristidis N, Gnanou Y, Feng X. Macromolecules, 2020, 53(13): 5297-5307. doi:10.1021/acs.macromol.0c01068http://dx.doi.org/10.1021/acs.macromol.0c01068
Jia M, Zhang D, Gnanou Y, Feng X. ACS Sustain Chem Eng, 2021, 9(30): 10370-10380. doi:10.1021/acssuschemeng.1c03751http://dx.doi.org/10.1021/acssuschemeng.1c03751
Shen Yong(沈勇), Li Zhibo(李志波). Acta Polymerica Sinica(高分子学报), 2020, 51(8): 777-790. doi:10.11777/j.issn1000-3304.2020.20050http://dx.doi.org/10.11777/j.issn1000-3304.2020.20050
Zhang J, Wang L, Liu S, Li Z. Angew Chem Int Ed, 2022, 61(4): e202111197. doi:10.1002/anie.202116982http://dx.doi.org/10.1002/anie.202116982
Andrea K A, Kerton F M. ACS Catal, 2019, 9(3): 1799-1809. doi:10.1021/acscatal.8b04282http://dx.doi.org/10.1021/acscatal.8b04282
Yang G, Zhang Y, Xie R, Wu G. J Am Chem Soc, 2020, 142(28): 12245-12255. doi:10.1021/jacs.0c03651http://dx.doi.org/10.1021/jacs.0c03651
Yang G, Xu C, Xie R, Zhang Y, Zhu X, Wu G. J Am Chem Soc, 2021, 143(9): 3455-3465. doi:10.1021/jacs.0c12425http://dx.doi.org/10.1021/jacs.0c12425
Tong Y, Cheng R, Dong H, Liu Z, Ye J, Liu B. Journal of CO2 Utilization, 2022, 60: 101979. doi:10.1016/j.jcou.2022.101979http://dx.doi.org/10.1016/j.jcou.2022.101979
Han B, Zhang L, Liu B, Dong X, Kim I, Duan Z, Theato P. Macromolecules, 2015, 48(11): 3431-3437. doi:10.1021/acs.macromol.5b00555http://dx.doi.org/10.1021/acs.macromol.5b00555
Hošťálek Z, Trhlíková O, Walterová Z, Martinez T, Peruch F, Cramail H, Merna J. Eur Polym J, 2017, 88: 433-447. doi:10.1016/j.eurpolymj.2017.01.002http://dx.doi.org/10.1016/j.eurpolymj.2017.01.002
Li H, Zhao J, Zhang G. ACS Macro Lett, 2017, 6(10): 1094-1098. doi:10.1021/acsmacrolett.7b00654http://dx.doi.org/10.1021/acsmacrolett.7b00654
Li H, Luo H, Zhao J, Zhang G. Macromolecules, 2018, 51(6): 2247-2257. doi:10.1021/acs.macromol.8b00159http://dx.doi.org/10.1021/acs.macromol.8b00159
Kou X, Li Y, Shen Y, Li Z. Macromol Chem Phys, 2019, 220(24): 1900416. doi:10.1002/macp.201900416http://dx.doi.org/10.1002/macp.201900416
Zhao N, Ren C, Shen Y, Liu S, Li Z. Macromolecules, 2019, 52(3): 1083-1091. doi:10.1021/acs.macromol.8b02690http://dx.doi.org/10.1021/acs.macromol.8b02690
Wang L, Zhang J, Zhao N, Ren C, Liu S, Li Z. ACS Macro Lett, 2020, 9(9): 1398-1402. doi:10.1021/acsmacrolett.0c00564http://dx.doi.org/10.1021/acsmacrolett.0c00564
Li Y, Zhao N, Wei C, Sun A, Liu S, Li Z. Eur Polym J, 2019, 111: 11-19. doi:10.1016/j.eurpolymj.2018.12.012http://dx.doi.org/10.1016/j.eurpolymj.2018.12.012
Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. Polym Chem, 2019, 10(10): 1231-1237. doi:10.1039/c8py01812jhttp://dx.doi.org/10.1039/c8py01812j
Zhang J, Wang L, Liu S, Li Z. J Polym Sci, 2020, 58(6): 803-810. doi:10.1002/pol.20190175http://dx.doi.org/10.1002/pol.20190175
Hu L, Zhang C, Wu H, Yang J, Liu B, Duan H, Zhang X. Macromolecules, 2018, 51(8): 3126-3134. doi:10.1021/acs.macromol.8b00499http://dx.doi.org/10.1021/acs.macromol.8b00499
Ji H, Chen X, Wang B, Pan L, Li Y. Green Chem, 2018, 20(17): 3963-3973. doi:10.1039/c8gc01641khttp://dx.doi.org/10.1039/c8gc01641k
Kummari A, Pappuru S, Chakraborty D. Polym Chem, 2018, 9(29): 4052-4062. doi:10.1039/c8py00715bhttp://dx.doi.org/10.1039/c8py00715b
Lin L, Liang J, Xu Y, Wang S, Xiao M, Sun L, Meng Y. Green Chem, 2019, 21(9): 2469-2477. doi:10.1039/c9gc00432ghttp://dx.doi.org/10.1039/c9gc00432g
Zhang B, Li H, Luo H, Zhao J. Eur Polym J, 2020, 134: 109820. doi:10.1016/j.eurpolymj.2020.109820http://dx.doi.org/10.1016/j.eurpolymj.2020.109820
Wei C, Kou X, Liu S, Li Z. Polym Chem, 2019, 10(43): 5905-5912. doi:10.1039/c9py01319ahttp://dx.doi.org/10.1039/c9py01319a
Jeske R C, Rowley J M, Coates G W. Angew Chem Int Ed, 2008, 47(32): 6041-6044. doi:10.1002/anie.200801415http://dx.doi.org/10.1002/anie.200801415
Zhang J, Wang L, Liu S, Kang X, Li Z. Macromolecules, 2021, 54(2): 763-772. doi:10.1021/acs.macromol.0c02647http://dx.doi.org/10.1021/acs.macromol.0c02647
Chidara V K, Boopathi S K, Hadjichristidis N, Gnanou Y, Feng X. Macromolecules, 2021, 54(6): 2711-2719. doi:10.1021/acs.macromol.0c02825http://dx.doi.org/10.1021/acs.macromol.0c02825
Ye S, Wang W, Liang J, Wang S, Xiao M, Meng Y. ACS Sustain Chem Eng, 2020, 8(48): 17860-17867. doi:10.1021/acssuschemeng.0c07283http://dx.doi.org/10.1021/acssuschemeng.0c07283
Ji H, Wang B, Pan L, Li Y. Angew Chem Int Ed, 2018, 57(51): 16888-16892. doi:10.1002/anie.201810083http://dx.doi.org/10.1002/anie.201810083
Li H, Luo H, Zhao J, Zhang G. ACS Macro Lett, 2018, 7(12): 1420-1425. doi:10.1021/acsmacrolett.8b00865http://dx.doi.org/10.1021/acsmacrolett.8b00865
Zhu S, Zhao Y, Ni M, Xu J, Zhou X, Liao Y, Wang Y, Xie X. ACS Macro Lett, 2020, 9(2): 204-209. doi:10.1021/acsmacrolett.9b00895http://dx.doi.org/10.1021/acsmacrolett.9b00895
Zhu S, Wang Y, Ding W, Zhou X, Liao Y, Xie X. Polym Chem, 2020, 11(10): 1691-1695. doi:10.1039/c9py01508fhttp://dx.doi.org/10.1039/c9py01508f
Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56(42): 12987-12990. doi:10.1002/anie.201707122http://dx.doi.org/10.1002/anie.201707122
Shen Y, Xiong W, Li Y, Zhao Z, Lu H, Li Z. CCS Chem, 2021, 3(1): 620-630. doi:10.31635/ccschem.020.202000232http://dx.doi.org/10.31635/ccschem.020.202000232
Yan Q, Li C, Yan T, Shen Y, Li Z. Macromolecules, 2022, 55(10): 3860-3868. doi:10.1021/acs.macromol.2c00439http://dx.doi.org/10.1021/acs.macromol.2c00439
0
浏览量
308
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构