浏览全部资源
扫码关注微信
四川大学化学学院 建筑与环境学院 环保型高分子材料国家地方联合工程实验室 教育部环境与火安全高分子材料协同创新中心 成都 610064
[ "王玉忠,男,1961年生. 中国工程院院士. 1994年毕业于四川大学,获博士学位,现任四川大学化学学院教授. 创建了环保型高分子材料国家地方联合工程实验室、新型防火阻燃材料开发与应用国家地方联合工程研究中心、省部共建环境与火安全高分子材料协同创新中心等国家和省部研究平台. 发表的论文近10年SCI他引超过2万次,3项基础研究成果入选《国家自然科学基金资助项目优秀成果选编》;获授权发明专利160余件,专利实施应用取得显著经济效益. 作为第一完成人,获得包括国家自然科学奖、国家技术发明奖和国家科技进步奖三大奖在内的国家和省部科技成果奖13项;获何梁何利科技进步奖、四川省最高科技奖、四川省教书育人名师、优秀研究生指导教师、四川大学首届“最受学生欢迎教师奖”等荣誉,带领的团队入选教育部创新团队和“全国高校黄大年式教师团队”. 主要从事环境友好高分子材料研究,在高分子材料绿色阻燃高性能化、生物基与生物降解高分子材料、高分子材料循环与升级回收等领域取得了系统的基础和应用研究成果." ]
纸质出版日期:2022-09-20,
网络出版日期:2022-07-09,
收稿日期:2022-04-12,
录用日期:2022-05-11
移动端阅览
刘雪辉,徐世美,张帆等.高分子材料的化学升级回收[J].高分子学报,2022,53(09):1005-1022.
Liu Xue-hui,Xu Shi-mei,Zhang Fan,et al.Chemical Upcycling of Polymeric Materials[J].ACTA POLYMERICA SINICA,2022,53(09):1005-1022.
刘雪辉,徐世美,张帆等.高分子材料的化学升级回收[J].高分子学报,2022,53(09):1005-1022. DOI: 10.11777/j.issn1000-3304.2022.22119.
Liu Xue-hui,Xu Shi-mei,Zhang Fan,et al.Chemical Upcycling of Polymeric Materials[J].ACTA POLYMERICA SINICA,2022,53(09):1005-1022. DOI: 10.11777/j.issn1000-3304.2022.22119.
解决高分子材料的可持续发展,不仅要考虑生产高分子材料的原料的持续来源问题,而且还要考虑其废弃后对生态环境的影响问题. 有效的高分子材料的回收循环利用,不仅可以解决其废弃物焚烧和泄漏至环境中对生态环境的负面影响,而且可以减少生产高分子材料的化石资源消耗,有利于减少碳排放. 本文在提出的高分子材料回收方法分类的基础上,重点讨论了化学回收,特别是以提高回收产物的品质、性能和价值为导向的化学升级回收,总结和评述了量大面广的典型热塑性高分子材料、热固性高分子材料和混杂高分子材料体系的化学升级回收的研究现状,介绍了作者团队近年来在该领域的研究新进展,并对未来发展进行了展望. 与高分子材料的物理回收相比,化学回收具有方法多样化、可设计性强,回收产物因高分子结构和条件控制不同(化学键的选择性断裂)而异等特点,因此化学回收比物理回收更具实现升级回收的潜力.
For a sustainable development of polymeric materials
it is not only necessary to seek sustainable source of raw materials for their production
but also need reducing environmental pollution and resource depletion after their discard. The recovery of waste polymeric materials is one of most effective approaches for addressing the above issues. Therefore
there is an increasing research interest focused on their effective recovery. According to different recovery objectives
the recovery of polymeric materials is divided into energy recovery
mostly carried out by incineration
and matter recovery
which is further divided into "physcycling" or "mechcycling" (physical or mechanical recovery)
"chemcycling" (chemical recovery)
"physchemcycling" or "mechchemcycling" (physical and chemical recovery)
and "biologcycling" (biological recovery). In recent years
more attention have been paid to the quality
performance
or value (including economic/environmental value) of the recycled products
which are used to define the "downcycling" and "upcycling". Whenever possible
a closed-loop recovery (
i.e
. "recycling") is always desirable because it
can produce the recycled polymers from waste polymeric materials
via
physical recycling and chemical recycling
respectively. However
both methods have their limitations. The recycled polymers
via
physical recycling almost inevitably have deteriorated performances compared with the original polymers
often manifesting itself as downcycling of polymeric materials. On the other hand
chemical recycling can offer an opportunity to revert waste polymeric materials back to their monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymers. Unfortunately
only a small subset of polymeric materials could be chemically recycled in an energy-efficient and cost-effective manner. Therefore
more and more efforts have been devoted to upcycling polymeric materials although this field is still in its infancy. Chemcycling with flexible ways and strong designability is regarded as a promising method for upcycling that can recovers added-value chemicals or materials from polymeric materials. However
the traditional degradation process of polymeric materials is always carried out under harsh conditions
and inevitably generates complex distribution of degraded products which are difficult to separate and reutilize. Selective degradation of polymeric materials using highly efficient catalysts provides a sustainable approach to addressing this challenge. Moreover
the chemcycling process can be largely affected by the aggregated structure and composition of polymeric materials. We choose typical thermoplastic
thermosetting and hybrid polymeric materials
which are widely used and of a large quantity
to discuss their chemical upcycling
especially present author's recent relevant research work
and provide an insight into the future development of chemical upcycling.
化学回收升级回收热塑性热固性混杂高分子材料
Chemical recoveryUpcyclingThermoplasticThermosetHybrid polymeric materials
Zhang F, Wang F, Wei X, Yang Y, Xu S, Deng D, Wang Y Z. J Energy Chem, 2022, 69: 369-388. doi:10.1016/j.jechem.2021.12.052http://dx.doi.org/10.1016/j.jechem.2021.12.052
Chen H J, Bai Q Y, Liu M C, Wu G, Wang Y Z. Green Chem, 2021, 23: 7646-7658. doi:10.1039/d1gc01805ahttp://dx.doi.org/10.1039/d1gc01805a
Yang Keke(杨科珂), Wang Yuzhong(王玉忠). Mater China(中国材料进展), 2011, 30(8): 25-34
Yan Y T, Wu G, Chen S C, Wang Y Z. Sci China Chem, 2022, 65: 943-953. doi:10.1007/s11426-021-1196-7http://dx.doi.org/10.1007/s11426-021-1196-7
Tian G Q, Yang Z H, Zhang W, Chen S C, Chen L, Wu G, Wang Y Z. Green Chem, 2022, doi: 10.1039/x0xx00000xhttp://dx.doi.org/10.1039/x0xx00000x
Häußler M, Eck M, Rothauer D, Mecking S. Nature, 2021, 590:423-427. doi:10.1038/s41586-020-03149-9http://dx.doi.org/10.1038/s41586-020-03149-9
Vollmer I, Jenks M J F, Roelands M C P, White R J, Van Harmelen T, de Wild P, van der Laan G P, Meirer F,Keurentjes J T F, Weckhuysen B M. Angew Chem Int Ed, 2020, 59(36): 15402-15423. doi:10.1002/anie.201915651http://dx.doi.org/10.1002/anie.201915651
Williams P T, Williams E A. Energy Fuels, 1999, 13: 188-196. doi:10.1021/ef980163xhttp://dx.doi.org/10.1021/ef980163x
Panda A K, Singh R K, Mishra D K. Renew Sustain Energ Rev, 2010, 14(1): 233-248. doi:10.1016/j.rser.2009.07.005http://dx.doi.org/10.1016/j.rser.2009.07.005
Zhou Q, Tang C, Wang Y Z, Zheng L. Fuel, 2004, 83(13): 1727-1732. doi:10.1016/j.fuel.2004.02.015http://dx.doi.org/10.1016/j.fuel.2004.02.015
Zhou Q, Wang Y Z, Tang C, Zhang Y H. Polym Degrad Stab, 2003, 80(1): 23-30
Zhou Q, Zheng L, Wang Y Z, Zhao G M, Wang B. Polym Degrad Stab, 2004, 84(3): 493-497. doi:10.1016/j.polymdegradstab.2004.01.007http://dx.doi.org/10.1016/j.polymdegradstab.2004.01.007
Tang C, Wang Y Z, Zhou Q, Zheng L. Polym Degrad Stab, 2003, 81(1): 89-94. doi:10.1016/s0141-3910(03)00066-1http://dx.doi.org/10.1016/s0141-3910(03)00066-1
Ragaert K, Delva L, van Geem K. Waste Manage, 2017, 69: 24-58. doi:10.1016/j.wasman.2017.07.044http://dx.doi.org/10.1016/j.wasman.2017.07.044
Celik G, Kennedy R M, Hackler R A, Ferrandon M, Tennakoon A, Patnaik S, Lapointe A M, Ammal S C, Heyden A, Perras F A, Pruski M, Scott S L, Poeppelmeier K R, Sadow A D, Delferro M. ACS Cent Sci, 2019, 5(11): 1795-1803
Tennakoon A, Wu X, Paterson A L, Patnaik S, Pei Y, Lapointe A M, Ammal S C, Hackler R A, Heyden A, Slowing I I, Coates G W, Delferro M, Peters B, Huang W, Sadow A D, Perras F A. Nat Catal, 2020, 3(11): 893-901. doi:10.1038/s41929-020-00519-4http://dx.doi.org/10.1038/s41929-020-00519-4
Bäckström E, Odelius K, Hakkarainen M. Ind Eng Chem Res, 2017, 56(50): 14814-14821. doi:10.1021/acs.iecr.7b04091http://dx.doi.org/10.1021/acs.iecr.7b04091
Bäckström E, Odelius K, Hakkarainen M. ACS Sustainable Chem Eng, 2019, 7(12): 11004-11013. doi:10.1021/acssuschemeng.9b02092http://dx.doi.org/10.1021/acssuschemeng.9b02092
Boaen N K, Hillmyer M A. Macromolecules, 2003, 36: 7027-7034. doi:10.1021/ma0347621http://dx.doi.org/10.1021/ma0347621
Chulsung B, Hartwig J F, Harris B N K, Long R O, Anderson K S, Hillmyer M A. J Am Chem Soc, 2005, 127: 767-776
Bunescu A, Lee S, Li Q, Hartwig J F. ACS Cent Sci, 2017, 3(8): 895-903. doi:10.1021/acscentsci.7b00255http://dx.doi.org/10.1021/acscentsci.7b00255
Chen L, Malollari K G, Uliana A, Sanchez D, Messersmith P B, Hartwig J F. Chem, 2021, 7(1): 137-145. doi:10.1016/j.chempr.2020.11.020http://dx.doi.org/10.1016/j.chempr.2020.11.020
Williamson J B, Na C G, Johnson R R, Daniel W F M, Alexanian E J, Leibfarth F A. J Am Chem Soc, 2019, 141(32): 12815-12823. doi:10.1021/jacs.9b05799http://dx.doi.org/10.1021/jacs.9b05799
Jia X, Qin C, Friedberger T, Guan Z, Huang Z. Sci Adv, 2016, 2: e1501591. doi:10.1126/sciadv.1501591http://dx.doi.org/10.1126/sciadv.1501591
Zhang F, Zeng M, Yappert R D, Sun J, Lee Y H, LaPointe A M, Peters B, Abu-Omar M M, Scott S L. Science, 2020, 370: 437-441. doi:10.1126/science.abc5441http://dx.doi.org/10.1126/science.abc5441
Pham D D, Cho J. Green Chem, 2021, 23(1): 511-25. doi:10.1039/d0gc03536jhttp://dx.doi.org/10.1039/d0gc03536j
Pudack C, StepansKki M, Fässler P. Chem Ing Technol, 2020, 92(4): 452-458
Al-Sabagh A, Yehia F, Harding D R, Eshaq G, ElMetwally A E. Green Chem, 2016, 18(14): 3997-4003. doi:10.1039/c6gc00534ahttp://dx.doi.org/10.1039/c6gc00534a
Jehanno C, Flores I, Dove A P, Müller A J, Ruipérez F, Sardon H. Green Chem, 2018, 20(6): 1205-1212. doi:10.1039/c7gc03396fhttp://dx.doi.org/10.1039/c7gc03396f
Yang W, Wang J, Jiao L, Song Y, Li C, Hu C. Green Chem, 2022, 24(3):1362-1372. doi:10.1039/d1gc04567ahttp://dx.doi.org/10.1039/d1gc04567a
Ügdüler S, Van Geem K M, Denolf R, Roosen M, Mys N, Ragaert K, Meeste S D. Green Chem, 2020, 22(16): 5376-5394. doi:10.1039/d0gc00894jhttp://dx.doi.org/10.1039/d0gc00894j
Zhang S, Xu W, Du R, Zhou X, Liu, X, Xu S, Wang Y Z. Green Chem 2022, 24 (8): 3284-3292. doi:10.1039/d2gc00328ghttp://dx.doi.org/10.1039/d2gc00328g
Przepiórski J, Karolczyk J, Takeda K, Tsumura T, Toyoda M, Morawski A W. Ind Eng Chem Res, 2009, 48(15): 7110-7116. doi:10.1021/ie801694thttp://dx.doi.org/10.1021/ie801694t
Ayyalusamy S, Mishra S, Suryanarayanan V. Sci Rep, 2018, 8(1): 1-9. doi:10.1038/s41598-018-31627-8http://dx.doi.org/10.1038/s41598-018-31627-8
Gong J, Chen X, Tang T. Prog Polym Sci, 2019, 94: 1-32. doi:10.1016/j.progpolymsci.2019.04.001http://dx.doi.org/10.1016/j.progpolymsci.2019.04.001
Zhang B, Song C, Liu C, Min J, Azadmanjiri J, Ni Y, Niu R, Gong J, Zhao Q, Tang T. J Mater Chem A, 2019, 7(40): 22912-22923. doi:10.1039/c9ta07663hhttp://dx.doi.org/10.1039/c9ta07663h
Mayer-Gall T, Opwis K, Gutmann J S. J Mater Chem A, 2015, 3(1): 386-394. doi:10.1039/c4ta04212chttp://dx.doi.org/10.1039/c4ta04212c
Park S H, Alammar A, Fulop Z, Pulido B A, Nunes S P, Szekely G. Green Chem, 2021, 23(3): 1175-1184. doi:10.1039/d0gc03226chttp://dx.doi.org/10.1039/d0gc03226c
Vaidya U R, Nadkarni V M. Ind Eng Chem Res,1987, 26(2): 194-198. doi:10.1021/ie00062a003http://dx.doi.org/10.1021/ie00062a003
Gioia C, Vannini M, Marchese P, Minesso A, Cavalieri R, Colonna M, Celli A. Green Chem, 2014, 16(4): 1807-1815. doi:10.1039/c3gc42122hhttp://dx.doi.org/10.1039/c3gc42122h
Rorrer N A, Nicholson S, Carpenter A, Biddy M J, Grundl N J, Beckham G T. Joule, 2019, 3(4): 1006-1027. doi:10.1016/j.joule.2019.01.018http://dx.doi.org/10.1016/j.joule.2019.01.018
Qiu J, Ma S, Wang S,Tang Z, Li Q, Tian A, Xu x, Wang B, Lu N, Zhu J. Macromolecules, 2021, 54(2): 703-712. doi:10.1021/acs.macromol.0c02359http://dx.doi.org/10.1021/acs.macromol.0c02359
Sharma P, Lochab B, Kumar D, Roy P K. ACS Sustainable Chem Eng, 2016, 4(3): 1085-1093. doi:10.1021/acssuschemeng.5b01153http://dx.doi.org/10.1021/acssuschemeng.5b01153
Liu S Q, Venkataraman S, ong Z Y, Chan J M W, Yang C, Hedrick J L, Yang Y Y. Small, 2014, 10(20): 4130-4135
Fukushima K, Liu S, Wu H, Engler A C, Coady D J, Maune H, Pitera J, Nelson A, Wiradharma N, Venkataraman S, Huang Y, Fan W, Ying J Y, Yang Y Y, Hedrick J L. Nat Commun, 2013, 4: 2861. doi:10.1038/ncomms3861http://dx.doi.org/10.1038/ncomms3861
Liu S, Fukushima K, Venkataraman S, Hedrick J L, Yang Y Y. Nanomedicine, 2018, 14(1): 165-172. doi:10.1016/j.nano.2017.09.007http://dx.doi.org/10.1016/j.nano.2017.09.007
Westhues S, Idel J, Klankermayer J. Sci Adv, 2018, 4(8): eaat9669. doi:10.1126/sciadv.aat9669http://dx.doi.org/10.1126/sciadv.aat9669
Hongkailers S, Jing Y, Wang Y, Hinchiranan N, Yan N. ChemSusChem, 2021, 14(19): 4330-4339. doi:10.1002/cssc.202100956http://dx.doi.org/10.1002/cssc.202100956
Jing Y, Wang Y, Furukawa S, Xia J, Sun C, H¸ Hülsey M J, Wang H, Guo Y, Liu X, Yan N. Angew Chem Int Ed, 2021, 60(10): 5527-5535
Li Y, Wang M, Liu X, Hu C, Xiao D, Ma D. Angew Chem Int Ed, 2022, 61(10): e202117205. doi:10.1002/anie.202117205http://dx.doi.org/10.1002/anie.202117205
Zhou H, Ren Y, Li Z, Xu M, Wang Y, Ge R, Kong X, Zheng L, Duan H. Nat Commun, 2021, 12(1): 4679. doi:10.1038/s41467-021-25048-xhttp://dx.doi.org/10.1038/s41467-021-25048-x
Uekert T, Kuehnel M F, Wakerley D W, Reisner E. Energy Environ Sci, 2018, 11(10): 2853-2857. doi:10.1039/c8ee01408fhttp://dx.doi.org/10.1039/c8ee01408f
Kim Y N, Kim Y O, Kim S Y, Park M, Yang B, Kim J, Jung Y C. Compos Sci Technol, 2019, 173: 66-72. doi:10.1016/j.compscitech.2019.01.026http://dx.doi.org/10.1016/j.compscitech.2019.01.026
Li K, Xu Z. Environ Sci Technol, 2015, 49(3): 1761-1767. doi:10.1021/es504644bhttp://dx.doi.org/10.1021/es504644b
Dang W, Kubouchi M, Sembokuya H, Tsuda K. Polymer, 2005, 46(6): 1905-1912. doi:10.1016/j.polymer.2004.12.035http://dx.doi.org/10.1016/j.polymer.2004.12.035
Deng T, Liu Y, Cui X, Yang Y, Jia S, Wang Y, Lu C, Li D, Cai R, Hou X. Green Chem, 2015, 17(4): 2141-2145. doi:10.1039/c4gc02512ahttp://dx.doi.org/10.1039/c4gc02512a
Wang Y, Cui X, Ge H, Yang Y, Wang Y, Zhang C, Li J, Deng T, Qin Z, Hou X. ACS Sustainable Chem Eng, 2015, 3(12): 3332-3337. doi:10.1021/acssuschemeng.5b00949http://dx.doi.org/10.1021/acssuschemeng.5b00949
Liu T, Guo X, Liu W, Hao C, Wang L, Hiscox W C, Liu C, Jin C, Xin J, Zhang J. Green Chem, 2017, 19(18): 4364-4372. doi:10.1039/c7gc01737ehttp://dx.doi.org/10.1039/c7gc01737e
Li J, Xu P L, Zhu Y K, Ding J P, Xue L X, Wang Y Z. Green Chem, 2012, 14(12): 3260-3263. doi:10.1039/c2gc36294ehttp://dx.doi.org/10.1039/c2gc36294e
Lee M, Kim D H, Park J J, You N H, Goh M. Waste Manage, 2020, 118: 190-196. doi:10.1016/j.wasman.2020.08.014http://dx.doi.org/10.1016/j.wasman.2020.08.014
Kim D H, Yu A, Goh M. J Ind Eng Chem, 2021, 96: 76-81. doi:10.1016/j.jiec.2021.01.047http://dx.doi.org/10.1016/j.jiec.2021.01.047
Zhou X, An W, Xia X, Long Y, Liu X, Xu S, Wang Y Z. ACS Sustainable Chem Eng, 2022, 10 (17): 5582-5589. doi:10.1021/acssuschemeng.2c00315http://dx.doi.org/10.1021/acssuschemeng.2c00315
Gao X, Li Q, Qiu J. Waste Manage, 2018, 74: 427-434. doi:10.1016/j.wasman.2018.01.004http://dx.doi.org/10.1016/j.wasman.2018.01.004
Sun H, Guo G, Memon S A, Xu W, Zhang Q, Zhu J H, Xing F. Compos Part A Appl Sci Manuf, 2015, 78: 10-17. doi:10.1016/j.compositesa.2015.07.015http://dx.doi.org/10.1016/j.compositesa.2015.07.015
Zhu J H, Chen P Y, Su M N, Pei C, Xing F. Green Chem, 2019, 21(7): 1635-1647. doi:10.1039/c8gc03672ahttp://dx.doi.org/10.1039/c8gc03672a
Pei C, Chen P Y, Kong S C, Wu J, Zhu J H, Xing F. Sep Purif Technol, 2022, 278: 119591. doi:10.1016/j.seppur.2021.119591http://dx.doi.org/10.1016/j.seppur.2021.119591
Gharde S, Kandasubramanian B. Environ Technol Innov, 2019, 14: 100311. doi:10.1016/j.eti.2019.01.005http://dx.doi.org/10.1016/j.eti.2019.01.005
Verma S, Balasubramaniam B, Gupta R K. Curr. Opin. Green Sustainable Chem, 2018, 13: 86-90. doi:10.1016/j.cogsc.2018.05.011http://dx.doi.org/10.1016/j.cogsc.2018.05.011
Tian F, Yang Y, Wang X L, An W L, Zhao X, Xu S, Wang Y Z. Mater Horiz, 2019, 6(8): 1733-1739. doi:10.1039/c9mh00541bhttp://dx.doi.org/10.1039/c9mh00541b
Dang W, Kubouchi M, Yamamoto S, Sembokuya H, Tsuda K. Polymer, 2002, 43: 2953-2958. doi:10.1016/s0032-3861(02)00100-3http://dx.doi.org/10.1016/s0032-3861(02)00100-3
Tian F, Wang X L, Yang Y, An W, Zhao X, Xu S, Wang Y Z. ACS Sustainable Chem Eng, 2020, 8(5): 2226-2235. doi:10.1021/acssuschemeng.9b06013http://dx.doi.org/10.1021/acssuschemeng.9b06013
Das M, Chacko R, Varughese S. ACS Sustainable Chem Eng, 2018, 6(2): 1564-1571. doi:10.1021/acssuschemeng.7b01456http://dx.doi.org/10.1021/acssuschemeng.7b01456
Kim D H, Lee M, Goh M. ACS Sustainable Chem Eng, 2020, 8(6): 2433-2440. doi:10.1021/acssuschemeng.9b06371http://dx.doi.org/10.1021/acssuschemeng.9b06371
Liu X, Tian F, Zhao X, Du R, Xu S, Wang Y Z. Appl Surf Sci, 2020, 529: 147151
Kuang X, Zhou Y, Shi Q, Wang T, Qi H J. ACS Sustainable Chem Eng, 2018, 6(7): 9189-9197. doi:10.1021/acssuschemeng.8b01538http://dx.doi.org/10.1021/acssuschemeng.8b01538
Shi X, Luo C, Lu H, Yu K. Polym Eng Sci, 2019, 59(s2): E111-E119. doi:10.1002/pen.24997http://dx.doi.org/10.1002/pen.24997
Kuang X, Shi Q, Zhou Y, Zhao Z, Wang T, Qi H J. RSC Adv, 2018, 8(3): 1493-1502. doi:10.1039/c7ra12787ahttp://dx.doi.org/10.1039/c7ra12787a
Zhao X, Wang X L, Tian F, An W L, Xu S, Wang Y Z. Green Chem, 2019, 21(9): 2487-2493. doi:10.1039/c9gc00685khttp://dx.doi.org/10.1039/c9gc00685k
Zhao X, Liu X, Feng K, An W L, Tian F, Du R, Xu S, Chen L, Wu G, Wang Y Z. ChemSusChem, 2022, 15(3): e202101607. doi:10.1002/cssc.202101607http://dx.doi.org/10.1002/cssc.202101607
Sugeta T, Nagaoka S, Otake K, Sako T. Kobunshi Ronbunshu, 2001, 58(10): 557-563. doi:10.1295/koron.58.557http://dx.doi.org/10.1295/koron.58.557
Oliveux G, Bailleul J L, Salle E L G L. Compos Part A, 2012, 43: 1809-1818. doi:10.1016/j.compositesa.2012.06.008http://dx.doi.org/10.1016/j.compositesa.2012.06.008
Nakagawa T, Goto M. Polym Degrad Stab, 2015, 115: 16-23
Nabila B, Hassiba H, Benyahia Ali A, Aîcha S. Adv Mat Res, 2015, 1101: 20-27. doi:10.4028/www.scientific.net/amr.1101.20http://dx.doi.org/10.4028/www.scientific.net/amr.1101.20
Suyama K, Kubota M, Shirai M, Yoshida H. Polym Degrad Stab, 2007, 92(2): 317-322. doi:10.1016/j.polymdegradstab.2006.10.008http://dx.doi.org/10.1016/j.polymdegradstab.2006.10.008
Suyama K, Kubota M, Shirai M, Yoshida H. Polym Degrad Stab, 2010, 95(9): 1588-1592. doi:10.1016/j.polymdegradstab.2010.05.034http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.034
Nakagawa T, Goto M. Eng J, 2015, 19(5): 1-12. doi:10.4186/ej.2015.19.5.1http://dx.doi.org/10.4186/ej.2015.19.5.1
An W, Wang X L, Yang Y, Xu H, Xu S, Wang Y Z. Green Chem, 2019, 21(11): 3006-3012. doi:10.1039/c8gc03996hhttp://dx.doi.org/10.1039/c8gc03996h
Wang X L, An W L, Yang Y, Hu Z Y, Xu S, Liao W, Wang Y Z. Chem Eng J, 2019, 361: 21-30. doi:10.1016/j.cej.2018.12.032http://dx.doi.org/10.1016/j.cej.2018.12.032
Wang X L, An W L, Tian F, Yang Y, Xu H X, Wang D, Zhao X, Xu P P, Xu S, Wang Y Z. J Hazard Mater, 2020, 384: 121465. doi:10.1016/j.jhazmat.2019.121465http://dx.doi.org/10.1016/j.jhazmat.2019.121465
Wang X L, An W L, Tian F, Yang Y, Zhao X, Xu P P, Xu S, Wang Y Z. Waste Manage, 2021, 126: 89-96
Wang X L, An W L, Tian F, Yang Y, Zhao X, Xu P P, Xu S, Wang Y Z. ACS Sustainable Chem Eng, 2020, 8(42): 16010-16019. doi:10.1021/acssuschemeng.0c06240http://dx.doi.org/10.1021/acssuschemeng.0c06240
Vallee M, Tersac G, Destais-Orvoen N, Durand G. Ind Eng Chem Res, 2004, 43(20): 6317-6324. doi:10.1021/ie049871yhttp://dx.doi.org/10.1021/ie049871y
Wang Y, Cui X, Yang Q, Deng T, Wang Y, Yang Y, Jia S, Qin Z, Hou X. Green Chem, 2015, 17(9): 4527-4532. doi:10.1039/c5gc01048ahttp://dx.doi.org/10.1039/c5gc01048a
Zhang N, Hou X, Cui X, Chai L, Li H, Zhang H, Wang Y, Deng T. J Clean Prod, 2021, 296: 126492. doi:10.1016/j.jclepro.2021.126492http://dx.doi.org/10.1016/j.jclepro.2021.126492
Oliveux G, Dandy L O, Leeke G A. Prog Mater Sci, 2015, 72: 61-99. doi:10.1016/j.pmatsci.2015.01.004http://dx.doi.org/10.1016/j.pmatsci.2015.01.004
Nagel U, Yang L, Kao C C, Thomason J L. Polym Compos, 2018, 39(4): 1032-1040
Zabihi O, Ahmadi M, Liu C, Mahmoodi R, Li Q, Ferdowsi G M R, Naebe M. Sustainability, 2020, 12(2): 641
Zabihi O, Ahmadi M, Liu C, Mahmoodi R, Li Q, Naebe M. Compos B Eng, 2020, 184: 107750. doi:10.1016/j.compositesb.2020.107750http://dx.doi.org/10.1016/j.compositesb.2020.107750
Yang P, Zhou Q, Yuan X X, Van Kasteren J M, Wang Y Z. Polym Degrad Stab, 2012, 97(7): 1101-1106. doi:10.1016/j.polymdegradstab.2012.04.007http://dx.doi.org/10.1016/j.polymdegradstab.2012.04.007
Yang P, Zhou Q, Li X Y, Yang K K, Wang Y Z. J Reinf Plast Compos, 2014, 33(22): 2106-2114. doi:10.1177/0731684414555745http://dx.doi.org/10.1177/0731684414555745
Huan X, Wu T, Yan J, Jia X, Zu L, Sui G, Yang X. Compos B Eng, 2021, 211: 108656. doi:10.1016/j.compositesb.2021.108656http://dx.doi.org/10.1016/j.compositesb.2021.108656
Xing M, Li Z, Zheng G, Du Y, Chen C, Wang Y. Compos B Eng, 2021, 224: 109230. doi:10.1016/j.compositesb.2021.109230http://dx.doi.org/10.1016/j.compositesb.2021.109230
Ma Y, Kim D, Nutt S R. Polym Degrad Stab, 2017, 146: 240-249. doi:10.1016/j.polymdegradstab.2017.10.014http://dx.doi.org/10.1016/j.polymdegradstab.2017.10.014
Ma Y, Navarro C A, Williams T J, Nutt S R. Polym Degrad Stab, 2020, 175: 109125. doi:10.1016/j.polymdegradstab.2020.109125http://dx.doi.org/10.1016/j.polymdegradstab.2020.109125
Navarro C A, Ma Y, Michael K H, Nuttb S R, Williams T J. Green Chem, 2021, 23: 6356-6360. doi:10.1039/d1gc01970hhttp://dx.doi.org/10.1039/d1gc01970h
Grause G, Kameda T, Mochizuki T, Yoshioka T. J Mater Cycles Waste, 2013, 15(2):122-128. doi:10.1007/s10163-012-0101-xhttp://dx.doi.org/10.1007/s10163-012-0101-x
Pickering S J, Turner T A, Meng F, Morris C N, Heil J P, Wong K H, Melendi S. 2nd Annual Composites and Advanced Materials Expo, CAMX 2015; Dallas Convention Center Dallas, 2015. 2384-2394
Sugeta T, Nagaoka S, Otake K, Sako T. Kobunshi Ronbunshu, 2001, 58(10): 557-563. doi:10.1295/koron.58.557http://dx.doi.org/10.1295/koron.58.557
Iwaya T, Tokuno S, Sasaki M, Goto M, Shibata K. J Mater Sci, 2007, 43(7): 2452-2456. doi:10.1007/s10853-007-2017-8http://dx.doi.org/10.1007/s10853-007-2017-8
0
浏览量
758
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构