浏览全部资源
扫码关注微信
1.中国科学院电工研究所 微纳加工与智能电气设备研究部 北京 100190
2.中国科学院大学工程科学学院 北京 100049
E-mail: xuju@mail.iee.ac.cn;
tonghui@mail.iee.ac.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-09-02,
收稿日期:2022-05-11,
移动端阅览
曹诗沫,朱家峰,罗金鹏等.基于环丁烷四甲酸酐的脂环聚酰亚胺介电性能研究[J].高分子学报,2022,53(12):1514-1522.
Cao Shi-mo,Zhu Jia-feng,Luo Jin-peng,et al.Dielectric Properties of Alicyclic Polyimides Derived from Cyclobutane-1,2,3,4-tetracarboxylic Dianhydride[J].ACTA POLYMERICA SINICA,2022,53(12):1514-1522.
曹诗沫,朱家峰,罗金鹏等.基于环丁烷四甲酸酐的脂环聚酰亚胺介电性能研究[J].高分子学报,2022,53(12):1514-1522. DOI: 10.11777/j.issn1000-3304.2022.22179.
Cao Shi-mo,Zhu Jia-feng,Luo Jin-peng,et al.Dielectric Properties of Alicyclic Polyimides Derived from Cyclobutane-1,2,3,4-tetracarboxylic Dianhydride[J].ACTA POLYMERICA SINICA,2022,53(12):1514-1522. DOI: 10.11777/j.issn1000-3304.2022.22179.
商品化聚酰亚胺由于含碳量高,发生击穿时容易产生积碳导致相应的金属化薄膜电容器层间短路失效. 为改善这一问题,从分子设计出发,选用含四元脂环结构的环丁烷四甲酸二酐(CBDA)作为二酐单体,向聚酰亚胺分子结构中引入低碳氢比的脂环结构,制备脂环聚酰亚胺,其介电性能优异,介电常数为3.83~4.74,损耗因子为0.49%~1.29%,最高击穿场强和理论能量密度分别为547 MV/m和5.91 J/cm
3
. 并且,由于碳氢比降至1.16~1.29,远低于商品化聚酰亚胺,大大改善击穿点处的积炭行为,从而有利于相应金属化薄膜电容器的自愈性.
Carbon deposition tends to occur in commercial polyimide during electric breakdown due to the high carbon content
resulting in short circuit between interlayers of the corresponding metallized film capacitors. In order to solve this problem
molecular design is employed by introducing alicyclic structure with low carbon content into polyimides in this study. Specifically
the alicyclic polyimides (PI-1-PI-5) are prepared from alicyclic dianhydride of cyclobutane-1
2
3
4-tetracarboxylic dianhydride (CBDA) and aromatic diamines. Defect-free films derived from alicyclic polyimides are obtained whose chemical structures have been assigned by FTIR. In addition
it is indicated from the XRD results that the alicyclic polyimides are amorphous. When it comes to the dielectric properties
dielectric constants of 3.83-4.74 (at 10
3
Hz) are achieved owing to the easier polarization of extranuclear electrons in cycloalkane structure in alicyclic polyimides compared to the all-aromatic polyimide such as Kapton (
ε
r
=3.5). Besides
the values of dissipation factor are in the range of 0.49% to 1.29% (at 10
3
Hz). The flexible alicyclic structure contributes to frictionless reorientation and low dielectric loss. The band gap of 3.96-4.13 eV and Weibull breakdown strength of 243-547 MV/m in the alicyclic polyimides are acquired. As
a result
the highest theoretical energy density is as high as 5.91 J/cm
3
obtained in PI-3. The last but not the least
thanks to the reduced carbon content (carbon-hydrogen ratio: 1.16-1.29)
compared to the commercial polyimide of Kapton (carbon-hydrogen ratio: 1.60)
carbon deposition behavior has been greatly suppressed because the hydrogen and oxygen elements would escape easily from the breakdown point in the form of water vapor under the high-temperature arc. Furthermore
the dielectric films of alicyclic polyimides would facilitate the self-healing behavior of the corresponding metallized film capacitor.
2
聚酰亚胺脂环结构介电性能自愈性
PolyimideAlicyclic structureDielectric propertySelf-healing
Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q. Ann Rev Mater Res, 2018, 48(1): 219-243. doi:10.1146/annurev-matsci-070317-124435http://dx.doi.org/10.1146/annurev-matsci-070317-124435
Tan D, Zhang L, Chen Q, Irwin P. J Electron Mater, 2014, 43(12): 4569-4575. doi:10.1007/s11664-014-3440-7http://dx.doi.org/10.1007/s11664-014-3440-7
Gao Mengyan(高梦岩), Wang Changou(王畅鸥), Jia Yan(贾妍), Zhai Lei(翟磊), Mo Song(莫松), He Minhui(何民辉), Fan Lin(范琳). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1283-1297. doi:10.11777/j.issn1000-3304.2021.21094http://dx.doi.org/10.11777/j.issn1000-3304.2021.21094
Ding Mengxian(丁孟贤). Polyimide: Relationship between Chemistry, Structure and Properties and Materials (聚酰亚胺: 化学、结构与性能的关系及材料). 2nd ed(第二版). Beijing(北京): Science Press(科学出版社), 2012. 1-4. doi:10.4028/www.scientific.net/amm.188.300http://dx.doi.org/10.4028/www.scientific.net/amm.188.300
Qu Lunjun(瞿伦君), Tang Lishuang(唐丽爽), Liu Siwei(刘四委), Chi Zhenguo(池振国), Chen Xudong(陈旭东), Zhang Yi(张艺), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2018, (11): 1430-1441. doi:10.11777/j.issn1000-3304.2018.18075http://dx.doi.org/10.11777/j.issn1000-3304.2018.18075
Zhu L. J Phys Chem Lett, 2014, 5(21): 3677-3687. doi:10.1021/jz501831qhttp://dx.doi.org/10.1021/jz501831q
Liu J, Min Y, Chen J, Zhou H, Wang C. Macromol Rapid Commun, 2007, 28(2): 215-219. doi:10.1002/marc.200600607http://dx.doi.org/10.1002/marc.200600607
Shen D, Liu J, Yang H, Yang S. Chem Lett, 2013, 42(10): 1230-1232. doi:10.1246/cl.130623http://dx.doi.org/10.1246/cl.130623
Song N, Shi K, Yu H, Yao H, Ma T, Zhu S, Zhang Y, Guan S. Eur Polym J, 2018, 101: 105-112. doi:10.1016/j.eurpolymj.2018.02.024http://dx.doi.org/10.1016/j.eurpolymj.2018.02.024
Tan Lin(谭麟), Liu Shumei(刘述梅), Zhao Jianqing(赵建青). Journal of Chemical Engineering of Chinese Universities(高校化学工程学报), 2012, 26(3): 499-504. doi:10.3969/j.issn.1003-9015.2012.03.023http://dx.doi.org/10.3969/j.issn.1003-9015.2012.03.023
Prateek, Thakur V K, Gupta R K. Chem Rev, 2016, 116(7): 4260-4317. doi:10.1021/acs.chemrev.5b00495http://dx.doi.org/10.1021/acs.chemrev.5b00495
Tong H, Ahmad A, Fu J, Xu H, Fan T, Hou Y, Xu J. J Appl Polym Sci, 2019, 136(34): 47883. doi:10.1002/app.47883http://dx.doi.org/10.1002/app.47883
Tong H, Fu J, Ahmad A, Fan T, Hou Y, Xu J. Macromol Mater Eng, 2019, 304(4): 1800709. doi:10.1002/mame.201800709http://dx.doi.org/10.1002/mame.201800709
Peng X, Wu Q, Jiang S, Hanif M, Chen S, Hou H. J Appl Polym Sci, 2014, 131(24): 40828. doi:10.1002/app.40828http://dx.doi.org/10.1002/app.40828
Peng X, Xu W, Chen L, Ding Y, Xiong T, Chen S, Hou H. React Funct Polym, 2016, 106: 93-98. doi:10.1016/j.reactfunctpolym.2016.07.017http://dx.doi.org/10.1016/j.reactfunctpolym.2016.07.017
Ma R, Baldwin A F, Wang C, Offenbach I, Cakmak M, Ramprasad R, Sotzing G A. ACS Appl Mater Interfaces, 2014, 6(13): 10445-10451. doi:10.1021/am502002vhttp://dx.doi.org/10.1021/am502002v
Baldwin A F, Ma R, Wang C, Ramprasad R, Sotzing G A. J Appl Polym Sci, 2013, 130(2): 1276-1280. doi:10.1002/app.39240http://dx.doi.org/10.1002/app.39240
Volksen W. High Perform Polym, 1994, 117: 111-164
Yang Zhenghui(杨正慧), Kang Chuanqing(康传清), Guo Haiquan(郭海泉), Gao Lianxun(高连勋). Acta Polymerica Sinica(高分子学报), 2021, 52(10): 1308-1315. doi:10.11777/j.issn1000-3304.2021.21077http://dx.doi.org/10.11777/j.issn1000-3304.2021.21077
Ha K, West J L. J Appl Polym Sci, 2002, 86(12): 3072-3077. doi:10.1002/app.11315http://dx.doi.org/10.1002/app.11315
Chen Yunxia(陈云霞), Zhou Xuedong(周学东), He Xin(何鑫). China Ceramic Industry(中国陶瓷工业), 2007, 14(5): 6-10. doi:10.3969/j.issn.1006-2874.2007.05.002http://dx.doi.org/10.3969/j.issn.1006-2874.2007.05.002
Wu S, Burlingame Q, Cheng Z X, Lin M, Zhang Q M. J Electron Mater, 2014, 43(12): 4548-4551. doi:10.1007/s11664-014-3374-0http://dx.doi.org/10.1007/s11664-014-3374-0
Yuan X, Matsuyama Y, Chung T C M. Macromolecules, 2010, 43(9): 4011-4015. doi:10.1021/ma100209dhttp://dx.doi.org/10.1021/ma100209d
Li Hua(李化), Zhang Miao(章妙), Lin Fuchang(林福昌), Lv Fei(吕霏), Li Zhicheng(李智成), Peng Bo(彭波). Transactions of China Electrotechnical Society(电工技术学报), 2012, 27(9): 218-223, 230
Reed C W, Cichanowskil S W. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 904-922. doi:10.1109/94.326658http://dx.doi.org/10.1109/94.326658
Ho J S, Greenbaum S G. ACS Appl Mater Interfaces, 2018, 10(35): 29189-29218. doi:10.1021/acsami.8b07705http://dx.doi.org/10.1021/acsami.8b07705
0
浏览量
101
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构