浏览全部资源
扫码关注微信
1.北京工商大学化学与材料工程学院 北京 100048
2.北京化工大学材料科学与工程学院 北京 100029
3.华南理工大学材料科学与工程学院 广州 510641
[ "刘军,男,1984年生. 北京化工大学教授,博士生导师. 2003~2011年,北京化工大学本硕博连读;2011~2013年,美国密歇根州立大学博士后. 曾获得国家优秀青年科学基金资助. 发表文章100余篇,单篇最高他引200余次. 研究工作被美国物理协会(American Physical Society)、纳米科技网站(Nanotechweb)等进行Highlight. 相关工作被《Nano Energy》与《Journal of Chemical Physics》选为封面论文(cover paper). 获得首届中国化工学会颁发的“中国橡胶科技创新奖”与教育部霍英东教育基金会第十七届高等院校青年教师基金资助. 主要从事高分子基纳米复合材料基因组计划:高通量计算机模拟、高通量实验与数据库,高导电与高导热高分子纳米复合材料的设计、结构与性能等方面的研究." ]
[ "张立群,男,1969年生. 北京化工大学教授,博士生导师. 1990年,北京化工大学本科毕业,1995年,北京化工大学博士毕业. 1995年至今,北京化工大学任教. 现为中国工程院院士,华南理工大学校长,曾获得国家杰出青年科学基金资助,教育部长江学者特聘教授. 担任《高分子通报》副主编、《橡胶工业》、《弹性体》、《特种橡胶制品》、《合成橡胶工业》期刊编委会副主任委员. 《Science Bulletin》材料类副主编、《Composites Science and Technology》等编委. 已发表文章400余篇,作为第一作者或通讯联系人的SCI收录文章300余篇,入选2014~2020年Elsevier中国高被引学者(Most Cited Chinese Researchers)榜单. 100余次应邀在大型国际会议上做大会报告、邀请报告、大会共同主席和分会主席. 主持翻译国际著作1部,主编国内著作2部. 获得中国发明专利200余项. 以第一获奖人获得国家技术发明二等奖两项、国家科技进步二等奖一项. 主要从事橡胶材料科学与工程、聚合物纳米复合材料、生物基高分子材料与聚合物加工工程等方向的研究工作." ]
纸质出版日期:2023-02-20,
网络出版日期:2022-11-07,
收稿日期:2022-08-31,
录用日期:2022-09-13
扫 描 看 全 文
侯冠一,刘军,张立群.计算材料学在高分子材料领域的研究进展与发展趋势[J].高分子学报,2023,54(02):166-185.
Hou Guan-yi,Liu Jun,Zhang Li-qun.Research Progress and Development of Computational Materials Science for the Polymeric Materials[J].ACTA POLYMERICA SINICA,2023,54(02):166-185.
侯冠一,刘军,张立群.计算材料学在高分子材料领域的研究进展与发展趋势[J].高分子学报,2023,54(02):166-185. DOI: 10.11777/j.issn1000-3304.2022.22181.
Hou Guan-yi,Liu Jun,Zhang Li-qun.Research Progress and Development of Computational Materials Science for the Polymeric Materials[J].ACTA POLYMERICA SINICA,2023,54(02):166-185. DOI: 10.11777/j.issn1000-3304.2022.22181.
随着科技发展,计算机软硬件技术的提高大大增强了大规模并行运算的效率,使得科学家能够以相对廉价的方式调用大量算力解析高自由度体系的运行机制,为设计新的材料结构与性能提供了新思路. 作为材料基因工程(materials genome engineering,MG)数据驱动研发体系的核心部分,计算材料学(computational materials science)为多项尖端领域的材料研发提供了巨大的助力,新材料的多元化程度超过了任何一个历史时期. 本文综述了自2011年材料基因组计划(Materials Genome Initiative
MGI)发布以来,国内外学者利用计算材料学在高分子材料方面的研究进展,包括高性能弹性体材料、光学高分子材料、能源高分子材料、导热高分子材料和生物医用高分子材料. 与此同时,阐述了计算材料学未来发展趋势与面临的挑战,期望为高分子材料基因组的发展方向提供指导.
With the development of science and technology
the improvement of computer software/hardware technology has greatly enhanced the efficiency of large-scale parallel computing
enabling scientists to use a large amount of computing power to analyze the operating mechanism of high-degree-of-freedom systems in a relatively inexpensive way
and to design new material structures and properties. Wherein
as the core of the data-driven-research system of Materials Genome Engineering (MG)
the Computational Materials Science has made great contribution to the development of novel polymeric materials that were driven by data. This paper reviews the research of polymeric materials based on domestic and foreign scholars borrowing from Materials Genome Initiative (MGI) ideas since the release of the MGI plan in 2011
including elastomeric materials
energy polymeric materials
optical polymeric materials
thermal conductive polymeric materials and biomedical polymeric materials. At the same time
this review puts forward the future development prospects of Computation Materials Science and the challenges it faces to provide basis and guidance for the development of polymeric disciplines.
材料基因组计划高分子材料计算材料学结构与性能关系
Materials genome initiativePolymeric materialsComputational materials scienceStructure-property relationship
Whittingham M. S. Electrical energy storage and intercalation chemistry. Science, 1976, 192(4244), 1126-1127. doi:10.1126/science.192.4244.1126http://dx.doi.org/10.1126/science.192.4244.1126
Patel P. Materials genome initiative and energy. MRS Bull., 2011, 36(12), 964-966. doi:10.1557/mrs.2011.306http://dx.doi.org/10.1557/mrs.2011.306
Scott T.; Walsh A.; Anderson B.; O'Connor A.; Tassey G. High-tech infrastructure and economic growth: The Materials Genome Initiative. Sci Public Policy, 2021, 48(5), 649-661. doi:10.1093/scipol/scab042http://dx.doi.org/10.1093/scipol/scab042
Materials genome initiative: advances and initiatives. JOM, 2014, 66(3), 334-335. doi:10.1007/s11837-014-0894-2http://dx.doi.org/10.1007/s11837-014-0894-2
Jain A.; Persson K. A.; Ceder G. Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases. APL Mater., 2016, 4(5), 053102. doi:10.1063/1.4944683http://dx.doi.org/10.1063/1.4944683
de Pablo J. J.; Jones B.; Kovacs C. L.; Ozolins V.; Ramirez A. P. The materials genome initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid State Mater. Sci., 2014, 18(2), 99-117. doi:10.1016/j.cossms.2014.02.003http://dx.doi.org/10.1016/j.cossms.2014.02.003
Horton M. K.; Dwaraknath S.; Persson K. A. Promises and perils of computational materials databases. Nat. Comput. Sci., 2021, 1(1), 3-5. doi:10.1038/s43588-020-00016-5http://dx.doi.org/10.1038/s43588-020-00016-5
Hanak J. J. The "multiple-sample concept" in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 1970, 5(11), 964-971. doi:10.1007/bf00558177http://dx.doi.org/10.1007/bf00558177
Smith T. M.; Esser B. D.; Antolin N.; Carlsson A.; Williams R. E. A.; Wessman A.; Hanlon T.; Fraser H. L.; Windl W.; McComb D. W.; Mills M. J. Phase transformation strengthening of high-temperature superalloys. Nat. Commun., 2016, 7, 13434. doi:10.1038/ncomms13434http://dx.doi.org/10.1038/ncomms13434
Jiang X.; Yin H. Q.; Zhang C.; Zhang R. J.; Zhang K. Q.; Deng Z. H.; Liu G. Q.; Qu X. H. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction. Comput. Mater. Sci., 2018, 143, 295-300. doi:10.1016/j.commatsci.2017.09.061http://dx.doi.org/10.1016/j.commatsci.2017.09.061
Liu Z.; Li Y. F.; Shi D. W.; Guo Y. L.; Li M.; Zhou X. B.; Huang Q.; Du S. Y. The development of cladding materials for the accident tolerant fuel system from the materials genome initiative. Scr. Mater., 2017, 141, 99-106. doi:10.1016/j.scriptamat.2017.07.030http://dx.doi.org/10.1016/j.scriptamat.2017.07.030
Vaia R. A.; Ishii H.; Giannelis E. P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater., 1993, 5(12), 1694-1696. doi:10.1021/cm00036a004http://dx.doi.org/10.1021/cm00036a004
de Pablo J. J.; Jackson N. E.; Webb M. A.; Chen L. Q.; Moore J. E.; Morgan D.; Jacobs R.; Pollock T.; Schlom D. G.; Toberer E. S.; Analytis J.; Dabo I.; DeLongchamp D. M.; Fiete G. A.; Grason G. M.; Hautier G.; Mo Y. F.; Rajan K.; Reed E. J.; Rodriguez E.; Stevanovic V.; Suntivich J.; Thornton K.; Zhao J. C. New frontiers for the materials genome initiative. Npj Comput. Mater., 2019, 5, 41. doi:10.1038/s41524-019-0173-4http://dx.doi.org/10.1038/s41524-019-0173-4
van Duin A. C. T.; Dasgupta S.; Lorant F.; Goddard W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 2001, 105(41), 9396-9409. doi:10.1021/jp004368uhttp://dx.doi.org/10.1021/jp004368u
Sun H.; Jin Z.; Yang C. W.; Akkermans R. L. C.; Robertson S. H.; Spenley N. A.; Miller S.; Todd S. M. COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model., 2016, 22(2), 47. doi:10.1007/s00894-016-2909-0http://dx.doi.org/10.1007/s00894-016-2909-0
Hobza P.; Kabeláč M.; Šponer J.; Mejzlík P.; Vondrášek J. Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree-Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree-Fock results. J. Comput. Chem., 1997, 18(9), 1136-1150. doi:10.1002/(sici)1096-987x(19970715)18:9<1136::aid-jcc3>3.0.co;2-shttp://dx.doi.org/10.1002/(sici)1096-987x(19970715)18:9<1136::aid-jcc3>3.0.co;2-s
Khemchandani Y.; O'Hagan S.; Samanta S.; Swainston N.; Roberts T. J.; Bollegala D.; Kell D. B. DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. J. Cheminform., 2020, 12(1), 53. doi:10.1186/s13321-020-00454-3http://dx.doi.org/10.1186/s13321-020-00454-3
Jablonka K. M.; Jothiappan G. M.; Wang S. F.; Smit B.; Yoo B. Bias free multiobjective active learning for materials design and discovery. Nat. Commun., 2021, 12(1), 2312. doi:10.1038/s41467-021-22437-0http://dx.doi.org/10.1038/s41467-021-22437-0
Ståhl N.; Falkman G.; Karlsson A.; Mathiason G.; Boström J. Deep reinforcement learning for multiparameter optimization in de novo drug design. J. Chem. Inf. Model., 2019, 59(7), 3166-3176. doi:10.1021/acs.jcim.9b00325http://dx.doi.org/10.1021/acs.jcim.9b00325
Blum, L. C.; Reymond, J. L. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc., 2009, 131(25), 8732-8733. doi:10.1021/ja902302hhttp://dx.doi.org/10.1021/ja902302h
陈维芳. 世界各国轮胎制造商持续抢占美国轮胎市场. 橡胶科技市场, 2004, 2(18): 21. doi:10.3969/j.issn.1009-797X.2004.08.003http://dx.doi.org/10.3969/j.issn.1009-797X.2004.08.003
张立群, 王振华, 吴友平, 吴丝竹. 橡胶纳米增强中的逾渗行为及其机理. 合成橡胶工业, 2008, 31(4): 245-250. doi:10.3969/j.issn.1000-1255.2008.04.001http://dx.doi.org/10.3969/j.issn.1000-1255.2008.04.001
Wang Z. H.; Liu J.; Wu S. Z.; Wang W. C.; Zhang L. Q. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers. Phys. Chem. Chem. Phys., 2010, 12(12), 3014-3030. doi:10.1039/b919789chttp://dx.doi.org/10.1039/b919789c
Liu J.; Gao Y. Y.; Cao D. P.; Zhang L. Q.; Guo Z. H. Nanoparticle dispersion and aggregation in polymer nanocomposites: Insights from molecular dynamics simulation. Langmuir, 2011, 27(12), 7926-7933. doi:10.1021/la201073mhttp://dx.doi.org/10.1021/la201073m
Shen J. X.; Liu J.; Gao Y. Y.; Li X. L.; Zhang L. Q. Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study. Soft Matter, 2014, 10(28), 5099-5113. doi:10.1039/c4sm00233dhttp://dx.doi.org/10.1039/c4sm00233d
Shen J. X.; Liu J.; Li H. D.; Gao Y. Y.; Li X. L.; Wu Y. P.; Zhang L. Q. Molecular dynamics simulations of the structural, mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles. Phys. Chem. Chem. Phys., 2015, 17(11), 7196-7207. doi:10.1039/c4cp05520ahttp://dx.doi.org/10.1039/c4cp05520a
Gao Y. Y.; Liu J.; Shen J. X.; Cao D. P.; Zhang L. Q. Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites. Phys. Chem. Chem. Phys., 2014, 16(34), 18483-18492. doi:10.1039/c4cp02431ahttp://dx.doi.org/10.1039/c4cp02431a
Hu F. Y.; Nie Y.; Li F. Z.; Liu J.; Gao Y. Y.; Wang W. C.; Zhang L. Q. Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles. Phys. Chem. Chem. Phys., 2019, 21(21), 11320-11328. doi:10.1039/c8cp07668ehttp://dx.doi.org/10.1039/c8cp07668e
Zhang H.; Ma R. B.; Luo D. D.; Xu W.; Zhao Y. F.; Zhao X. Y.; Gao Y. Y.; Zhang L. Q. Understanding the cavitation and crazing behavior in the polymer nanocomposite by tuning shape and size of nanofiller. Polymer, 2020, 188, 122103. doi:10.1016/j.polymer.2019.122103http://dx.doi.org/10.1016/j.polymer.2019.122103
Zhang H.; Li H. X.; Hu F. Y.; Wang W. C.; Zhao X. Y.; Gao Y. Y.; Zhang L. Q. Cavitation, crazing and bond scission in chemically cross-linked polymer nanocomposites. Soft Matter, 2019, 15(45), 9195-9204. doi:10.1039/c9sm01664chttp://dx.doi.org/10.1039/c9sm01664c
Zhao X. Y.; Li T. T.; Huang L.; Li B.; Liu J.; Gao Y. Y.; Zhang L. Q. Uncovering the rupture mechanism of carbon nanotube filled cis-1, 4-polybutadiene via molecular dynamics simulation. RSC Adv., 2018, 8(49), 27786-27795. doi:10.1039/c8ra04469dhttp://dx.doi.org/10.1039/c8ra04469d
Hou G. Y.; Zhou X. L.; Li S.; Jiang R. F.; Zhang Z. Y.; Dong M. J.; Liu J.; Lu Y. L.; Wang W. C.; Zhang L. Q.; Wang S. H. Exploiting synergistic experimental and computational approaches to design and fabricate high-performance elastomer. Macromolecules, 2020, 53(15), 6452-6460. doi:10.1021/acs.macromol.0c01285http://dx.doi.org/10.1021/acs.macromol.0c01285
Liu J.; Zheng Z. J.; Li F. Z.; Lei W. W.; Gao Y. Y.; Wu Y. P.; Zhang L. Q.; Wang Z. L. Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile. Nano Energy, 2016, 28, 87-96. doi:10.1016/j.nanoen.2016.08.002http://dx.doi.org/10.1016/j.nanoen.2016.08.002
Qin X.; Wang J. D.; Zhang Y. L.; Wang Z.; Li S.; Zhao S. Q.; Tan T. W.; Liu J.; Zhang L. Q.; Matyjaszewski K. Double network elastomers: Self‐assembly strategy for double network elastomer nanocomposites with ultralow energy consumption and ultrahigh wear resistance. Adv. Funct. Mater., 2020, 30(34), 2070227. doi:10.1002/adfm.202070227http://dx.doi.org/10.1002/adfm.202070227
Jakkareddy P. S.; Balaji C. Estimation of local heat transfer coefficient from natural convection experiments using liquid crystal thermography and Bayesian method. Exp. Therm. Fluid Sci., 2018, 97, 458-467. doi:10.1016/j.expthermflusci.2018.04.026http://dx.doi.org/10.1016/j.expthermflusci.2018.04.026
Polat Ö.; Yıldız N.; Akkoyun S. Consistent neural network empirical physical formula constructions for nonlinear scattering intensities of dye-doped nematic liquid crystals with ultraviolet pump laser-driven Fredericksz threshold shifts. Optik, 2018, 158, 204-210. doi:10.1016/j.ijleo.2017.12.093http://dx.doi.org/10.1016/j.ijleo.2017.12.093
Smith A. D.; Abbott N.; Zavala V. M. Convolutional network analysis of optical micrographs for liquid crystal sensors. J. Phys. Chem. C, 2020, 124(28), 15152-15161. doi:10.1021/acs.jpcc.0c01942http://dx.doi.org/10.1021/acs.jpcc.0c01942
Cao Y. K.; Yu H. Z.; Abbott N. L.; Zavala V. M. Machine learning algorithms for liquid crystal-based sensors. ACS Sens., 2018, 3(11), 2237-2245. doi:10.1021/acssensors.8b00100http://dx.doi.org/10.1021/acssensors.8b00100
Khaira G.; Doxastakis M.; Bowen A.; Ren J. X.; Suh H. S.; Segal-Peretz T.; Chen X. X.; Zhou C.; Hannon A. F.; Ferrier N. J.; Vishwanath V.; Sunday D. F.; Gronheid R.; Kline R. J.; de Pablo J. J.; Nealey P. F. Derivation of multiple covarying material and process parameters using physics-based modeling of X-ray data. Macromolecules, 2017, 50(19), 7783-7793. doi:10.1021/acs.macromol.7b00691http://dx.doi.org/10.1021/acs.macromol.7b00691
Gómez-Bombarelli R.; Aguilera-Iparraguirre J.; Hirzel T. D.; Duvenaud D.; Maclaurin D.; Blood-Forsythe M. A.; Chae H. S.; Einzinger M.; Ha D. G.; Wu T.; Markopoulos G.; Jeon S.; Kang H.; Miyazaki H.; Numata M.; Kim S.; Huang W. L.; Hong S. I.; Baldo M.; Adams R. P.; Aspuru-Guzik A. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater., 2016, 15(10), 1120-1127. doi:10.1038/nmat4717http://dx.doi.org/10.1038/nmat4717
Huang H. F.; Peng J. H.; Dong H. F.; Huang L.; Wen M. R.; Wu F. G. A first principles study of p-type doping in two dimensional GaN. Phys. Chem. Chem. Phys., 2021, 23(37), 20901-20908. doi:10.1039/d1cp02904ehttp://dx.doi.org/10.1039/d1cp02904e
Jia W. L.; Fu J. Y.; Cao Z. Y.; Wang L.; Chi X. B.; Gao W. G.; Wang L. W. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines. J. Comput. Phys., 2013, 251, 102-115. doi:10.1016/j.jcp.2013.05.005http://dx.doi.org/10.1016/j.jcp.2013.05.005
Yu M.; Chen Y.; Chen Y. G.; Yang Z. Y.; Zhang W. F.; Yu G. Synergy between Fermi level of graphene and morphology of polymer film allows broadband or wavelength‐sensitive photodetection. Adv. Mater. Interfaces, 2021, 8(19), 2100770. doi:10.1002/admi.202100770http://dx.doi.org/10.1002/admi.202100770
Ariannejad M. M.; Amiri I. S.; Ahmad H.; Yupapin P. A large free spectral range of 74.92 GHz in comb peaks generated by SU-8 polymer micro-ring resonators: Simulation and experiment. Laser Phys., 2018, 28(11), 115002. doi:10.1088/1555-6611/aadd25http://dx.doi.org/10.1088/1555-6611/aadd25
Sun Z. Z.; Liu Z. H.; Chen H. B.; Li R. Q.; Sun Y. J.; Chen D. N.; Xu G. X.; Liu L. W.; Wu C. F. Semiconducting polymer dots with modulated photoblinking for high‐order super‐resolution optical fluctuation imaging. Adv. Opt. Mater., 2019, 7(9), 1900007. doi:10.1002/adom.201900007http://dx.doi.org/10.1002/adom.201900007
Muckley E. S.; Collins L.; Srijanto B. R.; Ivanov I. N. Machine learning‐enabled correlation and modeling of multimodal response of thin film to environment on macro and nanoscale using "lab‐on‐a‐crystal". Adv. Funct. Mater., 2020, 30(10), 1908010. doi:10.1002/adfm.201908010http://dx.doi.org/10.1002/adfm.201908010
Ilnytskyi J. M.; Toshchevikov V.; Saphiannikova M. Modeling of the photo-induced stress in azobenzene polymers by combining theory and computer simulations. Soft Matter, 2019, 15(48), 9894-9908. doi:10.1039/c9sm01853khttp://dx.doi.org/10.1039/c9sm01853k
Yang Y. F.; Chiang Y. C.; Lin Y. C.; Li G. S.; Hung C. C.; Chen W. C. Highly efficient photo-induced recovery conferred using charge-transfer supramolecular electrets in bistable photonic transistor memory. Adv. Funct. Mater., 2021, 31(40), 2102174. doi:10.1002/adfm.202102174http://dx.doi.org/10.1002/adfm.202102174
Stanev V.; Oses C.; Kusne A. G.; Rodriguez E.; Paglione J.; Curtarolo S.; Takeuchi I. Machine learning modeling of superconducting critical temperature. Npj Comput. Mater., 2018, 4, 29. doi:10.1038/s41524-018-0085-8http://dx.doi.org/10.1038/s41524-018-0085-8
Huang G.; Zhong G. H.; Wang R. S.; Han J. X.; Lin H. Q.; Chen X. J. Superconductivity and phase stability of potassium-doped p-quinquephenyl. Carbon, 2019, 143, 837-843. doi:10.1016/j.carbon.2018.12.001http://dx.doi.org/10.1016/j.carbon.2018.12.001
Sendek A. D.; Cubuk E. D.; Antoniuk E. R.; Cheon G.; Cui Y.; Reed E. J. Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater., 2019, 31(2), 342-352. doi:10.1021/acs.chemmater.8b03272http://dx.doi.org/10.1021/acs.chemmater.8b03272
Liu Y.; Esan O. C.; Pan Z. F.; An L. Machine learning for advanced energy materials. Energy AI, 2021, 3, 100049. doi:10.1016/j.egyai.2021.100049http://dx.doi.org/10.1016/j.egyai.2021.100049
Webb M. A.; Jackson N. E.; Gil P. S.; de Pablo J. J. Targeted sequence design within the coarse-grained polymer genome. Sci. Adv., 2020, 6(43), eabc6216. doi:10.1126/sciadv.abc6216http://dx.doi.org/10.1126/sciadv.abc6216
Wang Y.; Seo B.; Wang B. W.; Zamel N.; Jiao K.; Adroher X. C. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy AI, 2020, 1, 100014. doi:10.1016/j.egyai.2020.100014http://dx.doi.org/10.1016/j.egyai.2020.100014
Carrico, J. D.; Hermans, T.; Kim, K. J.; Leang, K. K. 3D-printing and machine learning control of soft ionic polymer-metal composite actuators. Sci. Rep., 2019, 9, 17482. doi:10.1038/s41598-019-53570-yhttp://dx.doi.org/10.1038/s41598-019-53570-y
Yoon Y.; Kim M. J.; Kim J. J. Machine learning to electrochemistry: Analysis of polymers and halide ions in a copper electrolyte. Electrochimica Acta, 2021, 399, 139424. doi:10.1016/j.electacta.2021.139424http://dx.doi.org/10.1016/j.electacta.2021.139424
Matos M. A. S.; Pinho S. T.; Tagarielli V. L. Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites. Carbon, 2019, 146, 265-275. doi:10.1016/j.carbon.2019.02.001http://dx.doi.org/10.1016/j.carbon.2019.02.001
Gao X. L.; Liu X. H.; He R.; Wang M. Y.; Xie W. L.; Brandon N. P.; Wu B.; Ling H. P.; Yang S. C. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach. Energy Storage Mater., 2021, 36, 435-458. doi:10.1016/j.ensm.2021.01.007http://dx.doi.org/10.1016/j.ensm.2021.01.007
Lv C. D.; Zhou X.; Zhong L. X.; Yan C. S.; Srinivasan M.; Seh Z. W.; Liu C. T.; Pan H. G.; Li S. Z.; Wen Y. G.; Yan Q. Y. Machine learning: An advanced platform for materials development and state prediction in lithium‐ion batteries. Adv. Mater., 2022, 34(25), 2101474. doi:10.1002/adma.202101474http://dx.doi.org/10.1002/adma.202101474
Ahmed A.; Siegel D. J. Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2(7), 100291. doi:10.1016/j.patter.2021.100291http://dx.doi.org/10.1016/j.patter.2021.100291
Wu X. J.; Xiang S. C.; Su J. Q.; Cai W. Q. Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-organic frameworks based on machine learning. J. Phys. Chem. C, 2019, 123(14), 8550-8559. doi:10.1021/acs.jpcc.8b11793http://dx.doi.org/10.1021/acs.jpcc.8b11793
Rahnama A.; Zepon G.; Sridhar S. Machine learning based prediction of metal hydrides for hydrogen storage, Part II: prediction of material class. Int. J. Hydrog. Energy, 2019, 44(14), 7345-7353. doi:10.1016/j.ijhydene.2019.01.264http://dx.doi.org/10.1016/j.ijhydene.2019.01.264
Bobbitt N. S.; Snurr R. Q. Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage. Mol. Simul., 2019, 45(14-15), 1069-1081. doi:10.1080/08927022.2019.1597271http://dx.doi.org/10.1080/08927022.2019.1597271
Anderson G.; Schweitzer B.; Anderson R.; Gómez-Gualdrón D. A. Attainable volumetric targets for adsorption-based hydrogen storage in porous crystals: molecular simulation and machine learning. J. Phys. Chem. C, 2019, 123(1), 120-130. doi:10.1021/acs.jpcc.8b09420http://dx.doi.org/10.1021/acs.jpcc.8b09420
Jablonka K. M.; Ongari D.; Moosavi S. M.; Smit B. Big-data science in porous materials: Materials genomics and machine learning. Chem. Rev., 2020, 120(16), 8066-8129. doi:10.1021/acs.chemrev.0c00004http://dx.doi.org/10.1021/acs.chemrev.0c00004
Ugwu L. I.; Morgan Y.; Ibrahim H. Application of density functional theory and machine learning in heterogenous-based catalytic reactions for hydrogen production. Int. J. Hydrog. Energy, 2022, 47(4), 2245-2267. doi:10.1016/j.ijhydene.2021.10.208http://dx.doi.org/10.1016/j.ijhydene.2021.10.208
Sun X.; Zheng J. N.; Gao Y. J.; Qiu C. L.; Yan Y. L.; Yao Z. H.; Deng S. W.; Wang J. G. Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Appl. Surf. Sci., 2020, 526, 146522. doi:10.1016/j.apsusc.2020.146522http://dx.doi.org/10.1016/j.apsusc.2020.146522
Ding Z.; Chen Z. Q.; Ma T. Y.; Lu C. T.; Ma W. H.; Shaw L. Predicting the hydrogen release ability of LiBH4-based mixtures by ensemble machine learning. Energy Storage Mater., 2020, 27, 466-477. doi:10.1016/j.ensm.2019.12.010http://dx.doi.org/10.1016/j.ensm.2019.12.010
Zheng J. N.; Sun X.; Hu J. X.; Wang S. B.; Yao Z. H.; Deng S. W.; Pan X.; Pan Z. Y.; Wang J. G. Symbolic transformer accelerating machine learning screening of hydrogen and deuterium evolution reaction catalysts in MA2Z4 materials. ACS Appl. Mater. Interfaces, 2021, 13(43), 50878-50891. doi:10.1021/acsami.1c13236http://dx.doi.org/10.1021/acsami.1c13236
Wheatle B. K.; Fuentes E. F.; Lynd N. A.; Ganesan V. Design of polymer blend electrolytes through a machine learning approach. Macromolecules, 2020, 53(21), 9449-9459. doi:10.1021/acs.macromol.0c01547http://dx.doi.org/10.1021/acs.macromol.0c01547
Fetanat M.; Keshtiara M.; Low Z. X.; Keyikoglu R.; Khataee A.; Orooji Y.; Chen V.; Leslie G.; Razmjou A. Machine learning for advanced design of nanocomposite ultrafiltration membranes. Ind. Eng. Chem. Res., 2021, 60(14), 5236-5250. doi:10.1021/acs.iecr.0c05446http://dx.doi.org/10.1021/acs.iecr.0c05446
Zhu M. X.; Deng T.; Dong L.; Chen J. M.; Dang Z. M. Review of machine learning‐driven design of polymer‐based dielectrics. IET Nanodielectrics, 2022, 5(1), 24-38. doi:10.1049/nde2.12029http://dx.doi.org/10.1049/nde2.12029
Hatakeyama-Sato K.; Tezuka T.; Umeki M.; Oyaizu K. AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures. J. Am. Chem. Soc., 2020, 142(7), 3301-3305. doi:10.1021/jacs.9b11442http://dx.doi.org/10.1021/jacs.9b11442
Jørgensen P. B.; Mesta M.; Shil S.; García Lastra J. M.; Jacobsen K. W.; Thygesen K. S.; Schmidt M. N. Machine learning-based screening of complex molecules for polymer solar cells. J. Chem. Phys., 2018, 148(24), 241735. doi:10.1063/1.5023563http://dx.doi.org/10.1063/1.5023563
Herrmann S.; Aydemir N.; Nägele F.; Fantauzzi D.; Jacob T.; Travas-Sejdic J.; Streb C. Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole. Adv. Funct. Mater., 2017, 27(25), 1700881. doi:10.1002/adfm.201700881http://dx.doi.org/10.1002/adfm.201700881
Shen Z. H.; Bao Z. W.; Cheng X. X.; Li B. W.; Liu H. X.; Shen Y.; Chen L. Q.; Li X. G.; Nan C. W. Designing polymer nanocomposites with high energy density using machine learning. Npj Comput. Mater., 2021, 7, 110. doi:10.1038/s41524-021-00578-6http://dx.doi.org/10.1038/s41524-021-00578-6
Wang Y. M.; Xie T.; France-Lanord A.; Berkley A.; Johnson J. A.; Shao-Horn Y.; Grossman J. C. Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics. Chem. Mater., 2020, 32(10), 4144-4151. doi:10.1021/acs.chemmater.9b04830http://dx.doi.org/10.1021/acs.chemmater.9b04830
Hao Q. F.; Chen F.; Chen X. T.; Meng Q. H.; Qi Y.; Li N. Bi-functional poly(vinylidene difluoride) coated Al anodes for highly rechargeable aqueous Al-ion batteries. Electrochimica Acta, 2022, 421, 140495. doi:10.1016/j.electacta.2022.140495http://dx.doi.org/10.1016/j.electacta.2022.140495
Yang X.; Wang Z.; Zhao X.; Song J.; Zhang M.; Liu H. Comput Mater Sci, 2018, 146, 319-333. doi:10.1016/j.commatsci.2018.01.039http://dx.doi.org/10.1016/j.commatsci.2018.01.039
周恩斌, 王立权, 林嘉平, 朱峻立, 杜磊, 邓诗峰, 顾佳斌, 张良顺. 低黏度含硅芳炔树脂的材料基因组设计及理论模拟验证. 高分子学报, 2019, 50, 1322-1330. doi:10.11777/j.issn1000-3304.2019.19104http://dx.doi.org/10.11777/j.issn1000-3304.2019.19104
楚明, 朱峻立, 王立权, 林嘉平, 杜磊, 蔡春华. 基于材料基因组方法的含硅芳炔树脂的设计与合成. 高分子学报, 2019, 50, 1211-1219. doi:10.11777/j.issn1000-3304.2019.19076http://dx.doi.org/10.11777/j.issn1000-3304.2019.19076
Wu S.; Kondo Y.; Kakimoto M. A.; Yang B.; Yamada H.; Kuwajima I.; Lambard G.; Hongo K.; Xu Y. B.; Shiomi J.; Schick C.; Morikawa J.; Yoshida R. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Comput. Mater., 2019, 5, 66. doi:10.1038/s41524-019-0203-2http://dx.doi.org/10.1038/s41524-019-0203-2
Huo R.; Zhang Z. Y.; Athir N.; Fan Y. H.; Liu J.; Shi L. Designing high thermal conductivity of cross-linked epoxy resin via molecular dynamics simulations. Phys. Chem. Chem. Phys., 2020, 22(35), 19735-19745. doi:10.1039/d0cp02819chttp://dx.doi.org/10.1039/d0cp02819c
Zhao X. Y.; Fu B. Z.; Zhang W. F.; Li H. X.; Lu Y. L.; Gao Y. Y.; Zhang L. Q. Increasing the thermal conductivity of styrene butadiene rubber: Insights from molecular dynamics simulation. RSC Adv., 2020, 10(39), 23394-23402. doi:10.1039/d0ra04103chttp://dx.doi.org/10.1039/d0ra04103c
Li Z. W.; Li K.; Liu J.; Hu S.; Wen S. P.; Liu L.; Zhang L. Q. Tailoring the thermal conductivity of Poly(dimethylsiloxane)/Hexagonal boron nitride composite. Polymer, 2019, 177, 262-273. doi:10.1016/j.polymer.2019.06.012http://dx.doi.org/10.1016/j.polymer.2019.06.012
Wang Y. F.; Chang Z. C.; Gao K.; Li Z. W.; Hou G. Y.; Liu J.; Zhang L. Q. Designing high thermal conductivity of polydimethylsiloxane filled with hybrid h-BN/MoS2 via molecular dynamics simulation. Polymer, 2021, 224, 123697. doi:10.1016/j.polymer.2021.123697http://dx.doi.org/10.1016/j.polymer.2021.123697
Li J. C.; Li F. Z.; Zhao X. Y.; Zhang W. F.; Li S. J.; Lu Y. L.; Zhang L. Q. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater., 2020, 2(6), 1661-1669. doi:10.1021/acsaelm.0c00227http://dx.doi.org/10.1021/acsaelm.0c00227
Das P.; Sercu T.; Wadhawan K.; Padhi I.; Gehrmann S.; Cipcigan F.; Chenthamarakshan V.; Strobelt H.; dos Santos C.; Chen P. Y.; Yang Y. Y.; Tan J. P. K.; Hedrick J.; Crain J.; Mojsilovic A. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed. Eng., 2021, 5(6), 613-623. doi:10.1038/s41551-021-00689-xhttp://dx.doi.org/10.1038/s41551-021-00689-x
Lau D.; Jian W.; Yu Z. C.; Hui D. Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges. Compos. B Eng., 2018, 143, 282-291. doi:10.1016/j.compositesb.2018.01.014http://dx.doi.org/10.1016/j.compositesb.2018.01.014
Ulmschneider J. P.; Ulmschneider M. B. Molecular dynamics simulations are redefining our view of peptides interacting with biological membranes. Acc. Chem. Res., 2018, 51(5), 1106-1116. doi:10.1021/acs.accounts.7b00613http://dx.doi.org/10.1021/acs.accounts.7b00613
Yang C. H.; Suo Z. G. Hydrogel ionotronics. Nat. Rev. Mater., 2018, 3(6), 125-142. doi:10.1038/s41578-018-0018-7http://dx.doi.org/10.1038/s41578-018-0018-7
Deligkaris K.; Tadele T. S.; Olthuis W.; van den Berg A. Hydrogel-based devices for biomedical applications. Sens. Actuat. B Chem., 2010, 147(2), 765-774. doi:10.1016/j.snb.2010.03.083http://dx.doi.org/10.1016/j.snb.2010.03.083
Daly A. C.; Riley L.; Segura T.; Burdick J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater., 2020, 5(1), 20-43. doi:10.1038/s41578-019-0148-6http://dx.doi.org/10.1038/s41578-019-0148-6
Beaumont M.; Tran R.; Vera G.; Niedrist D.; Rousset A.; Pierre R.; Shastri V. P.; Forget A. Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications. Biomacromolecules, 2021, 22(3), 1027-1052. doi:10.1021/acs.biomac.0c01406http://dx.doi.org/10.1021/acs.biomac.0c01406
Li F.; Han J. S.; Cao T.; Lam W.; Fan B. E.; Tang W.; Chen S. J.; Fok K. L.; Li L. X. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(23), 11259-11264. doi:10.1073/pnas.1903376116http://dx.doi.org/10.1073/pnas.1903376116
Luo J.; Yang J. J.; Zheng X. R.; Ke X.; Chen Y. T.; Tan H.; Li J. S. A highly stretchable, real‐time self‐healable hydrogel adhesive matrix for tissue patches and flexible electronics. Adv. Healthcare Mater., 2020, 9(4), 1901423. doi:10.1002/adhm.201901423http://dx.doi.org/10.1002/adhm.201901423
Liu Z. X.; Zhang T. W.; Yang M.; Gao W. Z.; Wu S. J.; Wang K. L.; Dong F. H.; Dang J.; Zhou D. G.; Zhang J. Hydrogel pressure distribution sensors based on an imaging strategy and machine learning. ACS Appl. Electron. Mater., 2021, 3(8), 3599-3609. doi:10.1021/acsaelm.1c00488http://dx.doi.org/10.1021/acsaelm.1c00488
Gray W. A.; Keirse K.; Soga Y.; Benko A.; Babaev A.; Yokoi Y.; Schroeder H.; Prem J. T.; Holden A.; Popma J.; Jaff M. R.; Diaz-Cartelle J.; Müller-Hülsbeck S.; Albrecht T.; Ando K.; Babaev A.; Bacharach M. J.; Bachinsky W.; Bajakian D.; Beasley R.; Benenati J.; Benko A.; Burket M.; Cardenas J.; Das T.; de Martino R.; Deutschmann H.; Dulas D.; Feldman R.; Fugate M.; Garcia L.; Golzar J.; Gutta R.; Hall P.; Hawkins S.; Henao S.; Herdrich B.; Hirano K.; Holden A.; Jaalouk S.; Janzer S.; Kawasaki D.; Keirse K.; Khatib Y.; Kichikawa K.; Korngold E.; Loewe C.; Lopez L.; Lui H.; Mano T.; Mendes R.; Miyamoto A.; Müller-Hülsbeck S.; Nakamura M.; O'Connor D.; Ohki T.; Park J.; Powell R.; Pratsos A.; Prem J.; Rao V.; Rashid J.; Rhee R.; Ricci J.; Scheinert D.; Schroë H.; Schroeder H.; Simon P. O.Jr, Singh G.; Tan K. T.; Tolerico P.; Vasudevan T.; Vermassen F.; Werner M.; Wiechmann B.; Yokoi H.; Yokoi Y.; Zeller T. A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial. Lancet, 2018, 392(10157), 1541-1551. doi:10.1016/s0140-6736(18)32262-1http://dx.doi.org/10.1016/s0140-6736(18)32262-1
Lefèvre T.; Haude M.; Neumann F. J.; Stangl K.; Skurk C.; Slagboom T.; Sabaté M.; Goicolea J.; Barragan P.; Cook S.; Macia J. C.; Windecker S. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent. JACC Cardiovasc. Interv., 2018, 11(10), 995-1002. doi:10.1016/j.jcin.2018.04.014http://dx.doi.org/10.1016/j.jcin.2018.04.014
Peng S. Y.; Yuan X. Z.; Lin W. J.; Cai C. Z.; Zhang L. J. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids Surf. B Biointerfaces, 2019, 176, 394-403. doi:10.1016/j.colsurfb.2019.01.024http://dx.doi.org/10.1016/j.colsurfb.2019.01.024
Escareño N.; Hassan N.; Kogan M. J.; Juárez J.; Topete A.; Daneri-Navarro A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. J. Colloid Interface Sci., 2021, 591, 440-450. doi:10.1016/j.jcis.2021.02.031http://dx.doi.org/10.1016/j.jcis.2021.02.031
Wang R. J.; Yang H. T.; Khan A. R.; Yang X. Y.; Xu J. K.; Ji J. B.; Zhai G. X. Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J. Colloid Interface Sci., 2021, 598, 213-228. doi:10.1016/j.jcis.2021.04.056http://dx.doi.org/10.1016/j.jcis.2021.04.056
Hook A. L.; Anderson D. G.; Langer R.; Williams P.; Davies M. C.; Alexander M. R. High throughput methods applied in biomaterial development and discovery. Biomaterials, 2010, 31(2), 187-198. doi:10.1016/j.biomaterials.2009.09.037http://dx.doi.org/10.1016/j.biomaterials.2009.09.037
Conev A.; Litsa E. E.; Perez M. R.; Diba M. N.; Mikos A. G.; Kavraki L. E. Machine learning-guided three-dimensional printing of tissue engineering scaffolds. Tissue Eng. A, 2020, 26(23-24), 1359-1368. doi:10.1089/ten.tea.2020.0191http://dx.doi.org/10.1089/ten.tea.2020.0191
Burrello J.; Gallone G.; Burrello A.; Jahier Pagliari D.; Ploumen E. H.; Iannaccone M.; de Luca L.; Zocca P.; Patti G.; Cerrato E.; Wojakowski W.; Venuti G.; de Filippo O.; Mattesini A.; Ryan N.; Helft G.; Muscoli S.; Kan J.; Sheiban I.; Parma R.; Trabattoni D.; Giammaria M.; Truffa A.; Piroli F.; Imori Y.; Cortese B.; Omedè P.; Conrotto F.; Chen S. L.; Escaned J.; Buiten R. A.; von Birgelen C.; Mulatero P.; de Ferrari G. M.; Monticone S.; D'Ascenzo F. Prediction of all-cause mortality following percutaneous coronary intervention in bifurcation lesions using machine learning algorithms. J. Pers. Med., 2022, 12(6), 990. doi:10.3390/jpm12060990http://dx.doi.org/10.3390/jpm12060990
Toscano J. D.; Li Z. B.; Segura L. J.; Sun, H. Y. In: Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability. 2020. doi:10.1115/msec2020-8362http://dx.doi.org/10.1115/msec2020-8362
Entekhabi E.; Haghbin Nazarpak M.; Sedighi M.; Kazemzadeh A. Predicting degradation rate of genipin cross-linked gelatin scaffolds with machine learning. Mater. Sci. Eng. C, 2020, 107, 110362. doi:10.1016/j.msec.2019.110362http://dx.doi.org/10.1016/j.msec.2019.110362
Suwardi A.; Wang F. K.; Xue K.; Han M. Y.; Teo P.; Wang P.; Wang S. J.; Liu Y.; Ye E. Y.; Li Z. B.; Loh X. J. Machine learning‐driven biomaterials evolution. Adv. Mater., 2022, 34(1), 2102703. doi:10.1002/adma.202102703http://dx.doi.org/10.1002/adma.202102703
Wu C.; Entezari A.; Zheng K.; Fang J.; Zreiqat H.; Steven G. P.; Swain M. V.; Li Q. Nat. Comput. Sci., 2021, 1, 532-541. doi:10.1038/s43588-021-00115-xhttp://dx.doi.org/10.1038/s43588-021-00115-x
Wei Q. H.; Wang Y. N.; Chai W. H.; Zhang Y. F.; Chen X. B. Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram. Int., 2017, 43(16), 13702-13709. doi:10.1016/j.ceramint.2017.07.082http://dx.doi.org/10.1016/j.ceramint.2017.07.082
Li X.; Saeed S. S.; Beni M. H.; Morovvati M. R.; Angili S. N.; Toghraie D.; Khandan A.; Khan A. Experimental measurement and simulation of mechanical strength and biological behavior of porous bony scaffold coated with alginate-hydroxyapatite for femoral applications. Compos. Sci. Technol., 2021, 214: 108973. doi:10.1016/j.compscitech.2021.109006http://dx.doi.org/10.1016/j.compscitech.2021.109006
Segler M. H. S.; Preuss M.; Waller M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 2018, 555(7698), 604-610. doi:10.1038/nature25978http://dx.doi.org/10.1038/nature25978
Yang Q.; Sing-Long C. A.; Reed E. J. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics. Chem. Sci., 2017, 8(8), 5781-5796. doi:10.1039/c7sc01052dhttp://dx.doi.org/10.1039/c7sc01052d
Zhu J. B.; Watson E. M.; Tang J.; Chen E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science, 2018, 360(6387), 398-403. doi:10.1126/science.aar5498http://dx.doi.org/10.1126/science.aar5498
Someya T.; Bao Z. N.; Malliaras G. G. The rise of plastic bioelectronics. Nature, 2016, 540(7633), 379-385. doi:10.1038/nature21004http://dx.doi.org/10.1038/nature21004
0
浏览量
319
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构