浏览全部资源
扫码关注微信
1.贵州大学材料与冶金学院 贵阳 550025
2.中山大学化学学院 聚合物复合材料及功能材料教育部重点实验室 广州 510275
[ "容敏智,男,1961年生. 1983和1986年于天津大学分别获得学士和硕士学位,1994年于中山大学获得博士学位. 2001年起任中山大学化学院教授. 现兼任广东省复合材料学会副理事长. 围绕高分子材料学科的基础与应用科学问题,对高分子合成、共混物及树脂基复合材料等开展了广泛的研究,近年来的研究领域涉及聚合物网络的结构与性能、反应性共混及热固性树脂改性、高分子精细化学品与精细化工技术、天然纤维复合材料、自愈合型高分子材料、聚合物基纳米粒子复合材料等. E-mail: cesrmz@mail.sysu.edu.cn;" ]
[ "章明秋,男,1961年生. 1982和1991年于中山大学分别获得学士和博士学位;1992年起任中山大学化学院教授. 长期从事高分子及高分子复合材料的科研与教学,研究方向主要包括高分子材料、高分子共混物和高分子复合材料的结构与性能关系、表征技术与功能化应用等,内容涉及高分子材料和增强聚合物复合材料的力学性能,纳米粒子表面改性和纳米粒子/高分子复合材料,植物基复合材料,复合材料中的界面结构,高分子物理,导电复合材料,减摩耐磨复合材料,自修复型智能高分子复合材料等. Email: ceszmq@mail.sysu.edu.cn" ]
纸质出版日期:2023-01-20,
网络出版日期:2022-09-27,
收稿日期:2022-05-23,
录用日期:2022-06-20
扫 描 看 全 文
犹阳,容敏智,章明秋.聚合物可逆互锁网络的设计、制备和应用初探[J].高分子学报,2023,54(01):14-36.
You Yang,Rong Min-zhi,Zhang Ming-qiu.Reversibly Interlocked Polymer Networks: Design, Preparation and Applications[J].ACTA POLYMERICA SINICA,2023,54(01):14-36.
犹阳,容敏智,章明秋.聚合物可逆互锁网络的设计、制备和应用初探[J].高分子学报,2023,54(01):14-36. DOI: 10.11777/j.issn1000-3304.2022.22196.
You Yang,Rong Min-zhi,Zhang Ming-qiu.Reversibly Interlocked Polymer Networks: Design, Preparation and Applications[J].ACTA POLYMERICA SINICA,2023,54(01):14-36. DOI: 10.11777/j.issn1000-3304.2022.22196.
聚合物复合体系是聚合物材料重要的应用形式,发展能够充分抑制相分离的多组分聚合物复合体系制备新技术有着重要意义. 利用动态交联聚合物网络拓扑结构的可逆变换,可以使不同交联聚合物网络间的分子链扩散与混合成为可能,待混合完全后再通过动态可逆共价键闭合来重筑交联网络,最终得到由不同子网络穿插互锁形成的均匀复合交联网络,即聚合物可逆互锁网络,其中的子网络之间没有共价键连接,具有相对的独立性. 本文由聚合物可逆互锁网络的设计制备出发,阐述了相关方法的概念、原理和所得材料的结构特点,介绍了基于聚合物可逆互锁网络策略的聚合物材料高性能化与功能化应用实例,内容包括提升和调控力学性能、宽pH水环境中的自修复、增进本征导热率、固态聚合物电解质的优化、多组分聚合物复合体系的可控分离与可控降解以及闭环循环利用等,同时分析了与聚合物互穿网络(IPNs)的区别,最后对这类材料未来可能的发展进行了分析和展望.
Combining different polymers together to obtain multi-component polymer systems is an important and effective method for developing novel polymeric materials and regulating their properties. However
the synergistic effect between different components can hardly play its full role because of the ubiquitous phase separation. To solve this problem
we developed a novel strategy to prepare multi-component polymer systems as follows
in which phase separation can be suppressed. Firstly
two covalent adaptive networks respectively containing orthogonal reversible covalent bonds were synthesized. Next
the two single networks were dissolved in a co-solvent under proper stimulus as a result of the reversible reactions of the included reversible bonds. Accordingly
the solutions with the fragments of the single networks can be well mixed
and the latter were allowed to be reconstructed together through topological rearrangement with the assistance of inter-component secondary interactions during removal of the stimulus and co-solvent. Eventually
co-networks with relative independence
i.e.
reversibly interlocked polymer networks
were obtained. Owing to the forced miscibility effect induced by the interlocked structure
even immiscible polymer pairs can be homogeneously interlaced with each other. In this context
there would be more freedom to choose the raw materials
and versatile multi-component polymer systems with high performance and novel functionalities can be developed. The paper introduces the material design and general preparation method of reversibly interlocked polymer networks. Afterwards
the structural features of the interlocked polymer networks
and a few applications of this type of material
including enhancement and regulation of mechanical properties
wide pH range underwater self-healability
improvement of intrinsic thermal conductivity
optimization of polymeric solid phase electrolyte
and controllable isolation/degradation and close-loop recycling of multi-component polymer systems
are discussed. Lastly
the difference between the interlocked networks and interpenetrating polymer networks (IPNs) is analyzed
and the future development in this aspect is prospected.
多组分聚合物复合体系聚合物可逆互锁网络动态可逆共价键拓扑结构重排
Multi-component polymer systemsReversibly interlocked polymer networksDynamic covalent bondsTopological rearrangement
Lipatov Y. S. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog. Polym. Sci., 2002, 27, 1721-1801. doi:10.1016/s0079-6700(02)00021-7http://dx.doi.org/10.1016/s0079-6700(02)00021-7
Flory P. J. Thermodynamics of high polymer solutions. J. Chem. Phys., 1941, 9, 660-661. doi:10.1063/1.1750971http://dx.doi.org/10.1063/1.1750971
Huggins M. L. Solutions of long chain compounds. J. Chem. Phys., 1941, 9, 440-440. doi:10.1063/1.1750930http://dx.doi.org/10.1063/1.1750930
Morales G.; Díaz de León R.; Acuña P.; Flores Flores R.; Montalvo Robles A. Improved toughness in HIPS obtained from different styrene/butadiene-graded block copolymers through modification of the polydispersity index of the PS block. Polym. Eng. Sci., 2006, 46, 1333-1341. doi:10.1002/pen.20591http://dx.doi.org/10.1002/pen.20591
Gupta N.; Srivastava A. K. Interpenetrating polymer networks: a review on synthesis and properties. Polym. Int., 1994, 35, 109-118. doi:10.1002/pi.1994.210350201http://dx.doi.org/10.1002/pi.1994.210350201
Sperling L. H. Interpenetrating polymer networks and related materials. J. Polym. Sci., Part D: Macromol. Rev., 1977, 12, 141-180. doi:10.1002/pol.1977.230120103http://dx.doi.org/10.1002/pol.1977.230120103
Zhang Z. P.; Rong M. Z.; Zhang M. Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci., 2018, 80, 39-93. doi:10.1016/j.progpolymsci.2018.03.002http://dx.doi.org/10.1016/j.progpolymsci.2018.03.002
Zheng N.; Xu Y.; Zhao Q.; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev., 2021, 121, 1716-1745. doi:10.1021/acs.chemrev.0c00938http://dx.doi.org/10.1021/acs.chemrev.0c00938
Corbett P. T.; Leclaire J.; Vial L.; West K. R.; Wietor J. L.; Sanders J. K. M.; Otto S. Dynamic combinatorial chemistry. Chem. Rev., 2006, 106, 3652-3711. doi:10.1021/cr020452phttp://dx.doi.org/10.1021/cr020452p
Lehn J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev., 2007, 36, 151-160. doi:10.1039/b616752ghttp://dx.doi.org/10.1039/b616752g
Bowman C. N.; Kloxin C. J. Covalent adaptable networks: Reversible bond structures incorporated in polymer networks. Angew. Chem. Int. Ed., 2012, 51, 4272-4274. doi:10.1002/anie.201200708http://dx.doi.org/10.1002/anie.201200708
Kloxin C. J.; Bowman C. N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem. Soc. Rev., 2013, 42, 7161-7173. doi:10.1039/c3cs60046ghttp://dx.doi.org/10.1039/c3cs60046g
Scheutz G. M.; Lessard J. J.; Sims M. B.; Sumerlin B. S. Adaptable crosslinks in polymeric materials: Resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc., 2019, 141, 16181-16196. doi:10.1021/jacs.9b07922http://dx.doi.org/10.1021/jacs.9b07922
Zou W. K.; Dong J. T.; Luo Y. W.; Zhao Q.; Xie T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater., 2017, 29, 1606100. doi:10.1002/adma.201606100http://dx.doi.org/10.1002/adma.201606100
张泽平, 容敏智, 章明秋. 基于可逆共价化学的交联聚合物加工成型研究—聚合物工程发展的新挑战. 高分子学报, 2018, 829-852. doi:10.11777/j.issn1000-3304.2018.18060http://dx.doi.org/10.11777/j.issn1000-3304.2018.18060
容敏智, 彭伟黎, 章明秋. 中国专利, CN109370131B, 2021-01-22.
犹阳, 章明秋, 容敏智. 中国专利, CN109054056B, 2021-05-25.
Xiang H.; Yin J.; Lin G.; Liu X.; Rong M.; Zhang M. Photo-crosslinkable, self-healable and reprocessable rubbers. Chem. Eng. J., 2019, 358, 878-890. doi:10.1016/j.cej.2018.10.103http://dx.doi.org/10.1016/j.cej.2018.10.103
Amamoto Y.; Otsuka H.; Takahara A.; Matyjaszewski K. Changes in network structure of chemical gels controlled by solvent quality through photoinduced radical reshuffling reactions of trithiocarbonate units. ACS Macro Lett., 2012, 1, 478-481. doi:10.1021/mz300070thttp://dx.doi.org/10.1021/mz300070t
Imato K.; Ohishi T.; Nishihara M.; Takahara A.; Otsuka H. Network reorganization of dynamic covalent polymer gels with exchangeable diarylbibenzofuranone at ambient temperature. J. Am. Chem. Soc., 2014, 136, 11839-11845. doi:10.1021/ja5065075http://dx.doi.org/10.1021/ja5065075
Kato S.; Ishizuki K.; Aoki D.; Goseki R.; Otsuka H. Freezing-induced mechanoluminescence of polymer gels. ACS Macro Lett., 2018, 7, 1087-1091. doi:10.1021/acsmacrolett.8b00521http://dx.doi.org/10.1021/acsmacrolett.8b00521
Min Y. Q.; Huang S. Y.; Wang Y. X.; Zhang Z. J.; Du B. Y.; Zhang X. H.; Fan Z. Q. Sonochemical transformation of epoxy-amine thermoset into soluble and reusable polymers. Macromolecules, 2015, 48, 316-322. doi:10.1021/ma501934phttp://dx.doi.org/10.1021/ma501934p
Imato K.; Takahara A.; Otsuka H. Self-healing of a cross-linked polymer with dynamic covalent linkages at mild temperature and evaluation at macroscopic and molecular levels. Macromolecules, 2015, 48, 5632-5639. doi:10.1021/acs.macromol.5b00809http://dx.doi.org/10.1021/acs.macromol.5b00809
Christinat N.; Scopelliti R.; Severin K. Multicomponent assembly of boronic acid based macrocycles and cages. Angew. Chem. Int. Ed., 2008, 47, 1848-1852. doi:10.1002/anie.200705272http://dx.doi.org/10.1002/anie.200705272
Rocard L.; Berezin A.; De Leo F.; Bonifazi D. Templated chromophore assembly by dynamic covalent bonds. Angew. Chem. Int. Ed., 2015, 54, 15739-15743. doi:10.1002/anie.201507186http://dx.doi.org/10.1002/anie.201507186
Seifert H. M.; Trejo K. R.; Anslyn E. V. Four simultaneously dynamic covalent reactions. Experimental proof of orthogonality. J. Am. Chem. Soc., 2016, 138, 10916-10924. doi:10.1021/jacs.6b04532http://dx.doi.org/10.1021/jacs.6b04532
You Y.; Peng W. L.; Xie P.; Rong M. Z.; Zhang M. Q.; Liu D. Topological rearrangement-derived homogeneous polymer networks capable of reversibly interlocking: from phantom to reality and beyond. Mater. Today, 2020, 33, 45-55. doi:10.1016/j.mattod.2019.09.005http://dx.doi.org/10.1016/j.mattod.2019.09.005
Fu M. R.; You Y.; Rong M. Z.; Zhang M. Q. The critical role of inter-component hydrogen bonds in the formation of reversibly interlocked polymer networks. Mater. Chem. Front., 2021, 6, 52-62. doi:10.1039/d1qm01344khttp://dx.doi.org/10.1039/d1qm01344k
You Y.; Rong M. Z.; Zhang M. Q. Adaptable reversibly interlocked networks from immiscible polymers enhanced by hierarchy-induced multilevel energy consumption mechanisms. Macromolecules, 2021, 54, 4802-4815. doi:10.1021/acs.macromol.1c00289http://dx.doi.org/10.1021/acs.macromol.1c00289
Yuan S. J.; Peng Z. Q.; Rong M. Z.; Zhang M. Q. Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks. Mater. Chem. Front., 2022, 6, 1137-1149. doi:10.1039/d2qm00090chttp://dx.doi.org/10.1039/d2qm00090c
You Y.; Fu M. R.; Rong M. Z.; Zhang M. Q. Improving creep resistance while maintaining reversibility of covalent adaptive networks via constructing reversibly interlocked polymer networks. Mater. Today Chem., 2022, 23, 100687. doi:10.1016/j.mtchem.2021.100687http://dx.doi.org/10.1016/j.mtchem.2021.100687
Peng W. L.; You Y.; Xie P.; Rong M. Z.; Zhang M. Q. Adaptable interlocking macromolecular networks with homogeneous architecture made from immiscible single networks. Macromolecules, 2020, 53, 584-593. doi:10.1021/acs.macromol.9b02307http://dx.doi.org/10.1021/acs.macromol.9b02307
Ou Z. R.; Li Peng W.; Rong M. Z.; Zhang M. Q. Controllable depolymerization and recovery of interlocked covalent adaptable networks via cascading reactions of the built-in reversible bonds. Macromolecules, 2022, 55, 262-269. doi:10.1021/acs.macromol.1c01737http://dx.doi.org/10.1021/acs.macromol.1c01737
Peng W. L.; Zhang Z. P.; Rong M. Z.; Zhang M. Q. Reversibly interlocked macromolecule networks with enhanced mechanical properties and wide pH range of underwater self-healability. ACS Appl. Mater. Interfaces, 2020, 12, 27614-27624. doi:10.1021/acsami.0c07040http://dx.doi.org/10.1021/acsami.0c07040
Huang Z. X.; Xie Z. H.; Zhang Z. P.; Zhang T.; Rong M. Z.; Zhang M. Q. Highly ionic conductive, selfhealable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature. J. Mater. Chem. A, 2022, 18895-18906. Doi: 10.1039/D2TA03236H.
Jin Y.; Yu C.; Denman R. J.; Zhang W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev., 2013, 42, 6634-6654. doi:10.1039/c3cs60044khttp://dx.doi.org/10.1039/c3cs60044k
Amabilino D. B.; Smith D. K.; Steed J. W. Supramolecular materials. Chem. Soc. Rev., 2017, 46, 2404-2420. doi:10.1039/c7cs00163khttp://dx.doi.org/10.1039/c7cs00163k
Herbst F.; Dohler D.; Michael P.; Binder W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun., 2013, 34, 203-220. doi:10.1002/marc.201200675http://dx.doi.org/10.1002/marc.201200675
Hofman A. H.; van Hees I. A.; Yang J.; Kamperman M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater., 2018, 30, 1704640. doi:10.1002/adma.201704640http://dx.doi.org/10.1002/adma.201704640
Zhang X. Supramolecular polymer chemistry: past, present, and future. Chinese J. Polym. Sci., 2022, https://doi.org/10.1007/s10118-10022-12748-10117.
Tian Q.; Yuan Y. C.; Rong M. Z.; Zhang M. Q. A thermally remendable epoxy resin. J. Mater. Chem., 2009, 19, 1289-1296. doi:10.1039/b811938dhttp://dx.doi.org/10.1039/b811938d
Murphy E. B.; Wudl F. The world of smart healable materials. Prog. Polym. Sci., 2010, 35, 223-251. doi:10.1016/j.progpolymsci.2009.10.006http://dx.doi.org/10.1016/j.progpolymsci.2009.10.006
Yuan C.; Rong M. Z.; Zhang M. Q.; Zhang Z. P.; Yuan Y. C. Self-healing of polymers via synchronous covalent bond fission/radical recombination. Chem. Mater., 2011, 23, 5076-5081. doi:10.1021/cm202635whttp://dx.doi.org/10.1021/cm202635w
Montarnal D.; Capelot M.; Tournilhac F.; Leibler L. Silica-like malleable materials from permanent organic networks. Science, 2011, 334, 965-968. doi:10.1126/science.1212648http://dx.doi.org/10.1126/science.1212648
Ma S.; Wei J.; Jia Z.; Yu T.; Yuan W.; Li Q.; Wang S.; You S.; Liu R.; Zhu J. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A, 2019, 7, 1233-1243. doi:10.1039/c8ta07140chttp://dx.doi.org/10.1039/c8ta07140c
Lei Z. Q.; Xiang H. P.; Yuan Y. J.; Rong M. Z.; Zhang M. Q. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater., 2014, 26, 2038-2046. doi:10.1021/cm4040616http://dx.doi.org/10.1021/cm4040616
Lei Z. Q.; Xie P.; Rong M. Z.; Zhang M. Q. Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers. J. Mater. Chem. A, 2015, 3, 19662-19668. doi:10.1039/c5ta05788dhttp://dx.doi.org/10.1039/c5ta05788d
Hughes T.; Simon G. P.; Saito K. Light-healable epoxy polymer networks via anthracene dimer scission of diamine crosslinker. ACS Appl. Mater. Interfaces, 2019, 11, 19429-19443. doi:10.1021/acsami.9b02521http://dx.doi.org/10.1021/acsami.9b02521
Ling J.; Rong M. Z.; Zhang M. Q. Coumarin imparts repeated photochemical remendability to polyurethane. J. Mater. Chem., 2011, 21, 18373-18380. doi:10.1039/c1jm13467ahttp://dx.doi.org/10.1039/c1jm13467a
Abdallh M.; He P.; Hearn M. T. W.; Simon G. P.; Saito K. Light-switchable self-healing dynamic linear polymers: Reversible cycloaddition reactions of thymine-containing units. ChemPlusChem, 2019, 84, 333-337. doi:10.1002/cplu.201900079http://dx.doi.org/10.1002/cplu.201900079
Chae B.; Lee S. W.; Ree M.; Jung Y. M.; Kim S. B. Photoreaction and molecular reorientation in a nanoscaled film of poly(methyl 4-(methacryloyloxy)cinnamate) studied by two-dimensional FTIR and UV correlation spectroscopy. Langmuir, 2003, 19, 687-695. doi:10.1021/la020453chttp://dx.doi.org/10.1021/la020453c
Xu W. M.; Rong M. Z.; Zhang M. Q. Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. J. Mater. Chem. A, 2016, 4, 10683-10690. doi:10.1039/c6ta02662ahttp://dx.doi.org/10.1039/c6ta02662a
Amamoto Y.; Kamada J.; Otsuka H.; Takahara A.; Matyjaszewski K. Polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed., 2011, 50, 1660-1663. doi:10.1002/anie.201003888http://dx.doi.org/10.1002/anie.201003888
Belowich M. E.; Stoddart J. F. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41, 2003-2024. doi:10.1039/c2cs15305jhttp://dx.doi.org/10.1039/c2cs15305j
Cromwell O. R.; Chung J.; Guan Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc., 2015, 137, 6492-6495. doi:10.1021/jacs.5b03551http://dx.doi.org/10.1021/jacs.5b03551
Filippidi E.; Cristiani T. R.; Eisenbach C. D.; Waite J. H.; Israelachvili J. N.; Ahn B. K.; Valentine M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 2017, 358, 502-505. doi:10.1126/science.aao0350http://dx.doi.org/10.1126/science.aao0350
Liu J.; Jean Y. C.; Yang H. Free-volume hole properties of polymer blends probed by positron annihilation spectroscopy: miscibility. Macromolecules, 1995, 28, 5774-5779. doi:10.1021/ma00121a012http://dx.doi.org/10.1021/ma00121a012
Xie Z. H.; Rong M. Z.; Zhang M. Q.; Liu D. Implementation of the pulley effect of polyrotaxane in transparent bulk polymer for simultaneous strengthening and toughening. Macromol. Rapid Commun., 2020, 41, 2000371. doi:10.1002/marc.202000371http://dx.doi.org/10.1002/marc.202000371
张照明, 赵骏, 颜徐州. 协同的共价-超分子聚合物. 高分子学报, 2022, 53, 1-16. doi:10.11777/j.issn1000-3304.2022.22049http://dx.doi.org/10.11777/j.issn1000-3304.2022.22049
Dai W. T.; Xie Z. H.; Ke Y. B.; You Y.; Rong M. Z.; Zhang M. Q.; He C. Y.; Jiang H. Q.; Yang H. Mechanical enhancement mechanism of interlocked polymer networks. Mater. Today Phys., 2022, 27, 100768. doi:10.1016/j.mtphys.2022.100768http://dx.doi.org/10.1016/j.mtphys.2022.100768
Lei Y.; Zhang A.; Lin Y. Interpenetrating covalent adaptable networks with enhanced mechanical properties and facile reprocessability and recyclability. Polym. Chem., 2021, 12, 4052-4062. doi:10.1039/d1py00623ahttp://dx.doi.org/10.1039/d1py00623a
李懿轩, 孙俊奇. 基于聚合物复合物的自修复与可修复聚合物材料. 高分子学报, 2020, 51, 791-803. doi:10.11777/j.issn1000-3304.2020.20062http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
Li L. Q.; Chen X.; Jin K. L.; Bin Rusayyis M.; Torkelson J. M. Arresting elevated-temperature creep and achieving full cross-link density recovery in reprocessable polymer networks and network composites via nitroxide-mediated dynamic chemistry. Macromolecules, 2021, 54, 1452-1464. doi:10.1021/acs.macromol.0c01691http://dx.doi.org/10.1021/acs.macromol.0c01691
Liu Y. J.; Tang Z. H.; Wang D.; Wu S. W.; Guo B. C. Biomimetic design of elastomeric vitrimers with unparalleled mechanical properties, improved creep resistance and retained malleability by metal-ligand coordination. J. Mater. Chem. A, 2019, 7, 26867-26876. doi:10.1039/c9ta10909ahttp://dx.doi.org/10.1039/c9ta10909a
Xu X. W.; Ma S. Q.; Wang S.; Wu J. H.; Li Q.; Lu N.; Liu Y. L.; Yang J. T.; Feng J.; Zhu J. Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources. J. Mater. Chem. A, 2020, 8, 11261-11274. doi:10.1039/d0ta01419bhttp://dx.doi.org/10.1039/d0ta01419b
Xia N. N.; Rong M. Z.; Zhang M. Q. Stabilization of catechol-boronic ester bonds for underwater self-healing and recycling of lipophilic bulk polymer in wider pH range. J. Mater. Chem. A, 2016, 4, 14122-14131. doi:10.1039/c6ta05121ahttp://dx.doi.org/10.1039/c6ta05121a
Xia N. N.; Xiong X. M.; Rong M. Z.; Zhang M. Q.; Kong F. G. Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions. ACS Appl. Mater. Interfaces, 2017, 9, 37300-37309. doi:10.1021/acsami.7b11230http://dx.doi.org/10.1021/acsami.7b11230
Xia N. N.; Xiong X. M.; Wang J. H.; Rong M. Z.; Zhang M. Q. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chem. Sci., 2016, 7, 2736-2742. doi:10.1039/c5sc03483chttp://dx.doi.org/10.1039/c5sc03483c
Lin Y.; Huang X.; Chen J.; Jiang P. Epoxy thermoset resins with high pristine thermal conductivity. High Volt., 2017, 2, 139-146. doi:10.1049/hve.2017.0120http://dx.doi.org/10.1049/hve.2017.0120
Chen H.; Ginzburg V. V.; Yang J.; Yang Y.; Liu W.; Huang Y.; Du L.; Chen B. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci., 2016, 59, 41-85. doi:10.1016/j.progpolymsci.2016.03.001http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001
Meyer W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater., 1998, 10, 439-448. doi:10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-ihttp://dx.doi.org/10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i
Xue Z.; He D.; Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A, 2015, 3, 19218-19253. doi:10.1039/c5ta03471jhttp://dx.doi.org/10.1039/c5ta03471j
Correia D. M.; Costa C. M.; Nunes-Pereira J.; Silva M. M.; Botelho G.; Ribelles J. L. G.; Lanceros-Méndez S. Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. Solid State Ionics, 2014, 268, 54-67. doi:10.1016/j.ssi.2014.09.029http://dx.doi.org/10.1016/j.ssi.2014.09.029
Lee J. I.; Kim D. W.; Lee C.; Kang Y. Enhanced ionic conductivity of intrinsic solid polymer electrolytes using multi-armed oligo(ethylene oxide) plasticizers. J. Power Sources, 2010, 195, 6138-6142. doi:10.1016/j.jpowsour.2010.02.038http://dx.doi.org/10.1016/j.jpowsour.2010.02.038
Murakami S.; Ueda K.; Kitade T.; Ikeda Y.; Kohjiya S. Control on the structure of poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte. Solid State Ionics, 2002, 154-155, 399-406.
Jannasch P. Ion conducting electrolytes based on aggregating comblike poly(propylene oxide). Polymer, 2001, 42, 8629-8635. doi:10.1016/s0032-3861(01)00373-1http://dx.doi.org/10.1016/s0032-3861(01)00373-1
Zhou B.; Zuo C.; Xiao Z.; Zhou X.; He D.; Xie X.; Xue Z. Self-healing polymer electrolytes formed via dual-networks: A new strategy for flexible lithium metal batteries. Chem. Eur. J., 2018, 24, 19200-19207. doi:10.1002/chem.201803943http://dx.doi.org/10.1002/chem.201803943
Wang C.; Sakai T.; Watanabe O.; Hirahara K.; Nakanishi T. All solid-state lithium-polymer battery using a self-cross-linking polymer electrolyte. J. Electrochem. Soc., 2003, 150, A1166. doi:10.1149/1.1593652http://dx.doi.org/10.1149/1.1593652
Nishimoto A.; Watanabe M.; Ikeda Y.; Kohjiya S. High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers. Electrochim. Acta, 1998, 43, 1177-1184. doi:10.1016/s0013-4686(97)10017-2http://dx.doi.org/10.1016/s0013-4686(97)10017-2
Zhou B. H.; Yang M. L.; Zuo C.; Chen G.; He D.; Zhou X. P.; Liu C. M.; Xie X. L.; Xue Z. G. Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries. ACS Macro Lett., 2020, 9, 525-532. doi:10.1021/acsmacrolett.9b01024http://dx.doi.org/10.1021/acsmacrolett.9b01024
Wu N.; Shi Y. R.; Lang S. Y.; Zhou J. M.; Liang J. Y.; Wang W.; Tan S. J.; Yin Y. X.; Wen R.; Guo Y. G. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem. Int. Ed., 2019, 58, 18146-18149. doi:10.1002/anie.201910478http://dx.doi.org/10.1002/anie.201910478
Fu F.; Lu W.; Zheng Y.; Chen K.; Sun C.; Cong L. N.; Liu Y. L.; Xie H. M.; Sun L. Q. Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. J. Power Sources, 2021, 484, 229186. doi:10.1016/j.jpowsour.2020.229186http://dx.doi.org/10.1016/j.jpowsour.2020.229186
Zeng X. X.; Yin Y. X.; Li N. W.; Du W. C.; Guo Y. G.; Wan L. J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc., 2016, 138, 15825-15828. doi:10.1021/jacs.6b10088http://dx.doi.org/10.1021/jacs.6b10088
Butzelaar A. J.; Roring P.; Mach T. P.; Hoffmann M.; Jeschull F.; Wilhelm M.; Winter M.; Brunklaus G.; Theato P. Styrene-based poly(ethylene oxide) side-chain block copolymers as solid polymer electrolytes for high-voltage lithium-metal batteries. ACS Appl. Mater. Interfaces, 2021, 13, 39257-39270. doi:10.1021/acsami.1c08841http://dx.doi.org/10.1021/acsami.1c08841
St-Onge V.; Cui M. Y.; Rochon S.; Daigle J. C.; Claverie J. P. Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization. Commun. Mater., 2021, 2, 83. doi:10.1038/s43246-021-00187-2http://dx.doi.org/10.1038/s43246-021-00187-2
Zhang Y. H.; Lu W.; Cong L. N.; Liu J.; Sun L. Q.; Mauger A.; Julien C. M.; Xie H. M.; Liu J. Cross-linking network based on poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. J. Power Sources, 2019, 420, 63-72. doi:10.1016/j.jpowsour.2019.02.090http://dx.doi.org/10.1016/j.jpowsour.2019.02.090
Tan J. W.; Ao X.; Zhuo H.; Zhuang L. B.; Huang X.; Su C. L.; Tang W.; Peng X. W.; Tian B. B. Cryogenic engineering of solid polymer electrolytes for room temperature and 4 V-class all-solid-state lithium batteries. Chem. Eng. J., 2021, 420, 127623. doi:10.1016/j.cej.2020.127623http://dx.doi.org/10.1016/j.cej.2020.127623
Yao W.; Zhang Q.; Qi F.; Zhang J. N.; Liu K.; Li J. P.; Chen W. X.; Du Y. P.; Jin Y. C.; Liang Y. R.; Liu N. L. Epoxy containing solid polymer electrolyte for lithium ion battery. Electrochim. Acta, 2019, 318, 302-313. doi:10.1016/j.electacta.2019.06.069http://dx.doi.org/10.1016/j.electacta.2019.06.069
Bergfelt A.; Hernandez G.; Mogensen R.; Lacey M. J.; Mindemark J.; Brandell D.; Bowden T. M. Mechanically robust yet highly conductive diblock copolymer solid polymer electrolyte for ambient temperature battery applications. ACS Appl. Polym. Mater., 2020, 2, 939-948. doi:10.1021/acsapm.9b01142http://dx.doi.org/10.1021/acsapm.9b01142
Zhang L. S.; Zhang P. P.; Chang C. Y.; Guo W. B.; Guo Z. H.; Pu X. Self-healing solid polymer electrolyte for room-temperature solid-state lithium metal batteries. ACS Appl. Mater. Interfaces, 2021, 13, 46794-46802. doi:10.1021/acsami.1c14462http://dx.doi.org/10.1021/acsami.1c14462
Hong M.; Chen E. Y. X. Future directions for sustainable polymers. Trends Chem., 2019, 1, 148-151. doi:10.1016/j.trechm.2019.03.004http://dx.doi.org/10.1016/j.trechm.2019.03.004
Dorigato A. Recycling of polymer blends. Adv. Ind. Eng. Polym. Res., 2021, 4, 53-69. doi:10.1016/j.aiepr.2021.02.005http://dx.doi.org/10.1016/j.aiepr.2021.02.005
Chanda M. Chemical aspects of polymer recycling. Adv. Ind. Eng. Polym. Res., 2021, 4, 133-150. doi:10.1016/j.aiepr.2021.06.002http://dx.doi.org/10.1016/j.aiepr.2021.06.002
Pegoretti A. Recycling concepts for short-fiber-reinforced and particle-filled thermoplastic composites: a review. Adv. Ind. Eng. Polym. Res., 2021, 4, 93-104. doi:10.1016/j.aiepr.2021.03.004http://dx.doi.org/10.1016/j.aiepr.2021.03.004
Dorigato A. Recycling of thermosetting composites for wind blade application. Adv. Ind. Eng. Polym. Res., 2021, 4, 116-132. doi:10.1016/j.aiepr.2021.02.002http://dx.doi.org/10.1016/j.aiepr.2021.02.002
Danopoulos E.; Twiddy M.; West R.; Rotchell J. M. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J. Hazard. Mater., 2022, 427, 127861. doi:10.1016/j.jhazmat.2021.127861http://dx.doi.org/10.1016/j.jhazmat.2021.127861
Adjaoud A.; Puchot L.; Verge P. High-tg and degradable isosorbide-based polybenzoxazine vitrimer. ACS Sustainable Chem. Eng., 2022, 10, 594-602. doi:10.1021/acssuschemeng.1c07093http://dx.doi.org/10.1021/acssuschemeng.1c07093
Liu Y.; Wang B.; Ma S.; Yu T.; Xu X.; Li Q.; Wang S.; Han Y.; Yu Z.; Zhu J. Catalyst-free malleable, degradable, bio-based epoxy thermosets and its application in recyclable carbon fiber composites. Compos., Part B, 2021, 211, 108654. doi:10.1016/j.compositesb.2021.108654http://dx.doi.org/10.1016/j.compositesb.2021.108654
Li M.X.; Rong M.Z.; Zhang M.Q. Reversible mechanochemistry enabled autonomous sustaining of robustness of polymers-an example of next generation self-healing strategy. Chinese J. Polym. Sci., 2021, 39, 545-553. doi:10.1007/s10118-021-2532-0http://dx.doi.org/10.1007/s10118-021-2532-0
Zhang Z. P.; Rong M. Z.; Zhang M. Q. Mechanically robust, self-healable, and highly stretchable “living” crosslinked polyurethane based on a reversible cc bond. Adv. Funct. Mater., 2018, 28, 1706050. doi:10.1002/adfm.201706050http://dx.doi.org/10.1002/adfm.201706050
Miao W.; Yang B.; Jin B.; Ni C.; Feng H.; Xue Y.; Zheng N.; Zhao Q.; Shen Y.; Xie T. An orthogonal dynamic covalent polymer network with distinctive topology transformations for shape- and molecular architecture reconfiguration. Angew. Chem. Int. Ed., 2022, 61, e202109941. doi:10.1002/anie.202109941http://dx.doi.org/10.1002/anie.202109941
Min D. M.; Cui H. Z.; Hai Y. L.; Li P. X.; Xing Z. L.; Zhang C.; Li S. T. Interfacial regions and network dynamics in epoxy/poss nanocomposites unravelling through their effects on the motion of molecular chains. Compos. Sci. Technol., 2020, 199, 108329. doi:10.1016/j.compscitech.2020.108329http://dx.doi.org/10.1016/j.compscitech.2020.108329
Zhou D. L.; Huang H.; Wang Y.; Yu J. R.; Hu Z. M. Design and synthesis of an amide-containing crosslinked network based on diels-alder chemistry for fully recyclable aramid fabric reinforced composites. Compos. Sci. Technol., 2020, 197, 108280. doi:10.1016/j.compscitech.2020.108280http://dx.doi.org/10.1016/j.compscitech.2020.108280
Sivadas B. O.; Ashcroft I.; Khlobystov A. N.; Goodridge R. D. Laser sintering of polymer nanocomposites. Adv. Ind. Eng. Polym. Res., 2021, 4, 277-300. doi:10.1016/j.aiepr.2021.07.003http://dx.doi.org/10.1016/j.aiepr.2021.07.003
Javaid M.; Haleem A.; Singh R. P.; Suman R.; Rab S. Role of additive manufacturing applications towards environmental sustainability. Adv. Ind. Eng. Polym. Res., 2021, 4, 312-322. doi:10.1016/j.aiepr.2021.07.005http://dx.doi.org/10.1016/j.aiepr.2021.07.005
0
浏览量
238
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构