浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
E-mail: zhe.ma@tju.edu.cn
纸质出版日期:2022-12-20,
网络出版日期:2022-08-31,
收稿日期:2022-05-26,
录用日期:2022-05-31
移动端阅览
王元元,曲春静,马哲.1-丁烯/4-(3-丁烯基)甲苯共聚物结晶的熔体记忆效应[J].高分子学报,2022,53(12):1534-1542.
Wang Yuan-yuan,Qv Chun-jing,Ma Zhe.Melt Memory Effect in Crystallization of 1-Butene/4-(3-Butenyl)toluene Copolymers[J].ACTA POLYMERICA SINICA,2022,53(12):1534-1542.
王元元,曲春静,马哲.1-丁烯/4-(3-丁烯基)甲苯共聚物结晶的熔体记忆效应[J].高分子学报,2022,53(12):1534-1542. DOI: 10.11777/j.issn1000-3304.2022.22204.
Wang Yuan-yuan,Qv Chun-jing,Ma Zhe.Melt Memory Effect in Crystallization of 1-Butene/4-(3-Butenyl)toluene Copolymers[J].ACTA POLYMERICA SINICA,2022,53(12):1534-1542. DOI: 10.11777/j.issn1000-3304.2022.22204.
利用二甲基吡啶胺铪/有机硼催化体系,合成了一系列1-丁烯/4-(3-丁烯基)甲苯(PBBT)共聚物,在聚1-丁烯链中引入了具有
π
-
π
作用的结构单元. 利用示差扫描量热法系统研究了熔融热处理温度、熔融热处理时间和结晶温度对PBBT共聚物熔体记忆效应的影响,发现4-(3-丁烯基)甲苯共聚单元可以诱导共聚物产生平衡熔点以上的强熔体记忆效应. 随着熔融时间延长,PBBT共聚物的降温结晶峰值温度逐渐移向高温,这说明
不同于通常认为的记忆效应随熔融热处理时间增长只能逐渐减弱,PBBT共聚物记忆效应还可在熔融热处理过程中发展增强. 此外,PBBT共聚物的记忆效应强度还表现出强烈的结晶温度依赖性,结晶温度越低,记忆效应越强.
The macromolecules exhibit the multiscale aggregation features and consequently show the unique memory effect for subsequent re-crystallization. The origin of memory effect was usually related to the survival of crystallization-associated structures after melting
which has a close correlation with molecular architecture. In this work
a series of 1-butene/4-(3-butenyl)toluene (PBBT) copolymers were prepared by dimethylpyridine amine hafnium/[Ph
3
C
]
[B(C
6
F
5
)
4
]
catalyst system to introduce the steric 4-(3-butenyl)toluene co-units with
π
-
π
interaction into the poly(1-butene). Differential scanning calorimetry was employed to systematically study the influence of melt temperature
melting time and crystallization temperature on memory effect of PBBT copolymers. The results showed that the presence of 4-(3-butenyl)toluene co-units induced the occurrence of melt memory effect
which accelerated re-crystallization kinetics without changing the formed crystal modificati
on of tetragonal phase. The triggered memory effect exhibits the maximum strength within the intermediate melt temperatures. Interestingly
as the melting duration increased
the exothermic peak value of cooling crystallization in PBBT copolymers moved to high temperature
demonstrating the melting-enhanced strength of memory effect. This development behavior of memory effect in PBBT is significantly different from the customary decaying evolution reported previously. Moreover
it was found that melt memory effect of PBBT copolymers is also strongly dependent on the crystallization temperature and its strength can be enhanced by lowering crystallization temperature.
2
1-丁烯共聚物结晶动力学熔体记忆效应
1-Butene copolymerCrystallization kineticsMelt memory effect
Hu Wenbin(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 1-15. doi:10.1007/978-3-7091-0670-9_10http://dx.doi.org/10.1007/978-3-7091-0670-9_10
Sangroniz L, Cavallo D, Muller A J. Macromolecules, 2020, 53(12): 4581-4604. doi:10.1021/acs.macromol.0c00751http://dx.doi.org/10.1021/acs.macromol.0c00751
Zhang J, Chen Q. Chinese J Polym Sci, 2022, 40(6):618-623. doi:10.1007/s10118-022-2705-5http://dx.doi.org/10.1007/s10118-022-2705-5
Hamad F, Colby R, Milner S. Macromolecules, 2015, 48(19): 7286-7299. doi:10.1021/acs.macromol.5b01408http://dx.doi.org/10.1021/acs.macromol.5b01408
He L, Wang B, Yang F, Li Y, Ma Z. Macromolecules, 2016, 49(17): 6578-6589. doi:10.1021/acs.macromol.6b01457http://dx.doi.org/10.1021/acs.macromol.6b01457
Reid B O, Vadlamudi M, Mamun A, Janani H, Gao H, Hu W, Alamo R G. Macromolecules, 2013, 46(16): 6485-6497. doi:10.1021/ma400839dhttp://dx.doi.org/10.1021/ma400839d
Schneider S, Drujon X, Lotz B, Wittmann J C. Polymer, 2001, 42(21): 8787-8798. doi:10.1016/s0032-3861(01)00361-5http://dx.doi.org/10.1016/s0032-3861(01)00361-5
Mamun A, Umemoto S, Okui N, Ishihara N. Macromolecules, 2007, 40(17): 6296-6303. doi:10.1021/ma070963jhttp://dx.doi.org/10.1021/ma070963j
Liao Y, Liu L, Ma Z, Li Y. Macromolecules, 2020, 53(6): 2088-2100. doi:10.1021/acs.macromol.0c00078http://dx.doi.org/10.1021/acs.macromol.0c00078
Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L. Macromolecules, 2013, 46(18): 7399-7405. doi:10.1021/ma400952rhttp://dx.doi.org/10.1021/ma400952r
Sangroniz L, Alamo R G, Cavallo D, Santamaria A, Muller A J, Alegria A. Macromolecules, 2018, 51(10): 3663-3671. doi:10.1021/acs.macromol.8b00708http://dx.doi.org/10.1021/acs.macromol.8b00708
Sangroniz L, Barbieri F, Cavallo D, Santamaria A, Alamo R G, Müller A J. Eur Polym J, 2018, 99: 495-503. doi:10.1016/j.eurpolymj.2018.01.009http://dx.doi.org/10.1016/j.eurpolymj.2018.01.009
Sangroniz L, Cavallo D, Santamaria A, Müller A J, Alamo R G. Macromolecules, 2017, 50(2): 642-651. doi:10.1021/acs.macromol.6b02392http://dx.doi.org/10.1021/acs.macromol.6b02392
Chen X, Qu C, Alamo R G. Polym Int, 2019, 68(2): 248-256. doi:10.1002/pi.5586http://dx.doi.org/10.1002/pi.5586
Marxsen S F, Alamo R G. Polymer, 2019, 168: 168-177. doi:10.1016/j.polymer.2019.02.030http://dx.doi.org/10.1016/j.polymer.2019.02.030
Mamun A, Chen X, Alamo R G. Macromolecules, 2014, 47(22): 7958-7970. doi:10.1021/ma501937chttp://dx.doi.org/10.1021/ma501937c
Chen X, Wignall G D, He L, Lopez B C, Alamo R G. Macromolecules, 2017, 50(11): 4406-4414. doi:10.1021/acs.macromol.7b00357http://dx.doi.org/10.1021/acs.macromol.7b00357
Chen X, Lopez B C, Zeng Y, Alamo R G. Polymer, 2018, 148: 181-190. doi:10.1016/j.polymer.2018.06.032http://dx.doi.org/10.1016/j.polymer.2018.06.032
Ren M, Chen X, Sang Y, Alamo R G. Ind Eng Chem Res, 2020, 59(43): 19260-19271. doi:10.1021/acs.iecr.0c03647http://dx.doi.org/10.1021/acs.iecr.0c03647
Gao H, Vadlamudi M, Alamo R G, Hu W. Macromolecules, 2013, 46(16): 6498-6506. doi:10.1021/ma400842hhttp://dx.doi.org/10.1021/ma400842h
Ergoz E, Fatou J G, Mandelkern L. Macromolecules, 2002, 5(2): 147-157
Hafele A, Heck B, Hippler T, Kawai T, Kohn P, Strobl G. Eur Phys J E, 2005, 16(2): 217-224
Sangroniz L, Sangroniz A, Meabe L, Basterretxea A, Sardon H, Cavallo D, Müller A J. Macromolecules, 2020, 53(12): 4874-4881. doi:10.1021/acs.macromol.0c00751http://dx.doi.org/10.1021/acs.macromol.0c00751
Pérez R A, Córdova M E, López J V, Hoskins J N, Zhang B, Grayson S M, Müller A J. React Funct Polym, 2014, 80: 71-82. doi:10.1016/j.reactfunctpolym.2013.10.013http://dx.doi.org/10.1016/j.reactfunctpolym.2013.10.013
Wang M, Li J, Shi G, Liu G, Müller A J, Wang D. Macromolecules, 2021, 54(8): 3810-3821. doi:10.1021/acs.macromol.1c00485http://dx.doi.org/10.1021/acs.macromol.1c00485
Qv C, Li W, Zhao R, Ma Z. Chinese J Polym Sci, 2022, 40(6): 576-583. doi:10.1007/s10118-022-2660-1http://dx.doi.org/10.1007/s10118-022-2660-1
Shang Ruining(商睿凝), Pan Li(潘莉), Li Yuesheng(李悦生). Acta Polymerica Sinica(高分子学报), 2019, 50(11): 1187-1195. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
Meng Qingqing(孟晴晴), Wang Bin(王彬), Pan Li(潘莉), Li Yuesheng(李悦生), Ma Zhe(马哲). Acta Polymerica Sinica(高分子学报), 2017, (11):1762-1772. doi:10.11777/j.issn1000-3304.2017.17028http://dx.doi.org/10.11777/j.issn1000-3304.2017.17028
Wang X, Wang Y, Shi X, Liu J, Chen C, Li Y. Macromolecules, 2014, 47(2): 552-559. doi:10.1021/ma4022696http://dx.doi.org/10.1021/ma4022696
Wang L, Wan D, Zhang Z, Liu F, Xing H, Wang Y, Tang T. Macromolecules, 2011, 44(11): 4167-4179. doi:10.1021/ma200604yhttp://dx.doi.org/10.1021/ma200604y
Lou Y, Liao Y, Pan L, Wang B, Li Y, Ma Z. Chinese J Polym Sci, 2018, 36(11): 1269-1276. doi:10.1007/s10118-018-2135-6http://dx.doi.org/10.1007/s10118-018-2135-6
Fillon B, Wittmann J C, Lotz B, Thierry A. J Polym Sci Polm Phys, 1993, 31(10): 1383-1393. doi:10.1002/polb.1993.090311013http://dx.doi.org/10.1002/polb.1993.090311013
0
浏览量
101
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构