浏览全部资源
扫码关注微信
清华大学化学工程系 北京 100084
[ "徐军,男,1974年生. 1997和2002年分别在清华大学获得学士和博士学位. 2002年毕业后留在清华大学化工系工作,历任助理研究员和副教授. 2011年获得德国洪堡基金会资助到德国弗莱堡大学进行为期1年的洪堡学者访问研究. 入选2012年教育部“新世纪优秀人才”支持计划. 先后获2003年北京市科技进步二等奖、2009年中国石油和化学工业协会技术发明二等奖、2010年中国石油和化学工业协会科技进步二等奖、2012年冯新德高分子奖(Polymer刊物2011年度中国最佳文章提名)、2017年中国石油和化学工业联合会技术发明二等奖. 主要研究方向:高分子结晶、生物降解高分子、动态共价高分子材料等. E-mail: jun-xu@mail.tsinghua.edu.cn" ]
纸质出版日期:2023-01-20,
网络出版日期:2022-09-15,
收稿日期:2022-06-11,
录用日期:2022-07-20
扫 描 看 全 文
汪志琦,郭宝华,徐军.偏振光学显微成像技术在高分子结晶结构表征中的应用[J].高分子学报,2023,54(01):130-150.
Wang Zhi-qi,Guo Bao-hua,Xu Jun.Polarized Optical Imaging and Its Application in Characterization of Polymer Crystalline Structures[J].ACTA POLYMERICA SINICA,2023,54(01):130-150.
汪志琦,郭宝华,徐军.偏振光学显微成像技术在高分子结晶结构表征中的应用[J].高分子学报,2023,54(01):130-150. DOI: 10.11777/j.issn1000-3304.2022.22226.
Wang Zhi-qi,Guo Bao-hua,Xu Jun.Polarized Optical Imaging and Its Application in Characterization of Polymer Crystalline Structures[J].ACTA POLYMERICA SINICA,2023,54(01):130-150. DOI: 10.11777/j.issn1000-3304.2022.22226.
光学成像技术是最为直观的一种表征手段,借助光学显微镜,根据物质、材料和光的相互作用,能够直接观察肉眼难以获得的微观结构信息. 借助偏振光,又能看到在普通显微镜明场下无法观察到的晶体双折射等光学性质. 本文主要介绍几种光学显微镜在高分子结晶表征方面的应用,从光通过偏振器件及样品的角度出发,介绍偏光显微镜、PolScope系统以及Müller矩阵显微镜的基本工作原理和在高分子结晶方面的应用研究,结合具体案例,阐述这些技术如何揭示高分子晶体的微观结构,并简述一些基础的操作要点及注意事项. 依据晶体的双折射特点,偏光显微镜提供了晶体厚薄、取向等结构信息和晶体生长速率等动力学信息. 但是偏光显微镜的透射光强是晶体双折射和主折射率方向的方位角两者耦合的结果,而拥有可变偏振方向的PolScope系统则可以进一步精确测得双折射的光程差及晶体主折射率方向的方位角. Müller矩阵显微镜则通过检测经过样品前后的圆偏振光变化来获得样品更为丰富的光学信息,如线性双折射、圆双折射、线性二色性和圆二色性等.
Optical imaging is the simplest characterization method for observing the microscopic structures of materials in real space. Since the first one invented by Antoni van Leeuwenhoek in the 17
th
century
optical microscopes have found wide applications in every corner of material
chemistry and biology.
Via
optical microscope
we can capture micro structures invisible to naked eyes. Through polarized light
we can obtain optical properties of crystals invisible in bright field imaging. This review briefly summarizes the application of polarized optical microscopes in the characterization of polymer crystalline structures. Based on the birefringence
polarized optical microscope can reveal the structure information such as orientation of optical axes. However
polarized optical microscope only gives a coupled information of birefringence and the orientation of slow optical axis. To solve the problem
PolScope system equipped with variable direction of polarized light can determine both the optical retardance of birefringence and the azimuth of slow axis precisely. The more advanced optical microscope
Müller matrix microscope employs rotating polarization generator and analyzer to characterize more optical properties
such as linear dichroism
linear birefringence
circular dichroism and circular birefringence. Some typical applications of polarized optical microscope
PolScope system and Müller matrix microscope to characterize polymer spherulites are summarized together with the fundamentals and some using tips.
偏光显微镜结晶结构PolScopeMüller矩阵显微镜偏振光
Polarized optical microscopePolymer crystalline structuresPolScopeMüller matrix microscopePolarized light
Cocquyt T.; Zhou Z.; Plomp J.; van Eijck L. Neutron tomography of van leeuwenhoek's microscopes. Sci. Adv., 2021, 7, eabf2402. doi:10.1126/sciadv.abf2402http://dx.doi.org/10.1126/sciadv.abf2402
Gest H. The discovery of microorganisms by robert hooke and antoni van leeuwenhoek, fellows of the Royal Society. Notes Rec. R. Soc. Lond., 2004, 58, 187-201. doi:10.1098/rsnr.2004.0055http://dx.doi.org/10.1098/rsnr.2004.0055
Kahr B.; Claborn K. The lives of malus and his bicentennial law. ChemPhysChem, 2008, 9, 43-58. doi:10.1002/cphc.200700173http://dx.doi.org/10.1002/cphc.200700173
Keller A. A note on single crystals in polymers-evidence for a folded chain configuration. Philos. Mag., 1957, 2, 1171-1175. doi:10.1080/14786435708242746http://dx.doi.org/10.1080/14786435708242746
Till P. H. The growth of single crystals of linear polyethylene. J. Polym. Sci., 1957, 24, 301-306. doi:10.1002/pol.1957.1202410616http://dx.doi.org/10.1002/pol.1957.1202410616
Ye H.M.; Xu J.; Guo B.H.; Iwata T. Left- or right-handed lamellar twists in poly(R)-3-hydroxyvalerate banded spherulite: Dependence on growth axis. Macromolecules, 2009, 42, 694-701. doi:10.1021/ma801653phttp://dx.doi.org/10.1021/ma801653p
廖延彪. 偏振光学. 北京: 科学出版社, 2003. 64-136.
Lane C.; Rode D.; Roesgen T. Two-dimensional birefringence measurement technique using a polarization camera. Appl. Opt., 2021, 60, 8435-8444. doi:10.1364/ao.433066http://dx.doi.org/10.1364/ao.433066
Guo Z. X.; Yan S. K.; Reiter G. Formation of stacked three-dimensional polymer "single crystals". Macromolecules, 2021, 54, 4918-4925. doi:10.1021/acs.macromol.1c00081http://dx.doi.org/10.1021/acs.macromol.1c00081
Bessif B.; Pfohl T.; Reiter G. Self-seeding procedure for obtaining stacked block copolymer lamellar crystals in solution. Polymers, 2021, 13, 1676. doi:10.3390/polym13111676http://dx.doi.org/10.3390/polym13111676
Chen W. X.; Bessif B.; Reiter R.; Xu J.; Reiter G. Controlled switching from the growth of monolamellar polymer crystals to the formation of stacks of uniquely oriented lamellae. Macromolecules, 2021, 54, 8135-8142. doi:10.1021/acs.macromol.1c01390http://dx.doi.org/10.1021/acs.macromol.1c01390
Keller A. The morphology of crystalline polymers. Makromol. Chem., 1959, 34, 1-28. doi:10.1002/macp.1959.020340101http://dx.doi.org/10.1002/macp.1959.020340101
Bunn C. W.; Alcock, T. C. The texture of polythene. Trans. Faraday Soc., 1945, 41, 317-325. doi:10.1039/tf9454100317http://dx.doi.org/10.1039/tf9454100317
Bryant, W. M. D. Polythene fine structure. J. Polym. Sci., 1947, 2, 547-564. doi:10.1002/pol.1947.120020601http://dx.doi.org/10.1002/pol.1947.120020601
Auriemma F.; Alfonso G. C.; DeRosa C. Polymer Crystallization II: from Chain Microstructure to Processing. Cham: Springer, 2017. 1-94. doi:10.1007/978-3-319-49203-2http://dx.doi.org/10.1007/978-3-319-49203-2
Lotz B.; Wittmann J. C.; Lovinger A. J. Structure and morphology of poly(propylenes): a molecular analysis. Polymer, 1996, 37, 4979-4992. doi:10.1016/0032-3861(96)00370-9http://dx.doi.org/10.1016/0032-3861(96)00370-9
Nakamura K.; Shimizu S.; Umemoto S.; Thierry A.; Lotz B.; Okui N. Temperature dependence of crystal growth rate for alpha and beta forms of isotactic polypropylene. Polym. J., 2008, 40, 915-922. doi:10.1295/polymj.pj2007231http://dx.doi.org/10.1295/polymj.pj2007231
Padden F. J.; Keith H. D. Spherulitic crystallization in polypropylene. J. Appl. Phys., 1959, 30, 1479-1484. doi:10.1063/1.1734985http://dx.doi.org/10.1063/1.1734985
Norton D. R.; Keller A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer, 1985, 26, 704-716. doi:10.1016/0032-3861(85)90108-9http://dx.doi.org/10.1016/0032-3861(85)90108-9
Bruckner S.; Meille S. V.; Petraccone V.; Pirozzi B. Polymorphism in isotactic polypropylene. Prog. Polym. Sci., 1991, 16, 361-404. doi:10.1016/0079-6700(91)90023-ehttp://dx.doi.org/10.1016/0079-6700(91)90023-e
Mezghani K.; Phillips P. J. γ-Phase in propylene copolymers at atmospheric-pressure. Polymer, 1995, 36, 2407-2411. doi:10.1016/0032-3861(95)97341-chttp://dx.doi.org/10.1016/0032-3861(95)97341-c
Lotz B.; Thierry A. Spherulite morphology of form III isotactic poly(1-butene). Macromolecules, 2003, 36, 286-290. doi:10.1021/ma021452uhttp://dx.doi.org/10.1021/ma021452u
Lovinger A. J. Crystallization and morphology of melt-solidified poly(vinylidene fluoride). J. Polym. Sci. Part B-Polym. Phys., 1980, 18, 793-809. doi:10.1002/pol.1980.180180412http://dx.doi.org/10.1002/pol.1980.180180412
Price F. P. On extinction patterns of polymer spherulites. J. Polym. Sci., 1959, 39, 139-150. doi:10.1002/pol.1959.1203913511http://dx.doi.org/10.1002/pol.1959.1203913511
Keller A. Investigations on banded spherulites. J. Polym. Sci., 1959, 39, 151-173. doi:10.1002/pol.1959.1203913512http://dx.doi.org/10.1002/pol.1959.1203913512
Keller A. The spherulitic structure of crystalline polymers. Part Ⅰ. Investigations with the polarizing microscope. J. Polym. Sci., 1955, 17, 291-308. doi:10.1002/pol.1955.120178414http://dx.doi.org/10.1002/pol.1955.120178414
Keith H. D.; Padden F. J. The optical behavior of spherulites in crystalline polymers. Part Ⅰ. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J. Polym. Sci., 1959, 39, 101-122. doi:10.1002/pol.1959.1203913509http://dx.doi.org/10.1002/pol.1959.1203913509
Keller A. Morphology of crystallizing polymers. Nature, 1952, 169, 913-914. doi:10.1038/169913a0http://dx.doi.org/10.1038/169913a0
徐军. 聚羟基脂肪酸酯的分子结构调控及其环带球晶的结晶机理研究. 清华大学博士学位论文, 2002.
Xu J.; Ye H.; Zhang S.; Guo B. Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review. Crystals, 2017, 7, 241. doi:10.3390/cryst7080241http://dx.doi.org/10.3390/cryst7080241
Duan Y. X.; Jiang Y.; Jiang S. D.; Li L.; Yan S. K.; Schultz J. M. Depletion-induced nonbirefringent banding in thin isotactic polystyrene thin films. Macromolecules, 2004, 37, 9283-9286. doi:10.1021/ma0483165http://dx.doi.org/10.1021/ma0483165
Wang Z.; Hu Z.; Chen Y.; Gong Y.; Huang H.; He T. Rhythmic growth-induced concentric ring-banded structures in poly(epsilon-caprolactone) solution-casting films obtained at the slow solvent evaporation. Macromolecules, 2007, 40, 4381-4385. doi:10.1021/ma070334+http://dx.doi.org/10.1021/ma070334+
Woo E. M.; Lugito G. Cracks in polymer spherulites: phenomenological mechanisms in correlation with ring bands. Polymers, 2016, 8, 329. doi:10.3390/polym8090329http://dx.doi.org/10.3390/polym8090329
Ye H. M.; Wang J. S.; Tang S.; Xu J.; Feng X. Q.; Guo B. H.; Xie X. M.; Zhou J. J.; Li L.; Wu Q.; Chen G. Q. Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules, 2010, 43, 5762-5770. doi:10.1021/ma100920uhttp://dx.doi.org/10.1021/ma100920u
Maillard D.; Prud'homme R. E. Crystallization of ultrathin films of polylactides: from chain chirality to lamella curvature and twisting. Macromolecules, 2008, 41, 1705-1712. doi:10.1021/ma071306uhttp://dx.doi.org/10.1021/ma071306u
Singfield K. L.; Hobbs J. K.; Keller A. Correlation between main chain chirality and crystal "twist" direction in polymer spherulites. J. Cryst. Growth, 1998, 183, 683-689. doi:10.1016/s0022-0248(97)00522-8http://dx.doi.org/10.1016/s0022-0248(97)00522-8
Shtukenberg A. G.; Freudenthal J.; Kahr B. Reversible twisting during helical hippuric acid crystal growth. J. Am. Chem. Soc., 2010, 132, 9341-9349. doi:10.1021/ja101491nhttp://dx.doi.org/10.1021/ja101491n
Shtukenberg A. G.; Cui X.; Freudenthal J.; Gunn E.; Camp E.; Kahr B. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites. J. Am. Chem. Soc., 2012, 134, 6354-6364. doi:10.1021/ja300257mhttp://dx.doi.org/10.1021/ja300257m
Noguchi M.; Ishikawa T.; Ohno M.; Tachihara S. Measurement of 2d birefringence distribution. Proc. SPIE, 1992, 1720, 367-378. doi:10.1117/12.132143http://dx.doi.org/10.1117/12.132143
Otani, Y.; Shimada, T.; Yoshizawa, T.; Umeda, N. 2-dimensional birefringence measurement using the phase-shifting technique. Opt. Eng., 1994, 33, 1604-1609. doi:10.1117/12.168435http://dx.doi.org/10.1117/12.168435
Bajor A. L. Automated polarimeter-macroscope for optical mapping of birefringence, azimuths, and transmission in large-area wafers. Part Ⅰ. Theory of the measurement. Rev. Sci. Instrum., 1995, 66, 2977-2990. doi:10.1063/1.1145584http://dx.doi.org/10.1063/1.1145584
Oldenbourg R.; Mei G. New polarized-light microscope with precision universal compensator. J.Microsc. Oxford, 1995, 180, 140-147. doi:10.1111/j.1365-2818.1995.tb03669.xhttp://dx.doi.org/10.1111/j.1365-2818.1995.tb03669.x
Shribak M.; Oldenbourg R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt., 2003, 42, 3009-3017. doi:10.1364/ao.42.003009http://dx.doi.org/10.1364/ao.42.003009
Mehta S.; Shribak M.; Oldenbourg R. Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity. J. Opt., 2013, 15, 094007. doi:10.1088/2040-8978/15/9/094007http://dx.doi.org/10.1088/2040-8978/15/9/094007
Hoyt C. C.; Oldenbourg R. Structural analysis with quantitative birefringence imaging. Am. Lab., 1999, 31, 34-42.
Li B.; Zhao Y.; Chen X.; Wang Z.; Xu J.; Shi W. Polymer crystallization with configurable birefringence in double emulsion droplets. Macromolecules, 2022, 55, 3974-3985. doi:10.1021/acs.macromol.2c00482http://dx.doi.org/10.1021/acs.macromol.2c00482
Sun M.; He H.; Zeng N.; Du E.; Guo Y.; Liu S.; Wu J.; He Y.; Ma H. Characterizing the microstructures of biological tissues using mueller matrix and transformed polarization parameters. Biomed. Opt. Express, 2014, 5, 4223-4234. doi:10.1364/boe.5.004223http://dx.doi.org/10.1364/boe.5.004223
Guo Y.; Zeng N.; He H.; Liu C.; Du E.; He Y.; Ma H. Retardance of bilayer anisotropic samples consisting of well-aligned cylindrical scatterers and birefringent media. J. Biomed. Opt., 2016, 21, 055002. doi:10.1117/1.jbo.21.5.055002http://dx.doi.org/10.1117/1.jbo.21.5.055002
Chen Z.; Meng R.; Zhu Y.; Ma H. A collinear reflection mueller matrix microscope for backscattering mueller matrix imaging. Opt. Lasers Eng., 2020, 129, 106055. doi:10.1016/j.optlaseng.2020.106055http://dx.doi.org/10.1016/j.optlaseng.2020.106055
Hielscher A. H.; Eick A. A.; Mourant J. R.; Shen D.; Freyer J. P.; Bigio I. J. Diffuse backscattering mueller matrices of highly scattering media. Opt. Express, 1997, 1, 441-453. doi:10.1364/oe.1.000441http://dx.doi.org/10.1364/oe.1.000441
Cameron B. D.; Rakovic M. J.; Mehrubeoglu M.; Kattawar G. W.; Rastegar S.; Wang L. V.; Cote G. L. Measurement and calculation of the two-dimensional backscattering mueller matrix of a turbid medium. Opt. Lett., 1998, 23, 485-487. doi:10.1364/ol.23.000485http://dx.doi.org/10.1364/ol.23.000485
Cameron B. D.; Rakovic M. J.; Mehrubeoglu M.; Kattawar G. W.; Rastegar S.; Wang L. V.; Cote G. L. Measurement and calculation of the two-dimensional backscattering mueller matrix of a turbid medium. Opt. Lett., 1998, 23, 1630-1630. doi:10.1364/ol.23.000485http://dx.doi.org/10.1364/ol.23.000485
Cameron B. D.; Li Y.; Nezhuvingal A. Determination of optical scattering properties in turbid media using mueller matrix imaging. J. Biomed. Opt., 2006, 11, 054031. doi:10.1117/1.2363347http://dx.doi.org/10.1117/1.2363347
Hauge P. S. Mueller matrix ellipsometry with imperfect compensators. J. Opt. Soc. Am., 1978, 68, 1519-1528. doi:10.1364/josa.68.001519http://dx.doi.org/10.1364/josa.68.001519
Azzam R. M. A. Photopolarimetric measurement of mueller matrix by fourier-analysis of a single detected signal. Opt. Lett., 1978, 2, 148-150. doi:10.1364/ol.2.000148http://dx.doi.org/10.1364/ol.2.000148
Goldstein D. H.; Chipman R. A. Error analysis of a mueller matrix polarimeter. J. Opt. Soc. Am. A-Opt. Image Sci. Vision, 1990, 7, 693-700. doi:10.1364/josaa.7.000693http://dx.doi.org/10.1364/josaa.7.000693
Goldstein D. H. Mueller matrix dual-rotating retarder polarimeter. Appl. Opt., 1992, 31, 6676-6683. doi:10.1364/ao.31.006676http://dx.doi.org/10.1364/ao.31.006676
Smith M. H. Optimization of a dual-rotating-retarder mueller matrix polarimeter. Appl. Opt., 2002, 41, 2488-2493. doi:10.1364/ao.41.002488http://dx.doi.org/10.1364/ao.41.002488
Lu S. Y.; Chipman R. A. Interpretation of mueller matrices based on polar decomposition. J. Opt. Soc. Am. A-Opt. Image Sci. Vision, 1996, 13, 1106-1113. doi:10.1364/josaa.13.001106http://dx.doi.org/10.1364/josaa.13.001106
Sun M.; He H.; Zeng N.; Du E.; Guo Y.; Peng C.; He Y.; Ma H. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters. Appl. Opt., 2014, 53, 2949-2955. doi:10.1364/ao.53.002949http://dx.doi.org/10.1364/ao.53.002949
Du E.; He H.; Zeng N.; Sun M.; Guo Y.; Wu J.; Liu S.; Ma H. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt., 2014, 19, 076013. doi:10.1117/1.jbo.19.7.076013http://dx.doi.org/10.1117/1.jbo.19.7.076013
Ye H. M.; Xu J.; Freudenthal J.; Kahr B. On the circular birefringence of polycrystalline polymers: Polylactide. J. Am. Chem. Soc., 2011, 133, 13848-13851. doi:10.1021/ja205159uhttp://dx.doi.org/10.1021/ja205159u
Ye H. M.; Freudenthal J. H.; Tan M.; Yang J.; Kahr B. Chiroptical differentiation of twisted chiral and achiral polymer crystals. Macromolecules, 2019, 52, 8514-8520. doi:10.1021/acs.macromol.9b01526http://dx.doi.org/10.1021/acs.macromol.9b01526
Rosenthal M.; Burghammer M.; Bar G.; Samulski E. T.; Ivanov D. A. Switching chirality of hybrid left-right crystalline helicoids built of achiral polymer chains: When right to left becomes left to right. Macromolecules, 2014, 47, 8295-8304. doi:10.1021/ma501733nhttp://dx.doi.org/10.1021/ma501733n
Qiang Z.; Wang M. 100th anniversary of macromolecular science viewpoint: Enabling advances in fluorescence microscopy techniques. ACS Macro. Lett., 2020, 9, 1342-1356. doi:10.1021/acsmacrolett.0c00506http://dx.doi.org/10.1021/acsmacrolett.0c00506
Yang S. G.; Wei Z. Z.; Cseh L.; Kazemi P.; Zeng X. B.; Xie H. J.; Saba H.; Ungar G. Bowls, vases and goblets-the microcrockery of polymer and nanocomposite morphology revealed by two-photon optical tomography. Nat. Commun., 2021, 12, 5054. doi:10.1038/s41467-021-25297-whttp://dx.doi.org/10.1038/s41467-021-25297-w
Xu J.; Bao J.; Guo B. H.; Ma H.; Yun T. L.; Gao L.; Chen G. Q.; Iwata T. Imaging of nonlinear optical response in biopolyesters via second harmonic generation microscopy and its dependence on the crystalline structures. Polymer, 2007, 48, 348-355. doi:10.1016/j.polymer.2006.11.037http://dx.doi.org/10.1016/j.polymer.2006.11.037
0
浏览量
286
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构