浏览全部资源
扫码关注微信
1.广东工业大学材料与能源学院 广东省功能软凝聚态物质重点实验室 广州 510006
2.中山大学化学学院 广东省高性能树脂基复合材料重点实验室 聚合物复合材料及功能材料教育部重点实验室 广州 510275
[ "向洪平,男,1986年生. 2009年于淮北师范大学生命科学学院取得学士学位;2015年于中山大学获得博士学位;2018年起任广东工业大学材料与能源学院副教授. 围绕功能高分子及其复合材料的基础与应用科学问题,对高分子合成、共混复合及加工成型等开展了研究,近年来的研究领域涉及到自修复型智能高分子复合材料、固相可再生橡胶及其复合材料、3D打印光敏树脂及其复合材料等." ]
[ "章明秋,男,1961年生. 1982、1991年于中山大学分别获得学士、博士学位;1992年起任中山大学化学院教授. 长期从事高分子及高分子复合材料的科研与教学,研究方向主要包括高分子材料,高分子共混物和高分子复合材料的结构与性能关系,表征技术,功能化应用等,内容涉及高分子材料和增强聚合物复合材料的力学性能,纳米粒子表面改性和纳米粒子/高分子复合材料,植物基复合材料,复合材料中的界面结构,高分子物理,导电复合材料,减摩耐磨复合材料,自修复型智能高分子复合材料等." ]
纸质出版日期:2023-07-20,
网络出版日期:2023-01-16,
收稿日期:2022-10-31,
录用日期:2022-12-14
扫 描 看 全 文
叶娟,祖兆基,林子谦等.本征型自修复聚硅氧烷材料:从单重动态交联网络到多重动态交联网络[J].高分子学报,2023,54(07):1028-1054.
Ye Juan,Zu Zhao-ji,Lin Zi-qian,et al.Intrinsic Self-healing Polysiloxane Materials: From Single Dynamic Crosslinked Network to Multiple Dynamic Crosslinked Networks[J].ACTA POLYMERICA SINICA,2023,54(07):1028-1054.
叶娟,祖兆基,林子谦等.本征型自修复聚硅氧烷材料:从单重动态交联网络到多重动态交联网络[J].高分子学报,2023,54(07):1028-1054. DOI: 10.11777/j.issn1000-3304.2022.22362.
Ye Juan,Zu Zhao-ji,Lin Zi-qian,et al.Intrinsic Self-healing Polysiloxane Materials: From Single Dynamic Crosslinked Network to Multiple Dynamic Crosslinked Networks[J].ACTA POLYMERICA SINICA,2023,54(07):1028-1054. DOI: 10.11777/j.issn1000-3304.2022.22362.
近年来,本征型自修复聚硅氧烷材料因兼具聚硅氧烷的优异性能和损伤自修复功能,在复合材料、智能涂层、柔性器件等领域显示出巨大的应用潜能. 本征型自修复聚硅氧烷材料主要通过在聚硅氧烷交联网络中引入各种动态非共价键和动态共价键,借助动态键的可逆断裂与重组来重排交联网络而实现损伤修复. 迄今为止,已有数十种修复机制或体系被相继报道,但仍存在自修复能力与力学性能间的矛盾. 为解决这一根本问题,聚硅氧烷材料的动态交联网络正从单重动态交联向多重动态交联转变,并结合结晶或取向等工艺以及通过与改性纳米粒子复合,这些方法对自修复材料的力学性能和自修复能力的协同调控都有着重要影响. 鉴于此,本文根据本征型自修复聚硅氧烷材料中动态键和动态交联网络的结构差异,对其动态交联网络的结构设计、自修复机制、性能调控以及应用研究等方面进行了综述分析,并展望了本征型自修复聚硅氧烷材料未来的发展方向.
Recently
intrinsic self-healing polysiloxane materials owing to the excellent performances of silicone materials like resistance to high/low temperature
electrical insulation
hydrophobicity and biocompatibility
and novel self-healing ability to damages
have shown great potential in smart coatings
sensors
flexible devices and other fields. Intrinsic self-healing polysiloxane materials are mainly constructed by introducing dynamic non-covalent bonds (hydrogen bond
metal-ligand coordination interaction
ionic bond
etc
.) or/and dynamic covalent bonds (Diels-Alder bond
imine bond
boronic ester bond
siloxane bond
disulphide bond
etc
.) into their crosslinked networks. These dynamic bonds can be reversibly dissociated and recombined under moderate external stimuli
which thus enable the polymers to repair damage and restore functions. To date
dozens of self-healing mechanisms or systems for polysiloxane materials have been reported
but there is still a great challenge between excellent self-healing ability and high mechanical strengths. To address this fundamental issue
the crosslinked network of polysiloxane materials is converted from single dynamic bond to multiple dynamic bonds. The synergetic combination of dynamic covalent bond and non-covalent bond plays an important role in the efficient regulation of mechanical performances and self-healing capacities. Besides
the orientation
crystallization or phase separation of polymer chains is also considered as an effective way to improve the comprehensive properties of self-healing polysiloxane materials
because it can compensate for the reduction of mechanical properties to a certain extent. Moreover
the compositing polysiloxane materials with diverse nano-fillers grafted with dynamic bonds not only improve their comprehensive performances but also give new functions such as electric conduction
sensing
heat conduction. In view of this
this paper will review the network structure design
self-healing mechanism
property regulation and potential applications of intrinsic self-healing polysiloxane materials
based on their structural differences of dynamic bonds and dynamic crosslinked networks. Finally
an outlook on the future development of intrinsic self-healing polysiloxane materials is prospected.
聚硅氧烷材料自修复动态交联网络动态非共价键动态共价键
Polysiloxane materialsSelf-healingDynamic crosslinked networkDynamic noncovalent bondsDynamic covalent bonds
Wolf M. P.; Salieb-Beugelaar G. B.; Hunziker P. PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci., 2018, 83, 97-134. doi:10.1016/j.progpolymsci.2018.06.001http://dx.doi.org/10.1016/j.progpolymsci.2018.06.001
Markvicka E. J.; Bartlett M. D.; Huang X. N.; Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater., 2018, 17(7), 618-624. doi:10.1038/s41563-018-0084-7http://dx.doi.org/10.1038/s41563-018-0084-7
He W. Q.; Liu P.; Zhang J. Q.; Yao X. Emerging applications of bioinspired slippery surfaces in biomedical fields. Chem. Eur. J., 2018, 24(56), 14864-14877. doi:10.1002/chem.201801368http://dx.doi.org/10.1002/chem.201801368
Godwinraj D.; George S. C. Recent advancement in TENG polymer structures and energy efficient charge control circuits. Adv. Ind. Eng. Polym. Res., 2021, 4(1), 1-8. doi:10.1016/j.aiepr.2020.12.003http://dx.doi.org/10.1016/j.aiepr.2020.12.003
Valentini F.; Pegoretti, A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res., 2022, 5(4), 203-213. doi:10.1016/j.aiepr.2022.08.006http://dx.doi.org/10.1016/j.aiepr.2022.08.006
Formela K. Waste tire rubber-based materials: processing, performance properties and development strategies. Adv. Ind. Eng. Polym. Res., 2022, 5(4), 234-247. doi:10.1016/j.aiepr.2022.06.003http://dx.doi.org/10.1016/j.aiepr.2022.06.003
叶娟, 林子谦, 李伟健,向洪平, 容敏智, 章明秋. 自修复有机硅材料的构建策略. 化学进展, 2022, DOI: 10.7536/PC220543http://dx.doi.org/10.7536/PC220543.
Zhang M. Q.; Rong M. Z. Extrinsic and Intrinsic Approaches to Self-Healing Polymers and Polymer Composites. New Jersey: Wiley, 2022. doi:10.1002/9781119630005http://dx.doi.org/10.1002/9781119630005
Zhang M. Q. Self-healing polymeric materials: on a winding road to success. Chinese J. Polym. Sci., 2022, 40(11), 1315-1316. doi:10.1007/s10118-022-2870-6http://dx.doi.org/10.1007/s10118-022-2870-6
Yuan Y. C.; Yin T.; Rong M. Z.; Zhang M. Q. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review. Express Polym. Lett., 2008, 2(4), 238-250. doi:10.3144/expresspolymlett.2008.29http://dx.doi.org/10.3144/expresspolymlett.2008.29
Zhu D. Y.; Rong M. Z.; Zhang M. Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Prog. Polym. Sci., 2015, 49-50, 175-220.
章明秋, 容敏智. 结构用自修复型高分子材料的制备. 高分子学报, 2012, (11): 1183-1199. doi:10.3724/SP.J.1105.2012.12171http://dx.doi.org/10.3724/SP.J.1105.2012.12171
Zhang Z. P.; Rong M. Z.; Zhang M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci., 2018, 80, 39-93. doi:10.1016/j.progpolymsci.2018.03.002http://dx.doi.org/10.1016/j.progpolymsci.2018.03.002
张泽平, 容敏智, 章明秋. 基于可逆共价化学的交联聚合物加工成型研究: 聚合物工程发展的新挑战. 高分子学报, 2018, (7), 829-852. doi:10.11777/j.issn1000-3304.2018.18060http://dx.doi.org/10.11777/j.issn1000-3304.2018.18060
孔思予, 杨冲冲, 郑震, 王新灵. 具有自修复和形状记忆功能的聚氨酯光敏树脂. 功能高分子学报, 2021, 34(4), 369-378. doi:10.14133/j.cnki.1008-9357.20201223001http://dx.doi.org/10.14133/j.cnki.1008-9357.20201223001
张照明, 赵骏, 颜徐州. 协同的共价-超分子聚合物. 高分子学报, 2022, 53(7), 691-706. doi:10.11777/j.issn1000-3304.2022.22049http://dx.doi.org/10.11777/j.issn1000-3304.2022.22049
Huang X. W.; Wang X. F.; Shi C. Y.; Liu Y.; Wei Y. Y. Research on synthesis and self-healing properties of interpenetrating network hydrogels based on reversible covalent and reversible non-covalent bonds. J. Polym. Res., 2021, 28(1), 1. doi:10.1007/s10965-020-02155-9http://dx.doi.org/10.1007/s10965-020-02155-9
Chen J. S.; Peng Q. Y.; Thundat T.; Zeng H. B. Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater., 2019, 31(12), 4553-4563. doi:10.1021/acs.chemmater.9b01239http://dx.doi.org/10.1021/acs.chemmater.9b01239
Zhao W. P.; Dong B.; Liu H.; Hu Y. M.; Zhang X. Q. Living coordination-insertion copolymerization of 1-hexene and ligated α-olefins using an α-diimine nickel catalyst and preparation of metal-ligand coordination crosslinked polymers. Polym. Chem., 2020, 11(14), 2492-2501. doi:10.1039/d0py00224khttp://dx.doi.org/10.1039/d0py00224k
Ma J. X.; Zhou T.; Ma T. T.; Yang Z. H.; Yang J. H.; Guo Q.; Liu W.; Yang Q. F.; Liu W. S.; Yang T. L. Construction of transition metal coordination polymers with free carboxyl groups and turn-on fluorescent detection for α, β-diamine. Cryst. Growth Des., 2021, 21(1), 383-395. doi:10.1021/acs.cgd.0c01233http://dx.doi.org/10.1021/acs.cgd.0c01233
Gong H. R.; Gao Y. J.; Jiang S. L.; Sun F. Photocured materials with self-healing function through ionic interactions for flexible electronics. ACS Appl. Mater. Interfaces, 2018, 10(31), 26694-26704. doi:10.1021/acsami.8b08884http://dx.doi.org/10.1021/acsami.8b08884
Chen T.; Li M. X.; Liu J. Q. π-π Stacking interaction: a nondestructive and facile means in material engineering for bioapplications. Cryst. Growth Des., 2018, 18(5), 2765-2783. doi:10.1021/acs.cgd.7b01503http://dx.doi.org/10.1021/acs.cgd.7b01503
Shah R. A.; Ostertag T. W.; Tang S.; Dziubla T. D.; Hilt J. Z. Development of biphenyl monomers and associated crosslinked polymers with intramolecular π‐π interactions. J. Appl. Polym. Sci., 2021, 138(16), 50257. doi:10.1002/app.50257http://dx.doi.org/10.1002/app.50257
Ren P. F.; Wei D. D.; Ge X.; Wang F. M.; Liang M.; Dai J. D.; Xu L.; Zhang T. Z. Injectable supramolecular hydrogels based on host-guest interactions with cell encapsulation capabilities. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 628, 127338. doi:10.1016/j.colsurfa.2021.127338http://dx.doi.org/10.1016/j.colsurfa.2021.127338
Edelbrock A. N.; Clemons T. D.; Chin S. M.; Roan J. J. W.; Bruckner E. P.; Álvarez Z.; Edelbrock J. F.; Wek K. S.; Stupp S. I. Superstructured biomaterials formed by exchange dynamics and host-guest interactions in supramolecular polymers. Adv. Sci. (Weinh), 2021, 8(8), 2004042. doi:10.1002/advs.202004042http://dx.doi.org/10.1002/advs.202004042
You Y.; Peng W. L.; Xie P.; Rong M. Z.; Zhang M. Q.; Liu D. Topological rearrangement-derived homogeneous polymer networks capable of reversibly interlocking: from phantom to reality and beyond. Mater. Today, 2020, 33, 45-55. doi:10.1016/j.mattod.2019.09.005http://dx.doi.org/10.1016/j.mattod.2019.09.005
Zheng N.; Xu Y.; Zhao Q.; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev., 2021, 121(3), 1716-1745. doi:10.1021/acs.chemrev.0c00938http://dx.doi.org/10.1021/acs.chemrev.0c00938
Wang Z. Y.; Liang H. B.; Yang H. T.; Xiong L.; Zhou J. P.; Huang S. M.; Zhao C. H.; Zhong J.; Fan X. F. UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Prog. Org. Coat., 2019, 137, 105282. doi:10.1016/j.porgcoat.2019.105282http://dx.doi.org/10.1016/j.porgcoat.2019.105282
Memon H.; Liu H. Y.; Rashid M. A.; Chen L.; Jiang Q. R.; Zhang L. Y.; Wei Y.; Liu W. S.; Qiu Y. P. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules, 2020, 53(2), 621-630. doi:10.1021/acs.macromol.9b02006http://dx.doi.org/10.1021/acs.macromol.9b02006
Zhang Y. H.; Zhang L.; Yang G. T.; Yao Y. L.; Wei X.; Pan T. C.; Wu J. T.; Tian M. F.; Yin P. G. Recent advances in recyclable thermosets and thermoset composites based on covalent adaptable networks. J. Mater. Sci. Technol., 2021, 92, 75-87. doi:10.1016/j.jmst.2021.03.043http://dx.doi.org/10.1016/j.jmst.2021.03.043
Chen H. W.; Wang P.; Zheng C. C.; Zhang L. J. Thermal-responsive and 3D printable hydrogel based on an acylhydrazine-terminated dynamic covalent bond and pluronic F127. ACS Appl. Polym. Mater., 2022, 4(9), 6312-6321. doi:10.1021/acsapm.2c00410http://dx.doi.org/10.1021/acsapm.2c00410
Wu P.; Liu L.; Wu Z. J. A transesterification-based epoxy vitrimer synthesis enabled high crack self-healing efficiency to fibrous composites. Compos. A Appl. Sci. Manuf., 2022, 162, 107170. doi:10.1016/j.compositesa.2022.107170http://dx.doi.org/10.1016/j.compositesa.2022.107170
Liu T.; Zhao B. M.; Zhang J. W. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194, 122392. doi:10.1016/j.polymer.2020.122392http://dx.doi.org/10.1016/j.polymer.2020.122392
Ruiz de Luzuriaga A.; Martin R.; Markaide N.; Rekondo A.; Cabañero G.; Rodríguez J.; Odriozola I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz., 2016, 3(3), 241-247. doi:10.1039/c6mh00029khttp://dx.doi.org/10.1039/c6mh00029k
Huang Y. J.; Shi Z.; Wang H. L.; Wang J. R.; Xue Z. G. Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis. Energy Storage Mater., 2022, 51, 1-10. doi:10.1016/j.ensm.2022.06.021http://dx.doi.org/10.1016/j.ensm.2022.06.021
Mai W. C.; Yu Q. P.; Han C. P.; Kang F. Y.; Li B. H. Self‐healing materials for energy‐storage devices. Adv. Funct. Mater., 2020, 30(24), 1909912. doi:10.1002/adfm.201909912http://dx.doi.org/10.1002/adfm.201909912
Wanasinghe S. V.; Dodo O. J.; Konkolewicz D. Dynamic bonds: adaptable timescales for responsive materials. Angew. Chem. Int. Ed. Engl., 2022, 61(50), e202206938. doi:10.1002/anie.202206938http://dx.doi.org/10.1002/anie.202206938
Wang Z.; Liu Y. T.; Zhang D. J.; Zhang K. M.; Gao C. H.; Wu Y. M. Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol., 2021, 216, 109042. doi:10.1016/j.compscitech.2021.109042http://dx.doi.org/10.1016/j.compscitech.2021.109042
Shan Y. F.; Li Z. X.; Yu T. W.; Wang X. X.; Cui H. N.; Yang K.; Cui Y. Y. Self-healing strain sensor based on silicone elastomer for human motion detection. Compos. Sci. Technol., 2022, 218, 109208. doi:10.1016/j.compscitech.2021.109208http://dx.doi.org/10.1016/j.compscitech.2021.109208
Yi B.; Wang S.; Hou C. S.; Huang X.; Cui J. X.; Yao X. Dynamic siloxane materials: from molecular engineering to emerging applications. Chem. Eng. J., 2021, 405, 127023. doi:10.1016/j.cej.2020.127023http://dx.doi.org/10.1016/j.cej.2020.127023
Utrera-Barrios S.; Verdejo R.; López-Manchado M. A.; Hernández Santana M. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms. A review. Mater. Horiz., 2020, 7(11), 2882-2902. doi:10.1039/d0mh00535ehttp://dx.doi.org/10.1039/d0mh00535e
犹阳, 容敏智, 章明秋. 聚合物可逆互锁网络的设计、制备和应用初探. 高分子学报, 2023, 54(1), 14-36.
王宇, 唐黎明. 氢键识别超分子聚合物的新进展. 化学进展, 2007, 19(5), 769-778. doi:10.3321/j.issn:1005-281X.2007.05.017http://dx.doi.org/10.3321/j.issn:1005-281X.2007.05.017
Kenny P. W. Hydrogen-bond donors in drug design. J. Med. Chem., 2022, 65(21), 14261-14275. doi:10.1021/acs.jmedchem.2c01147http://dx.doi.org/10.1021/acs.jmedchem.2c01147
Xie Z. L.; Hu B. L.; Li R. W.; Zhang Q. C. Hydrogen bonding in self-healing elastomers. ACS Omega, 2021, 6(14), 9319-9333. doi:10.1021/acsomega.1c00462http://dx.doi.org/10.1021/acsomega.1c00462
Cui X.; Yan Y. G.; Huang J.; Qiu X. Y.; Zhang P. P.; Chen Y.; Hu Z. F.; Liang X. B. A substrate-independent isocyanate-modified polydimethylsiloxane coating harvesting mechanical durability, self-healing ability and low surface energy with anti-corrosion/biofouling potential. Appl. Surf. Sci., 2022, 579, 152186. doi:10.1016/j.apsusc.2021.152186http://dx.doi.org/10.1016/j.apsusc.2021.152186
Sun J. W.; Liu C.; Duan J. Z.; Liu J.; Dong X. C.; Zhang Y. M.; Wang N.; Wang J.; Hou B. R. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. J. Mater. Sci. Technol., 2022, 124, 1-13. doi:10.1016/j.jmst.2022.01.026http://dx.doi.org/10.1016/j.jmst.2022.01.026
Kang J.; Son D.; Wang G. J. N.; Liu Y. X.; Lopez J.; Kim Y.; Oh J. Y.; Katsumata T.; Mun J.; Lee Y.; Jin L. H.; Tok J. B. H.; Bao Z. N. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater., 2018, 30(13), e1706846. doi:10.1002/adma.201706846http://dx.doi.org/10.1002/adma.201706846
Xu J. H.; Chen P.; Wu J. W.; Hu P.; Fu Y. S.; Jiang W.; Fu J. J. Notch-insensitive, ultrastretchable, efficient self-healing supramolecular polymers constructed from multiphase active hydrogen bonds for electronic applications. Chem. Mater., 2019, 31(19), 7951-7961. doi:10.1021/acs.chemmater.9b02136http://dx.doi.org/10.1021/acs.chemmater.9b02136
Lv C.; Qi Y. H.; Hu R. F.; Zheng J. P. Robust, healable and hydrophobically recoverable polydimethylsiloxane based supramolecular material with dual-activate hard segment. Sci. China Technol. Sci., 2021, 64(2), 423-432. doi:10.1007/s11431-020-1674-7http://dx.doi.org/10.1007/s11431-020-1674-7
Liu M. J.; Liu P.; Lu G.; Xu Z. T.; Yao X. Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11242-11246. doi:10.1002/anie.201805206http://dx.doi.org/10.1002/anie.201805206
陈灿, 俞慧涛, 冯奕钰, 封伟. 兼具导热和自修复功能的聚合物复合材料. 高分子学报, 2021, 52(3), 272-280. doi:10.11777/j.issn1000-3304.2020.20229http://dx.doi.org/10.11777/j.issn1000-3304.2020.20229
Ogliani E.; Yu L.; Javakhishvili I.; Skov A. L. A thermo-reversible silicone elastomer with remotely controlled self-healing. RSC Adv., 2018, 8(15), 8285-8291. doi:10.1039/c7ra13686bhttp://dx.doi.org/10.1039/c7ra13686b
Zhao K. F.; Lv C.; Zheng J. P. A robust mechanochromic self-healing poly(dimethylsiloxane) elastomer. Sci. China Technol. Sci., 2020, 63(5), 740-747. doi:10.1007/s11431-019-1479-1http://dx.doi.org/10.1007/s11431-019-1479-1
Li C. H.; Zuo J. L. Self-healing polymers based on coordination bonds. Adv. Mater., 2020, 32(27), e1903762.
Jia X. Y.; Mei J. F.; Lai J. C.; Li C. H.; You X. Z. A self-healing PDMS polymer with solvatochromic properties. Chem. Commun., 2015, 51(43), 8928-8930. doi:10.1039/c5cc01956ghttp://dx.doi.org/10.1039/c5cc01956g
Jia X. Y.; Mei J. F.; Lai J. C.; Li C. H.; You X. Z. A highly stretchable polymer that can be thermally healed at mild temperature. Macromol. Rapid Commun., 2016, 37(12), 952-956. doi:10.1002/marc.201600142http://dx.doi.org/10.1002/marc.201600142
Lai J. C.; Li L.; Wang D. P.; Zhang M. H.; Mo S. R.; Wang X.; Zeng K. Y.; Li C. H.; Jiang Q.; You X. Z.; Zuo J. L. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat. Commun., 2018, 9(1), 2725. doi:10.1038/s41467-018-05285-3http://dx.doi.org/10.1038/s41467-018-05285-3
Li C. H.; Wang C.; Keplinger C.; Zuo J. L.; Jin L. H.; Sun Y.; Zheng P.; Cao Y.; Lissel F.; Linder C.; You X. Z.; Bao Z. N. A highly stretchable autonomous self-healing elastomer. Nat. Chem., 2016, 8(6), 618-624. doi:10.1038/nchem.2492http://dx.doi.org/10.1038/nchem.2492
Lai J. C.; Jia X. Y.; Wang D. P.; Deng Y. B.; Zheng P.; Li C. H.; Zuo J. L.; Bao Z. N. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun., 2019, 10, 1164. doi:10.1038/s41467-019-09130-zhttp://dx.doi.org/10.1038/s41467-019-09130-z
Rao Y. L.; Chortos A.; Pfattner R.; Lissel F.; Chiu Y. C.; Feig V.; Xu J.; Kurosawa T.; Gu X. D.; Wang C.; He M. Q.; Chung J. W.; Bao Z. N. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc., 2016, 138(18), 6020-6027. doi:10.1021/jacs.6b02428http://dx.doi.org/10.1021/jacs.6b02428
Tan H. Y.; Lyu Q. Q.; Xie Z. J.; Li M. M.; Wang K.; Wang K.; Xiong B. J.; Zhang L. B.; Zhu J. T. Metallosupramolecular photonic elastomers with self-healing capability and angle-independent color. Adv. Mater., 2019, 31(6), e1805496.
Hu P.; Xie Q. Y.; Ma C. F.; Zhang G. Z. Fouling resistant silicone coating with self-healing induced by metal coordination. Chem. Eng. J., 2021, 406, 126870. doi:10.1016/j.cej.2020.126870http://dx.doi.org/10.1016/j.cej.2020.126870
Lu H.; Feng S. Y. Supramolecular silicone elastomers with healable and hydrophobic properties crosslinked by "salt-forming vulcanization". J. Polym. Sci. A Polym. Chem., 2017, 55(5), 903-911. doi:10.1002/pola.28450http://dx.doi.org/10.1002/pola.28450
Madsen F. B.; Yu L. Y.; Skov A. L. Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett., 2016, 5(11), 1196-1200. doi:10.1021/acsmacrolett.6b00662http://dx.doi.org/10.1021/acsmacrolett.6b00662
Liu Z.; Hong P.; Huang Z. Y.; Zhang T.; Xu R. J.; Chen L. J.; Xiang H. P.; Liu X. X. Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers. Chem. Eng. J., 2020, 387, 124142. doi:10.1016/j.cej.2020.124142http://dx.doi.org/10.1016/j.cej.2020.124142
Bai L.; Qv P.; Zheng J. P. Colorless, transparent, and healable silicone elastomers by introducing Zn(II)-carboxylate interactions via aza-Michael reaction. J. Mater. Sci., 2020, 55(28), 14045-14057. doi:10.1007/s10853-020-04997-6http://dx.doi.org/10.1007/s10853-020-04997-6
Shi J. F.; Zhao N.; Yan D. Y.; Song J. H.; Fu W. X.; Li Z. B. Design of a mechanically strong and highly stretchable thermoplastic silicone elastomer based on coulombic interactions. J. Mater. Chem. A, 2020, 8(12), 5943-5951. doi:10.1039/d0ta01593hhttp://dx.doi.org/10.1039/d0ta01593h
Liu Y. L.; Chuo T. W. Self-healing polymers based on thermally reversible Diels-chemistry. Polym. Chem., 2013, 4(7), 2194-2205. doi:10.1039/c2py20957hhttp://dx.doi.org/10.1039/c2py20957h
Kuhl N.; Bode S.; Hager M. D.; Schubert U. S. Self-healing polymers based on reversible covalent bonds. Self-healing Materials. Cham: Springer International Publishing, 2015. 1-58. doi:10.1007/12_2015_336http://dx.doi.org/10.1007/12_2015_336
Zhao J.; Xu R.; Luo G. X.; Wu J.; Xia H. S. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J. Mater. Chem. B, 2016, 4(5), 982-989. doi:10.1039/c5tb02036khttp://dx.doi.org/10.1039/c5tb02036k
Wang J. K.; Lv C.; Li Z. X.; Zheng J. P. Facile preparation of polydimethylsiloxane elastomer with self-healing property and remoldability based on Diels-Alder chemistry. Macromol. Mater. Eng., 2018, 303(6), 1800089. doi:10.1002/mame.201800089http://dx.doi.org/10.1002/mame.201800089
Zhao L. W.; Jiang B.; Huang Y. D. Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor. J. Mater. Sci., 2019, 54(7), 5472-5483. doi:10.1007/s10853-018-03233-6http://dx.doi.org/10.1007/s10853-018-03233-6
Zhao L. W.; Jiang B.; Huang Y. D. Functionalized graphene‐reinforced polysiloxane nanocomposite with improved mechanical performance and efficient healing properties. J. Appl. Polym. Sci., 2019, 136(27), 47725. doi:10.1002/app.47725http://dx.doi.org/10.1002/app.47725
Belowich M. E.; Stoddart J. F. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41(6), 2003-2024. doi:10.1039/c2cs15305jhttp://dx.doi.org/10.1039/c2cs15305j
Lei Z. Q.; Xie P.; Rong M. Z.; Zhang M. Q. Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers. J. Mater. Chem. A, 2015, 3(39), 19662-19668. doi:10.1039/c5ta05788dhttp://dx.doi.org/10.1039/c5ta05788d
Zhang B. L.; Zhang P.; Zhang H. Z.; Yan C.; Zheng Z. J.; Wu B.; Yu Y. A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer. Macromol. Rapid Commun., 2017, 38(15), 1700110. doi:10.1002/marc.201700110http://dx.doi.org/10.1002/marc.201700110
Lei X. Y.; Huang Y. W.; Liang S.; Zhao X. L.; Liu L. L. Preparation of highly transparent, room-temperature self-healing and recyclable silicon elastomers based on dynamic imine bond and their ion responsive properties. Mater. Lett., 2020, 268, 127598. doi:10.1016/j.matlet.2020.127598http://dx.doi.org/10.1016/j.matlet.2020.127598
Feng Z. B.; Yu B.; Hu J.; Zuo H. L.; Li J. P.; Sun H. B.; Ning N. Y.; Tian M.; Zhang L. Q. Multifunctional vitrimer-like polydimethylsiloxane (PDMS): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond. Ind. Eng. Chem. Res., 2019, 58(3), 1212-1221. doi:10.1021/acs.iecr.8b05309http://dx.doi.org/10.1021/acs.iecr.8b05309
Wang N.; Feng L.; Xu X. D.; Feng S. Y. Dynamic covalent bond cross-linked luminescent silicone elastomer with self-healing and recyclable properties. Macromol. Rapid Commun., 2022, 43(7), e2100885. doi:10.1002/marc.202100885http://dx.doi.org/10.1002/marc.202100885
Xu X. W.; Hao X. Y.; Hu J.; Gao W. S.; Ning N. Y.; Yu B.; Zhang L. Q.; Tian M. Recyclable silicone elastic light-triggered actuator with a reconfigurable Janus structure and self-healable performance. Polym. Chem., 2022, 13(6), 829-837. doi:10.1039/d1py01632fhttp://dx.doi.org/10.1039/d1py01632f
Lai J. C.; Mei J. F.; Jia X. Y.; Li C. H.; You X. Z.; Bao Z. N. A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv. Mater., 2016, 28(37), 8277-8282. doi:10.1002/adma.201602332http://dx.doi.org/10.1002/adma.201602332
Liu Z.; Xiao D. S.; Liu G. C.; Xiang H. P.; Rong M. Z.; Zhang M. Q. Self-healing and reprocessing of transparent UV-cured polysiloxane elastomer. Prog. Org. Coat., 2021, 159, 106450. doi:10.1016/j.porgcoat.2021.106450http://dx.doi.org/10.1016/j.porgcoat.2021.106450
Ma J. C.; Porath L. E.; Haque M. F.; Sett S.; Rabbi K. F.; Nam S.; Miljkovic N.; Evans C. M. Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nat. Commun., 2021, 12, 5210. doi:10.1038/s41467-021-25508-4http://dx.doi.org/10.1038/s41467-021-25508-4
Chen C.; Fei H. F.; Watkins J. J.; Crosby A. J. Soft double-network polydimethylsiloxane: fast healing of fracture toughness. J. Mater. Chem. A, 2022, 10(21), 11667-11675. doi:10.1039/d2ta00887dhttp://dx.doi.org/10.1039/d2ta00887d
Azcune I.; Odriozola I. Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more. Eur. Polym. J., 2016, 84, 147-160. doi:10.1016/j.eurpolymj.2016.09.023http://dx.doi.org/10.1016/j.eurpolymj.2016.09.023
Xiang H. P.; Rong M. Z.; Zhang M. Q. A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer. Polymer, 2017, 108, 339-347. doi:10.1016/j.polymer.2016.12.006http://dx.doi.org/10.1016/j.polymer.2016.12.006
Zhao L. W.; Yin Y.; Jiang B.; Guo Z. H.; Qu C. Y.; Huang Y. D. Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics. J. Colloid Interface Sci., 2020, 573, 105-114. doi:10.1016/j.jcis.2020.03.125http://dx.doi.org/10.1016/j.jcis.2020.03.125
Huang Y. H.; Yan J. P.; Wang D. X.; Feng S. Y.; Zhou C. J. Construction of self-healing disulfide-linked silicone elastomers by thiol oxidation coupling reaction. Polymers, 2021, 13(21), 3729. doi:10.3390/polym13213729http://dx.doi.org/10.3390/polym13213729
Wang Z. H.; Gangarapu S.; Escorihuela J.; Fei G. X.; Zuilhof H.; Xia H. S. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J. Mater. Chem. A, 2019, 7(26), 15933-15943. doi:10.1039/c9ta02054chttp://dx.doi.org/10.1039/c9ta02054c
Sun S. J.; Fei G. X.; Wang X. R.; Xie M.; Guo Q. F.; Fu D. H.; Wang Z. H.; Wang H.; Luo G. X.; Xia H. S. Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing. Chem. Eng. J., 2021, 412, 128675. doi:10.1016/j.cej.2021.128675http://dx.doi.org/10.1016/j.cej.2021.128675
Sun W. J.; Zhang L.; Wang S.; Mao J. L.; Luo J. M.; Chen Y.; Cheng Y. H. Mechanically enhanced healable and recyclable silicone with dynamic hindered urea bond for flexible electronics. J. Mater. Chem. C, 2021, 9(27), 8579-8588. doi:10.1039/d1tc01273hhttp://dx.doi.org/10.1039/d1tc01273h
Zheng, P. W.; McCarthy, T. J. A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc., 2012, 134(4), 2024-2027. doi:10.1021/ja2113257http://dx.doi.org/10.1021/ja2113257
Li X. P.; Yu R.; Zhao T. T.; Zhang Y.; Yang X.; Zhao X. J.; Huang W. A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction. Eur. Polym. J., 2018, 108, 399-405. doi:10.1016/j.eurpolymj.2018.09.021http://dx.doi.org/10.1016/j.eurpolymj.2018.09.021
Wu X.; Yang X.; Yu R.; Zhao X. J.; Zhang Y.; Huang W. A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration. J. Mater. Chem. A, 2018, 6(22), 10184-10188. doi:10.1039/c8ta02102chttp://dx.doi.org/10.1039/c8ta02102c
von Szczepanski J.; Danner P. M.; Opris D. M. Self-healable, self-repairable, and recyclable electrically responsive artificial muscles. Adv. Sci. (Weinh), 2022, 9(22), e2202153. doi:10.1002/advs.202202153http://dx.doi.org/10.1002/advs.202202153
Mei J. F.; Jia X. Y.; Lai J. C.; Sun Y.; Li C. H.; Wu J. H.; Cao Y.; You X. Z.; Bao Z. N. A highly stretchable and autonomous self-healing polymer based on combination of Pt···Pt and π-π interactions. Macromol. Rapid Commun., 2016, 37(20), 1667-1675. doi:10.1002/marc.201600428http://dx.doi.org/10.1002/marc.201600428
Sun H. B.; Liu X. Y.; Liu S. T.; Yu B.; Ning N. Y.; Tian M.; Zhang L. Q. A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions. J. Mater. Chem. A, 2020, 8(44), 23330-23343. doi:10.1039/d0ta06577chttp://dx.doi.org/10.1039/d0ta06577c
Yu S.; Zuo H. L.; Xu X. W.; Ning N. Y.; Yu B.; Zhang L. Q.; Tian M. Self-healable silicone elastomer based on the synergistic effect of the coordination and ionic bonds. ACS Appl. Polym. Mater., 2021, 3(5), 2667-2677. doi:10.1021/acsapm.1c00236http://dx.doi.org/10.1021/acsapm.1c00236
Wang W. J.; Wang W. P.; Wang F.; Xie X. F.; Yi G.; Li Z. B. Tough and body-temperature self-healing polysiloxane elastomers through building a double physical crosslinking network via competing non-covalent interactions. J. Mater. Chem. A, 2022, 10(43), 23375-23383. doi:10.1039/d2ta06593bhttp://dx.doi.org/10.1039/d2ta06593b
Lv C.; Zhao K. F.; Zheng J. P. A highly stretchable self-healing poly(dimethylsiloxane) elastomer with reprocessability and degradability. Macromol. Rapid Commun., 2018, 39(8), e1700686. doi:10.1002/marc.201700686http://dx.doi.org/10.1002/marc.201700686
Lv C.; Wang J. K.; Li Z. X.; Zhao K. F.; Zheng J. P. Degradable, reprocessable, self-healing PDMS/CNTs nanocomposite elastomers with high stretchability and toughness based on novel dual-dynamic covalent sacrificial system. Compos. B Eng., 2019, 177, 107270. doi:10.1016/j.compositesb.2019.107270http://dx.doi.org/10.1016/j.compositesb.2019.107270
Liu C.; Tan Y. Z.; Xu H. P. Functional polymer materials based on dynamic covalent chemistry. Sci. China Mater., 2022, 65(8), 2017-2034. doi:10.1007/s40843-021-2018-yhttp://dx.doi.org/10.1007/s40843-021-2018-y
Lee W. J.; Oh H. G.; Cha S. H. A brief review of self-healing polyurethane based on dynamic chemistry. Macromol. Res., 2021, 29(10), 649-664. doi:10.1007/s13233-021-9088-2http://dx.doi.org/10.1007/s13233-021-9088-2
Rodin M.; Li J.; Kuckling D. Dually cross-linked single networks: structures and applications. Chem. Soc. Rev., 2021, 50(14), 8147-8177. doi:10.1039/d0cs01585ghttp://dx.doi.org/10.1039/d0cs01585g
Chen G. M.; Sun Z. Y.; Wang Y. M.; Zheng J. Y.; Wen S. F.; Zhang J. W.; Wang L.; Hou J.; Lin C. G.; Yue Z. F. Designed preparation of silicone protective materials with controlled self-healing and toughness properties. Prog. Org. Coat., 2020, 140, 105483. doi:10.1016/j.porgcoat.2019.105483http://dx.doi.org/10.1016/j.porgcoat.2019.105483
Bai L.; Yan X. X.; Feng B. W.; Zheng J. P. Mechanically strong, healable, and reprocessable conductive carbon black/silicone elastomer nanocomposites based on dynamic imine bonds and sacrificial coordination bonds. Compos. B Eng., 2021, 223, 109123. doi:10.1016/j.compositesb.2021.109123http://dx.doi.org/10.1016/j.compositesb.2021.109123
Yu H. T.; Feng Y. Y.; Gao L.; Chen C.; Zhang Z. X.; Feng W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules, 2020, 53(16), 7161-7170. doi:10.1021/acs.macromol.9b02544http://dx.doi.org/10.1021/acs.macromol.9b02544
Zhang Y. H.; Yuan L.; Liang G. Z.; Gu A. J. Simultaneously achieving superior foldability, mechanical strength and toughness for transparent healable polysiloxane films through building hierarchical crosslinked networks and dual dynamic bonds. J. Mater. Chem. A, 2018, 6(46), 23425-23434. doi:10.1039/c8ta07580hhttp://dx.doi.org/10.1039/c8ta07580h
Bai L.; Zheng, RobustJ. P., reprocessable and shape-memory vinylogous urethane vitrimer composites enhanced by sacrificial and self-catalysis Zn(II)-ligand bonds. Compos. Sci. Technol., 2020, 190, 108062. doi:10.1016/j.compscitech.2020.108062http://dx.doi.org/10.1016/j.compscitech.2020.108062
Shan Y. X.; Liang S.; Mao X. K.; Lu J.; Liu L. L.; Huang Y. W.; Yang J. X. Stretchable dual cross-linked silicon elastomer with a superhydrophobic surface and fast triple self-healing ability at room temperature. Soft Matter, 2021, 17(17), 4643-4652. doi:10.1039/d0sm02175jhttp://dx.doi.org/10.1039/d0sm02175j
Mo P. J.; Hu Z. Y.; Mo Z. J.; Chen X.; Yu J.; Selim M. S.; Sun R.; Xu J. B.; Zeng X. L.; Hao Z. F. Fast self-healing and self-cleaning anticorrosion coating based on dynamic reversible imine and multiple hydrogen bonds. ACS Appl. Polym. Mater., 2022, 4(7), 4709-4718. doi:10.1021/acsapm.2c00294http://dx.doi.org/10.1021/acsapm.2c00294
Guo H. S.; Han Y.; Zhao W. Q.; Yang J.; Zhang L. Universally autonomous self-healing elastomer with high stretchability. Nat. Commun., 2020, 11, 2037. doi:10.1038/s41467-020-15949-8http://dx.doi.org/10.1038/s41467-020-15949-8
Shi X. R.; Zhang K. Y.; Zhao L. W.; Jiang B.; Huang Y. D. Robust, self-healable siloxane elastomers constructed by multiple dynamic bonds for stretchable electronics and microsystems. Ind. Eng. Chem. Res., 2021, 60(5), 2154-2162. doi:10.1021/acs.iecr.0c05238http://dx.doi.org/10.1021/acs.iecr.0c05238
Wang Z.; Liu Y. T.; Zhang D. J.; Gao C. H.; Wu Y. M. Mussel-inspired self-healing PDMS/AgNPs conductive elastomer with tunable mechanical properties and efficient antibacterial performances for wearable sensor. Compos. B Eng., 2021, 224, 109213. doi:10.1016/j.compositesb.2021.109213http://dx.doi.org/10.1016/j.compositesb.2021.109213
Dai S. P.; Li M.; Yan H.; Zhu H.; Hu H. W.; Zhang Y. X.; Cheng G. G.; Yuan N. Y.; Ding J. N. Self-healing silicone elastomer with stable and high adhesion in harsh environments. Langmuir, 2021, 37(46), 13696-13702. doi:10.1021/acs.langmuir.1c02356http://dx.doi.org/10.1021/acs.langmuir.1c02356
Lin Z. Q.; Deng H. Y.; Hou Y.; Liu X. X.; Xu R. J.; Xiang H. P.; Peng Z. Q.; Rong M. Z.; Zhang M. Q. Dual-crosslinking side chains with an asymmetric chain structure: a facile pathway to a robust, self-healable, and re-dissolvable polysiloxane elastomer for recyclable flexible devices. J. Mater. Chem. A, 2022, 10(20), 11019-11029. doi:10.1039/d2ta01535hhttp://dx.doi.org/10.1039/d2ta01535h
Li Y. M.; Zhang Z. P.; Rong M. Z.; Zhang M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat. Commun., 2022, 13, 2633. doi:10.1038/s41467-022-30364-xhttp://dx.doi.org/10.1038/s41467-022-30364-x
Zhang Z. P.; Rong M. Z.; Zhang M. Q. Mechanically robust, self-healable, and highly stretchable "living" crosslinked polyurethane based on a reversible C―C bond. Adv. Funct. Mater., 2018, 28(11), 1706050. doi:10.1002/adfm.201706050http://dx.doi.org/10.1002/adfm.201706050
Yuan S. J.; Peng Z. Q.; Rong M. Z.; Zhang M. Q. Increasing strengths of liquid crystalline polymers while minimizing anisotropy via topological rearrangement assisted bi-directional stretching of reversibly interlocked macromolecular networks. Appl. Mater. Today, 2022, 29, 101643. doi:10.1016/j.apmt.2022.101643http://dx.doi.org/10.1016/j.apmt.2022.101643
0
浏览量
87
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构