浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108
[ "夏文杰,男,1988年生. 美国北达科他州立大学教授,博士生以及博士后导师,2011年于美国凯斯西储大学本科毕业,2016年于美国西北大学博士毕业. 2016~2018年于国家标准与技术研究院(NIST)的材料基因组计划(MGI)从事博士后研究. 研究工作得到美国国家自然科学基金委(NSF)、美国海军(ONR)、美国陆军(ARO)、美国国家航空航天局(NASA)多个州和地方机构资助. 曾获得多项荣誉和奖项,包括NDSU工程学院早期职业研究卓越奖(2022年)、NIST-MML技术卓越奖(2019年)、MGI奖学金、APS Padden候选人奖(2016年)以及国家优秀留学生奖学金(2015年). 在高分子科学和计算材料等领域发表超过65篇文章以及书籍著作,包括《Science Advances》《Matter》《Advanced Functional Materials》《ACS Nano》《Nano Letters》等. 主要研究方向为通过计算力学和多尺度模拟设计复杂材料." ]
[ "徐文生,男,1984年生. 研究员,博士生导师,获国家自然科学基金优秀青年科学基金资助. 2007年毕业于天津大学材料科学与工程学院,获工学学士学位;2012年毕业于中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,获理学博士学位;2013~2018年先后在美国芝加哥大学和美国橡树岭国家实验室从事博士后研究;2019年至今在中国科学院长春应用化学研究所高分子物理与化学国家重点实验室任研究员. 主要从事非晶高分子动力学的理论研究,利用统计理论、计算机模拟和机器学习等方法研究高分子玻璃化的物理机制." ]
纸质出版日期:2023-04-20,
网络出版日期:2023-01-03,
收稿日期:2022-11-01,
修回日期:2022-11-17,
扫 描 看 全 文
杨镇岳,聂文建,刘伦洋等.机器学习方法在高分子玻璃化研究中的应用,[J].高分子学报,2023,54(04):432-450.
Yang Zhen-yue,Nie Wen-jian,Liu Lun-yang,et al.Applications of Machine Learning Methods in the Studies of Polymer Glass Formation[J].ACTA POLYMERICA SINICA,2023,54(04):432-450.
杨镇岳,聂文建,刘伦洋等.机器学习方法在高分子玻璃化研究中的应用,[J].高分子学报,2023,54(04):432-450. DOI: 10.11777/j.issn1000-3304.2022.22367.
Yang Zhen-yue,Nie Wen-jian,Liu Lun-yang,et al.Applications of Machine Learning Methods in the Studies of Polymer Glass Formation[J].ACTA POLYMERICA SINICA,2023,54(04):432-450. DOI: 10.11777/j.issn1000-3304.2022.22367.
高分子玻璃的物理性质与其结构和动力学密切相关. 揭示高分子玻璃化的微观物理图像对高分子玻璃材料的结构调控和分子设计至关重要. 然而,高分子的长链结构和复杂单体结构特征致使目前仍然缺乏普适的理论或者模型来定量解释高分子玻璃化的物理机制. 因此,亟需发展更为先进的研究方法从而更深入地理解高分子玻璃化. 近年来,国内外学者利用基于数据驱动的信息学方法(例如机器学习)对高分子玻璃化开展了研究,并取得了丰富成果. 本综述首先介绍了常用的高分子信息学数据库和机器学习算法. 之后,从高分子玻璃化转变温度的预测、新型高分子玻璃材料的研发、过冷液体的结构-动力学关系和玻璃体系相变的确定四个方面总结和评述了机器学习应用在玻璃化研究中的代表性进展. 最后,探讨了机器学习方法在高分子玻璃化研究中面临的主要挑战,并对玻璃信息学这一领域的发展进行了展望.
The physical properties of polymer glasses are closely related to their structure and dynamics. A deep understanding of the microscopic physical mechanism of polymer glass formation is crucial for the structural control and molecular design of polymer glasses. However
various molecular characteristics associated with complex segmental structures and chain topology of polymers impose significant challenges for the development of a fully predictive theory to describe their glass formation in a quantitative way. Hence
it is highly desired to develop more advanced approaches to better understand and predict polymer glass formation. In recent years
growing efforts have been made to shed new lights on polymer glass formation based on the data-driven informatics approaches
such as machine learning
and important progresses have been made towards this direction. The present review first introduces common polymer databases and machine learning algorithms
followed by a summary and review of the representative progresses on the applications of machine learning methods in the studies of polymer glass formation. In particular
the focus is placed on the prediction of the glass transition temperature
the research and development of novel glassy polymer materials
the investigation of structure-dynamics relationships of glass-forming liquids
and the determination of phase transitions of glasses. Finally
the present review discusses challenges and opportunities in the applications of machine learning methods to polymer glass formation and provides a perspective on glass informatics.
信息学高分子玻璃化机器学习理论模拟
InformaticsPolymer glass formationMachine learningTheory and simulation
Soutis C. Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A, 2005, 412(1), 171-176. doi:10.1016/j.msea.2005.08.064http://dx.doi.org/10.1016/j.msea.2005.08.064
Wuttig M.; Yamada N. Phase-change materials for rewriteable data storage. Nat. Mater., 2007, 6(11), 824-832. doi:10.1038/nmat2009http://dx.doi.org/10.1038/nmat2009
Forrest, S. R.; Thompson, M. E. Introduction: Organic electronics and optoelectronics. Chem. Rev., 2007, 107(4), 923-925. doi:10.1021/cr0501590http://dx.doi.org/10.1021/cr0501590
Carta M.; Malpass-Evans R.; Croad M.; Rogan Y.; Jansen J. C.; Bernardo P.; Bazzarelli F.; McKeown N. B. An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117), 303-307. doi:10.1126/science.1228032http://dx.doi.org/10.1126/science.1228032
Audus D. J.; de Pablo J. J. Polymer informatics: Opportunities and challenges. ACS Macro Lett., 2017, 6(10), 1078-1082. doi:10.1021/acsmacrolett.7b00228http://dx.doi.org/10.1021/acsmacrolett.7b00228
Fox T. G.; Flory P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys., 1950, 21(6), 581-591. doi:10.1063/1.1699711http://dx.doi.org/10.1063/1.1699711
Doolittle, A. K. Studies in Newtonian flow. I. The Dependence of the viscosity of liquids on temperature. J. Appl. Phys., 1951, 22(8), 1031-1035. doi:10.1063/1.1700096http://dx.doi.org/10.1063/1.1700096
Fox, T. G. Flory, P. J. Further studies on the melt viscosity of polyisobutylene. J. Phys. Chem., 1951, 55(2), 221-234. doi:10.1021/j150485a010http://dx.doi.org/10.1021/j150485a010
Cohen M. H.; Turnbull D. Molecular transport in liquids and glasses. J. Chem. Phys., 1959, 31(5), 1164-1169. doi:10.1063/1.1730566http://dx.doi.org/10.1063/1.1730566
Turnbull D.; Cohen M. H. Free-volume model of the amorphous phase: glass transition. J. Chem. Phys., 1961, 34(1), 120-125. doi:10.1063/1.1731549http://dx.doi.org/10.1063/1.1731549
Gibbs J. H.; DiMarzio E. A. Nature of the glass transition and the glassy state. J. Chem. Phys., 1958, 28(3), 373-383. doi:10.1063/1.1744141http://dx.doi.org/10.1063/1.1744141
Bestul A. B.; Chang S. S. Excess entropy at glass transformation. J. Chem. Phys., 1964, 40(12), 3731-3733. doi:10.1063/1.1725086http://dx.doi.org/10.1063/1.1725086
Adam G.; Gibbs J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys., 1965, 43(1), 139-146. doi:10.1063/1.1696442http://dx.doi.org/10.1063/1.1696442
Götze W. Complex dynamics of glass-forming liquids a mode-coupling theory. Oxford: Oxford University Press, 2009. doi:10.1093/acprof:oso/9780199235346.003.0004http://dx.doi.org/10.1093/acprof:oso/9780199235346.003.0004
Fredrickson G. H.; Andersen H. C. Kinetic Ising model of the glass transition. Phys. Rev. Lett., 1984, 53(13), 1244-1247. doi:10.1103/physrevlett.53.1244http://dx.doi.org/10.1103/physrevlett.53.1244
Mezard M.; Parisi G.; Virasoro M. Spin Glass Theory and Beyond. Singapore: World Scientific, 1987. doi:10.1142/0271http://dx.doi.org/10.1142/0271
Dyre J. C.; Olsen N. B.; Christensen T. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B, 1996, 53(5), 2171-2174. doi:10.1103/physrevb.53.2171http://dx.doi.org/10.1103/physrevb.53.2171
Dyre J. C.; Christensen T.; Olsen N. B. Elastic models for the non-Arrhenius viscosity of glass-forming liquids. J. Non Cryst. Solids, 2006, 352(42-49), 4635-4642. doi:10.1016/j.jnoncrysol.2006.02.173http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.173
Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys., 2006, 78(3), 953-972. doi:10.1103/revmodphys.78.953http://dx.doi.org/10.1103/revmodphys.78.953
Parisi G. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett., 1979, 43(23), 1754-1756. doi:10.1103/physrevlett.43.1754http://dx.doi.org/10.1103/physrevlett.43.1754
Parisi G. A sequence of approximated solutions to the S-K model for spin glasses. J. Phys. A: Math. Gen., 1980, 13(4), L115-L121. doi:10.1088/0305-4470/13/4/009http://dx.doi.org/10.1088/0305-4470/13/4/009
Chen K.; Saltzman E. J.; Schweizer K. S. Molecular theories of segmental dynamics and mechanical response in deeply supercooled polymer melts and glasses. Annu. Rev. Condens. Matter Phys., 2010, 1, 277-300. doi:10.1146/annurev-conmatphys-070909-104110http://dx.doi.org/10.1146/annurev-conmatphys-070909-104110
Schweizer K. S.; Saltzman E. J. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts. J. Chem. Phys., 2004, 121(4), 1984-2000. doi:10.1063/1.1756854http://dx.doi.org/10.1063/1.1756854
Saltzman E. J.; Schweizer K. S. Universal scaling, dynamic fragility, segmental relaxation, and vitrification in polymer melts. J. Chem. Phys., 2004, 121(4), 2001-2009. doi:10.1063/1.1756856http://dx.doi.org/10.1063/1.1756856
Simmons D. S.; Cicerone M. T.; Zhong Q.; Tyagi M.; Douglas J. F. Generalized localization model of relaxation in glass-forming liquids. Soft Matter, 2012, 8(45), 11455-11461. doi:10.1039/c2sm26694fhttp://dx.doi.org/10.1039/c2sm26694f
Pazmiño Betancourt B. A.; Hanakata P. Z.; Starr F. W.; Douglas J. F. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(10), 2966-2971. doi:10.1073/pnas.1418654112http://dx.doi.org/10.1073/pnas.1418654112
Douglas J. F.; Pazmino Betancourt B. A.; Tong X. H.; Zhang H. Localization model description of diffusion and structural relaxation in glass-forming Cu-Zr alloys. J. Stat. Mech., 2016, 2016(5), 054048. doi:10.1088/1742-5468/2016/05/054048http://dx.doi.org/10.1088/1742-5468/2016/05/054048
Dudowicz J.; Freed K. F.; Douglas J. F. Generalized entropy theory of polymer glass formation. Adv. Chem. Phys., 2008, 137, 125-222. doi:10.1002/9780470238080.ch3http://dx.doi.org/10.1002/9780470238080.ch3
Xu W. S.; Douglas J. F.; Sun Z. Y. Polymer glass formation: Role of activation free energy, configurational entropy, and collective motion. Macromolecules, 2021, 54(7), 3001-3033. doi:10.1021/acs.macromol.0c02740http://dx.doi.org/10.1021/acs.macromol.0c02740
Ferguson A. L. Machine learning and data science in soft materials engineering. J. Phys.: Condens. Matter, 2017, 30(4), 043002. doi:10.1088/1361-648x/aa98bdhttp://dx.doi.org/10.1088/1361-648x/aa98bd
李云琦, 刘伦洋, 陈文多, 安立佳. 材料基因组学的发展现状、研究思路与建议. 中国科学: 化学, 2018, 48(3), 243-255.
都仕, 张宋奇, 王立权, 林嘉平, 杜磊. 高分子材料基因组: 高分子研发的新方法. 高分子学报, 2022, 53(6), 592-607. doi:10.11777/j.issn1000-3304.2021.21404http://dx.doi.org/10.11777/j.issn1000-3304.2021.21404
王天尧, 李剑锋. 深度学习在蛋白质结构预测中的应用及启示. 高分子学报, 2022, 53(6), 581-591. doi:10.11777/j.issn1000-3304.2021.21401http://dx.doi.org/10.11777/j.issn1000-3304.2021.21401
宫祥瑞, 蒋滢. 机器学习在高分子材料基因组研究中的进展与挑战. 高分子学报, 2022, 53(11), 1287-1300. doi:10.11777/j.issn1000-3304.2022.22094http://dx.doi.org/10.11777/j.issn1000-3304.2022.22094
侯冠一, 刘军, 张立群. 计算材料学在高分子材料领域的研究进展与发展趋势. 高分子学报, DOI: 10.11777/j.issn1000-3304.2022.22181http://dx.doi.org/10.11777/j.issn1000-3304.2022.22181.
吴佳琦, 孙奕韬, 汪卫华, 李茂枝. 机器学习在非晶材料中的应用. 中国科学: 物理学 力学 天文学, 2020, 50(6), 7-20.
Shetty P.; Ramprasad R. Automated knowledge extraction from polymer literature using natural language processing. iScience, 2021, 24(1), 101922. doi:10.1016/j.isci.2020.101922http://dx.doi.org/10.1016/j.isci.2020.101922
Otsuka S.; Kuwajima I.; Hosoya J.; Xu Y. B.; Yamazaki M. PoLyInfo: polymer database for polymeric materials design. Tirana2011 International Conference on Emerging Intelligent Data and Web Technologies., Albania: IEEE, 2011. 22-29. doi:10.1109/eidwt.2011.13http://dx.doi.org/10.1109/eidwt.2011.13
Chen L. H.; Pilania G.; Batra R.; Huan T. D.; Kim C.; Kuenneth C.; Ramprasad R. Polymer informatics: Current status and critical next steps. Mater. Sci. Eng. R Rep., 2021, 144, 100595. doi:10.1016/j.mser.2020.100595http://dx.doi.org/10.1016/j.mser.2020.100595
Sha W. X.; Li Y.; Tang S.; Tian J.; Zhao Y. M.; Guo Y. Q.; Zhang W. X.; Zhang X. F.; Lu S. F.; Cao Y. C.; Cheng S. J. Machine learning in polymer informatics. InfoMat, 2021, 3(4), 353-361. doi:10.1002/inf2.12167http://dx.doi.org/10.1002/inf2.12167
刘伦洋, 丁芳, 李云琦. 高分子材料大数据研究:共性基础、进展及挑战. 高分子学报, 2022, 53(6), 564-580. doi:10.11777/j.issn1000-3304.2021.21360http://dx.doi.org/10.11777/j.issn1000-3304.2021.21360
Batra R.; Song L.; Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater., 2021, 6(8), 655-678. doi:10.1038/s41578-020-00255-yhttp://dx.doi.org/10.1038/s41578-020-00255-y
Brandrup J.; Immergut E. H.; Grulke E. A.; Abe A.; Bloch D. R. Handbook Polymer. New York: Wiley, 1999.
Bicerano J. Prediction of Polymer Properties. 3rd ed. New York: Marcel Dekker, 2002. doi:10.1201/9780203910115http://dx.doi.org/10.1201/9780203910115
Ellis B.; Smith R. Polymers: Property Database A, 2nd ed. Florida: CRC Press, 2008. doi:10.1365/s10337-010-1620-zhttp://dx.doi.org/10.1365/s10337-010-1620-z
Mark, J. E. Polymer Data Handbook. New York: Oxford University Press, 2009.
Van Krevelen D. W.; Te Nijenhuis, K. Properties of Polymers. Amsterdam: Elsevier, 2009.
Braun D.; Cherdron H.; Rehahn M.; Ritter H.; Voit B. Polymer Synthesis: Theory and Practice. Berlin: Springer, 2012. doi:10.1007/978-3-642-28980-4http://dx.doi.org/10.1007/978-3-642-28980-4
Wypych, G. Handbook of Polymers. 2nd ed. Toronto: ChemTec Publishing, 2016.
Cubuk E. D.; Schoenholz S. S.; Kaxiras E.; Liu A. J. Structural properties of defects in glassy liquids. J. Phys. Chem. B, 2016, 120(26), 6139-6146. doi:10.1021/acs.jpcb.6b02144http://dx.doi.org/10.1021/acs.jpcb.6b02144
Sussman D. M.; Schoenholz S. S.; Cubuk E. D.; Liu A. J. Disconnecting structure and dynamics in glassy thin films. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(40), 10601-10605. doi:10.1073/pnas.1703927114http://dx.doi.org/10.1073/pnas.1703927114
Schoenholz S. S.; Cubuk E. D.; Kaxiras E.; Liu A. J. Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(2), 263-267. doi:10.1073/pnas.1610204114http://dx.doi.org/10.1073/pnas.1610204114
Landes F. P.; Biroli G.; Dauchot O.; Liu A. J.; Reichman D. R. Attractive versus truncated repulsive supercooled liquids: The dynamics is encoded in the pair correlation function. Phys. Rev. E, 2020, 101(1), 010602. doi:10.1103/PHYSREVE.101.010602http://dx.doi.org/10.1103/PHYSREVE.101.010602
Le T.; Epa V. C.; Burden F. R.; Winkler D. A. Quantitative structure-property relationship modeling of diverse materials properties. Chem. Rev., 2012, 112(5), 2889-2919. doi:10.1021/cr200066hhttp://dx.doi.org/10.1021/cr200066h
Karuth A.; Alesadi A.; Xia W. J.; Rasulev B. Predicting glass transition of amorphous polymers by application of cheminformatics and molecular dynamics simulations. Polymer, 2021, 218, 123495. doi:10.1016/j.polymer.2021.123495http://dx.doi.org/10.1016/j.polymer.2021.123495
Higuchi C.; Horvath D.; Marcou G.; Yoshizawa K.; Varnek A. Prediction of the glass-transition temperatures of linear homo/heteropolymers and cross-linked epoxy resins. ACS Appl. Polym. Mater., 2019, 1(6), 1430-1442. doi:10.1021/acsapm.9b00198http://dx.doi.org/10.1021/acsapm.9b00198
Jin K.; Luo H.; Wang Z. Y.; Wang H.; Tao J. Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Mater. Des., 2020, 194, 108932. doi:10.1016/j.matdes.2020.108932http://dx.doi.org/10.1016/j.matdes.2020.108932
Zhang Y.; Xu X. J. Machine learning glass transition temperature of styrenic random copolymers. J. Mol. Graph. Model., 2021, 103, 107796. doi:10.1016/j.jmgm.2020.107796http://dx.doi.org/10.1016/j.jmgm.2020.107796
van Krevelen D. W.; Te Nijenhuis, K. Properties of Polymers. Amsterdam: Elsevier, 2009.
Yu X. L.; Wang X. Y.; Wang H. L.; Liu A. H.; Zhang C. L. Prediction of the glass transition temperatures of styrenic copolymers using a QSPR based on the DFT method. J. Mol. Struct. Theochem, 2006, 766(2-3), 113-117. doi:10.1016/j.theochem.2006.04.018http://dx.doi.org/10.1016/j.theochem.2006.04.018
Xu X. L.; Douglas J. F.; Xu W. S. Influence of side-chain length and relative rigidities of backbone and side chains on glass formation of branched polymers. Macromolecules, 2021, 54(13), 6327-6341. doi:10.1021/acs.macromol.1c00834http://dx.doi.org/10.1021/acs.macromol.1c00834
Alesadi A.; Cao Z. Q.; Li Z. F.; Zhang S.; Zhao H. Y.; Gu X. D.; Xia W. J. Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure. Cell Rep. Phys. Sci., 2022, 3(6), 100911. doi:10.1016/j.xcrp.2022.100911http://dx.doi.org/10.1016/j.xcrp.2022.100911
Cypcar C. C.; Camelio P.; Lazzeri V.; Mathias L. J.; Waegell B. Prediction of the glass transition temperature of multicyclic and bulky substituted acrylate and methacrylate polymers using the energy, volume, mass (EVM) QSPR model. Macromolecules, 1996, 29(27), 8954-8959. doi:10.1021/ma961170shttp://dx.doi.org/10.1021/ma961170s
Camelio P.; Cypcar C. C.; Lazzeri V.; Waegell B. A novel approach toward the prediction of the glass transition temperature: Application of the EVM model, a designer QSPR equation for the prediction of acrylate and methacrylate polymers. J. Polym. Sci. A Polym. Chem., 1997, 35(13), 2579-2590. doi:10.1002/(sici)1099-0518(19970930)35:13<2579::aid-pola5>3.0.co;2-mhttp://dx.doi.org/10.1002/(sici)1099-0518(19970930)35:13<2579::aid-pola5>3.0.co;2-m
Carro A. M.; Campisi B.; Camelio P.; Phan-Tan-Luu R. Improving an EVM QSPR model for glass transition temperature prediction using optimal design. Chemom. Intell. Lab. Syst., 2002, 62(1), 79-88. doi:10.1016/s0169-7439(02)00002-3http://dx.doi.org/10.1016/s0169-7439(02)00002-3
Huan T. D.; Boggs S.; Teyssedre G.; Laurent C.; Cakmak M.; Kumar S.; Ramprasad R. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci., 2016, 83, 236-269. doi:10.1016/j.pmatsci.2016.05.001http://dx.doi.org/10.1016/j.pmatsci.2016.05.001
Ho J. S.; Greenbaum S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces, 2018, 10(35), 29189-29218. doi:10.1021/acsami.8b07705http://dx.doi.org/10.1021/acsami.8b07705
Wu C.; Deshmukh A. A.; Li Z. Z.; Chen L. H.; Alamri A.; Wang Y. F.; Ramprasad R.; Sotzing G. A.; Cao Y. Flexible temperature‐invariant polymer dielectrics with large bandgap. Adv. Mater., 2020, 32(21), 2000499. doi:10.1002/adma.202000499http://dx.doi.org/10.1002/adma.202000499
Kim C.; Batra R.; Chen L. H.; Tran H.; Ramprasad R. Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci., 2021, 186, 110067. doi:10.1016/j.commatsci.2020.110067http://dx.doi.org/10.1016/j.commatsci.2020.110067
Batra R.; Dai H. J.; Huan T. D.; Chen L. H.; Kim C.; Gutekunst W. R.; Song L.; Ramprasad R. Polymers for extreme conditions designed using syntax-directed variational autoencoders. Chem. Mater., 2020, 32(24), 10489-10500. doi:10.1021/acs.chemmater.0c03332http://dx.doi.org/10.1021/acs.chemmater.0c03332
Palacín M. R. Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev., 2009, 38(9), 2565-2575. doi:10.1039/b820555hhttp://dx.doi.org/10.1039/b820555h
Hatakeyama-Sato K.; Tezuka T.; Umeki M.; Oyaizu K. AI-assisted exploration of superionic glass-type Li+ conductors with aromatic structures. J. Am. Chem. Soc., 2020, 142(7), 3301-3305. doi:10.1021/jacs.9b11442http://dx.doi.org/10.1021/jacs.9b11442
Ediger M. D.; Angell C. A.; Nagel S. R. Supercooled liquids and glasses. J. Phys. Chem., 1996, 100(31), 13200-13212. doi:10.1021/jp953538dhttp://dx.doi.org/10.1021/jp953538d
Berthier L.; Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys., 2011, 83(2), 587-645. doi:10.1103/revmodphys.83.587http://dx.doi.org/10.1103/revmodphys.83.587
Bocquet L.; Colin A.; Ajdari A. Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett., 2009, 103(3), 036001. doi:10.1103/physrevlett.103.036001http://dx.doi.org/10.1103/physrevlett.103.036001
Cubuk E. D.; Schoenholz S. S.; Rieser J. M.; Malone B. D.; Rottler J.; Durian D. J.; Kaxiras E.; Liu A. J. Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett., 2015, 114(10), 108001. doi:10.1103/physrevlett.114.108001http://dx.doi.org/10.1103/physrevlett.114.108001
Ma X. G.; Davidson Z. S.; Still T.; Ivancic R. J. S.; Schoenholz S. S.; Liu A. J.; Yodh A. G. Heterogeneous activation, local structure, and softness in supercooled colloidal liquids. Phys. Rev. Lett., 2019, 122(2), 028001. doi:10.1103/physrevlett.122.028001http://dx.doi.org/10.1103/physrevlett.122.028001
Cubuk E. D.; Ivancic R. J. S.; Schoenholz S. S.; Strickland D. J.; Basu A.; Davidson Z. S.; Fontaine J.; Hor J. L.; Huang Y. R.; Jiang Y.; Keim N. C.; Koshigan K. D.; Lefever J. A.; Liu T.; Ma X. G.; Magagnosc D. J.; Morrow E.; Ortiz C. P.; Rieser J. M.; Shavit A.; Still T.; Xu Y.; Zhang Y.; Nordstrom K. N.; Arratia P. E.; Carpick R. W.; Durian D. J.; Fakhraai Z.; Jerolmack D. J.; Lee D.; Li J.; Riggleman R.; Turner K. T.; Yodh A. G.; Gianola D. S.; Liu A. J. Structure-property relationships from universal signatures of plasticity in disordered solids. Science, 2017, 358(6366), 1033-1037. doi:10.1126/science.aai8830http://dx.doi.org/10.1126/science.aai8830
Zhang G.; Ridout S. A.; Liu A. J. Interplay of rearrangements, strain, and local structure during avalanche propagation. Phys. Rev. X, 2021, 11(4), 041019. doi:10.1103/physrevx.11.041019http://dx.doi.org/10.1103/physrevx.11.041019
Schoenholz S. S.; Cubuk E. D.; Sussman D. M.; Kaxiras E.; Liu A. J. A structural approach to relaxation in glassy liquids. Nat. Phys., 2016, 12(5), 469-471. doi:10.1038/nphys3644http://dx.doi.org/10.1038/nphys3644
Schmidtke B.; Hofmann M.; Lichtinger A.; Rössler E. A. Temperature dependence of the segmental relaxation time of polymers revisited. Macromolecules, 2015, 48(9), 3005-3013. doi:10.1021/acs.macromol.5b00204http://dx.doi.org/10.1021/acs.macromol.5b00204
Starr F. W.; Douglas J. F.; Sastry S. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. J. Chem. Phys., 2013, 138(12), 12A541. doi:10.1063/1.4790138http://dx.doi.org/10.1063/1.4790138
Boattini E.; Dijkstra M.; Filion L. Unsupervised learning for local structure detection in colloidal systems. J. Chem. Phys., 2019, 151(15), 154901. doi:10.1063/1.5118867http://dx.doi.org/10.1063/1.5118867
Boattini E.; Marín-Aguilar S.; Mitra S.; Foffi G.; Smallenburg F.; Filion L. Autonomously revealing hidden local structures in supercooled liquids. Nat. Commun., 2020, 11(1), 5479. doi:10.1038/s41467-020-19286-8http://dx.doi.org/10.1038/s41467-020-19286-8
Boattini E.; Smallenburg F.; Filion L. Averaging local structure to predict the dynamic propensity in supercooled liquids. Phys. Rev. Lett., 2021, 127(8), 088007. doi:10.1103/physrevlett.127.088007http://dx.doi.org/10.1103/physrevlett.127.088007
Alkemade R. M.; Boattini E.; Filion L.; Smallenburg F. Comparing machine learning techniques for predicting glassy dynamics. J. Chem. Phys., 2022, 156(20), 204503. doi:10.1063/5.0088581http://dx.doi.org/10.1063/5.0088581
Bapst V.; Keck T.; Grabska-Barwińska A.; Donner C.; Cubuk E. D.; Schoenholz S. S.; Obika A.; Nelson A. W. R.; Back T.; Hassabis D.; Kohli P. Unveiling the predictive power of static structure in glassy systems. Nat. Phys., 2020, 16(4), 448-454. doi:10.1038/s41567-020-0842-8http://dx.doi.org/10.1038/s41567-020-0842-8
Xia J. S.; Guo H. X. Construction of a quantitative relation between structural relaxation and dynamic heterogeneity by vibrational dynamics in glass-forming liquids and polymers. Soft Matter, 2021, 17(47), 10753-10764. doi:10.1039/d1sm01049bhttp://dx.doi.org/10.1039/d1sm01049b
Mckenzie-Smith T. Q.; Douglas J. F.; Starr F. W. Explaining the sensitivity of polymer segmental relaxation to additive size based on the localization model. Phys. Rev. Lett., 2021, 127(27), 277802. doi:10.1103/physrevlett.127.277802http://dx.doi.org/10.1103/physrevlett.127.277802
Douglas J. F.; Xu W. S. Equation of state and entropy theory approach to thermodynamic scaling in polymeric glass-forming liquids. Macromolecules, 2021, 54(7), 3247-3269. doi:10.1021/acs.macromol.1c00075http://dx.doi.org/10.1021/acs.macromol.1c00075
Berthier L.; Biroli G.; Charbonneau P.; Corwin E. I.; Franz S.; Zamponi F. Gardner physics in amorphous solids and beyond. J. Chem. Phys., 2019, 151(1), 010901. doi:10.1063/1.5097175http://dx.doi.org/10.1063/1.5097175
Li H. P.; Jin Y. L.; Jiang Y.; Chen J. Z. Y. Determining the nonequilibrium criticality of a Gardner transition via a hybrid study of molecular simulations and machine learning. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(11), e2017392118. doi:10.1073/pnas.2017392118http://dx.doi.org/10.1073/pnas.2017392118
Zhang K. H.; Li X. Y.; Jin Y. L.; Jiang Y. Machine learning glass caging order parameters with an artificial nested neural network. Soft Matter, 2022, 18(33), 6270-6277. doi:10.1039/d2sm00310dhttp://dx.doi.org/10.1039/d2sm00310d
Xu X. L.; Xu W. S. Melt properties and string model description of glass formation in graft polymers of different side-chain lengths. Macromolecules, 2022, 55(8), 3221-3235. doi:10.1021/acs.macromol.2c00327http://dx.doi.org/10.1021/acs.macromol.2c00327
Drayer W. F.; Simmons D. S. Sequence effects on the glass transition of a model copolymer system. Macromolecules, 2022, 55(14), 5926-5937. doi:10.1021/acs.macromol.2c00664http://dx.doi.org/10.1021/acs.macromol.2c00664
Yang Z. Y.; Xu X. L.; Xu W. S. Influence of ionic interaction strength on glass formation of an ion-containing polymer melt. Macromolecules, 2021, 54(20), 9587-9601. doi:10.1021/acs.macromol.1c01719http://dx.doi.org/10.1021/acs.macromol.1c01719
胡文兵, 沈祥建, 高飞雪. 软物质非平衡体系的挑战和机遇. 高分子学报, 2023, 54(1), 65-77.
Yu K. Q.; Li Z. S.; Sun J. Z. Polymer structures and glass transition: a molecular dynamics simulation study. Macromol. Theory Simul., 2001, 10(6), 624-633. doi:10.1002/1521-3919(20010701)10:6<624::aid-mats624>3.0.co;2-khttp://dx.doi.org/10.1002/1521-3919(20010701)10:6<624::aid-mats624>3.0.co;2-k
Afzal M. A. F.; Browning A. R.; Goldberg A.; Halls M. D.; Gavartin J. L.; Morisato T.; Hughes T. F.; Giesen D. J.; Goose J. E. High-throughput molecular dynamics simulations and validation of thermophysical properties of polymers for various applications. ACS Appl. Polym. Mater., 2021, 3(2), 620-630. doi:10.1021/acsapm.0c00524http://dx.doi.org/10.1021/acsapm.0c00524
Odegard G. M.; Patil S. U.; Gaikwad P. S.; Deshpande P.; Krieg A. S.; Shah S. P.; Reyes A.; Dickens T.; King J. A.; Maiaru M. Accurate predictions of thermoset resin glass transition temperatures from all-atom molecular dynamics simulation. Soft Matter, 2022, 18(39), 7550-7558. doi:10.1039/d2sm00851chttp://dx.doi.org/10.1039/d2sm00851c
Massobrio C.; Du J. C.; Bernasconi M.; Salmon P. S. Molecular Dynamics Simulations of Disordered Materials. Cham: Springer International Publishing, 2015. doi:10.1007/978-3-319-15675-0http://dx.doi.org/10.1007/978-3-319-15675-0
Liu H.; Fu Z. P.; Li Y. P.; Sabri N. F. A.; Bauchy M. Machine Learning Forcefield for Silicate Glasses. 2019, arXiv: 1902.03486. doi:10.1557/mrc.2019.47http://dx.doi.org/10.1557/mrc.2019.47
Liu H.; Fu Z. P.; Li Y. P.; Sabri N. F. A.; Bauchy M. Balance between accuracy and simplicity in empirical forcefields for glass modeling: insights from machine learning. J. Non Cryst. Solids, 2019, 515, 133-142. doi:10.1016/j.jnoncrysol.2019.04.020http://dx.doi.org/10.1016/j.jnoncrysol.2019.04.020
Giuntoli A.; Hansoge N. K.; van Beek A.; Meng Z. X.; Chen W.; Keten S. Systematic coarse-graining of epoxy resins with machine learning-informed energy renormalization. Npj Comput. Mater., 2021, 7, 168. doi:10.1038/s41524-021-00634-1http://dx.doi.org/10.1038/s41524-021-00634-1
Deringer V. L.; Csányi G. Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B, 2017, 95(9), 094203. doi:10.1103/physrevb.95.094203http://dx.doi.org/10.1103/physrevb.95.094203
Bartók A. P.; Kermode J.; Bernstein N.; Csányi G. Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X, 2018, 8(4), 041048. doi:10.1103/physrevx.8.041048http://dx.doi.org/10.1103/physrevx.8.041048
Rowe P.; Csányi G.; Alfè D.; Michaelides A. Development of a machine learning potential for graphene. Phys. Rev. B, 2018, 97(5), 054303. doi:10.1103/physrevb.97.054303http://dx.doi.org/10.1103/physrevb.97.054303
0
浏览量
188
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构