浏览全部资源
扫码关注微信
有机无机复合材料国家重点实验室 生物医用材料(北京)实验室 北京化工大学生命科学与技术学院 北京 100029
E-mail: jiangni@mail.buct.edu.cn
zhgan@mail.buct.edu.cn
纸质出版日期:2023-05-20,
网络出版日期:2023-02-20,
收稿日期:2022-12-04,
录用日期:2023-01-16
扫 描 看 全 文
吴晗,杨顺燚,蒋妮等.聚苯乙烯嵌段对左旋聚乳酸/聚苯乙烯-b-右旋聚乳酸立构复合晶结晶行为的调控[J].高分子学报,2023,54(05):631-642.
Wu Han,Yang Shun-yi,Jiang Ni,et al.Regulation of Polystyrene Blocks on Stereocomplex Crystallization Behavior of Poly(L-lactic acid)/Polystyrene-b-Poly(D-lactic acid) Blends[J].ACTA POLYMERICA SINICA,2023,54(05):631-642.
吴晗,杨顺燚,蒋妮等.聚苯乙烯嵌段对左旋聚乳酸/聚苯乙烯-b-右旋聚乳酸立构复合晶结晶行为的调控[J].高分子学报,2023,54(05):631-642. DOI: 10.11777/j.issn1000-3304.2022.22419.
Wu Han,Yang Shun-yi,Jiang Ni,et al.Regulation of Polystyrene Blocks on Stereocomplex Crystallization Behavior of Poly(L-lactic acid)/Polystyrene-b-Poly(D-lactic acid) Blends[J].ACTA POLYMERICA SINICA,2023,54(05):631-642. DOI: 10.11777/j.issn1000-3304.2022.22419.
聚乳酸较差的耐热性和较慢的结晶速率限制了其应用范围的扩展,左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)共混后形成的立构复合晶(SC)能够促进PLA均质晶(HC)的成核并提高其热稳定性,在改性PLA方面有着巨大应用前景. 本研究通过可逆加成-断裂链转移聚合(RAFT)和开环聚合(ROP)法,制备了一系列不同聚苯乙烯(PS)分子量的PS-
b
-PDLA嵌段共聚物,并将其与PLLA共混,探究了嵌段共聚物及共混物的组成与结晶性能之间的关系. 研究结果表明,分子运动性较差的PS嵌段的引入使共混物的结晶更加困难,而低分子量的PS嵌段由于抑制了均质晶(HC)的形成,反而有利于大量立构复合晶(SC)的形成,进而提高了共混物的结晶速率.
With the widespread use of poly(lactic acid) (PLA)
it has been developed considerably with excellent biocompatibility
biodegradability
and mechanical properties. Nevertheless
the inferior heat resistance and slow crystallization rate seriously restrain the advancement. The stereocomplex crystal (SC)
which is formed in the blends of poly(lactic acid) (PLLA) and poly(D-lactic acid) (PDLA)
can enhance the homogeneous crystal (HC) nucleation and thermostability of PLA
thus possessing an excellent modification potential. A series of diblock copolymers of PLA and polystyrene (PS) with different molecular weights were synthesized by atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP). The blends of PLLA/PS-
b
-PDLA were prepared and the relationship between composition and crystallization of PS-
b
-PDLA copolymers and their blends was investigated. The results showed that the restriction of PS block on the mobility of PDLA increased with higher molecular weight
which was unfavorable to the crystallization process of PDLA. In the non-proportional blends of PLLA/PS-
b
-PDLA
the introduction of PS blocks with poor chain mobility contributed to the difficulty in HC
while the low molecular weight PS block was beneficial to accelerate the formation of SC by inhibiting the formation of HC
thereby increasing the bulk crystallization rate. The phase separation occurred in the blends of PLLA/PS-
b
-PDLA with the same ratio. The high molecular weight PS blocks restricted the mobility of the PLA molecular chain and weakened the contact ability between PDLA and PLLA by separated phase behavior. It inhibited the formation of SC. However
the low molecular weight PS blocks had less restriction on PDLA blocks
thus increasing the crystallinity of SC. The distinctive influence of PS-
b
-PDLA on HC and SC is significant to the research on the crystallization and thermal properties of PLLA-based composites. And it is of great importance for the performance adjustment of biodegradable materials and the expansion of the application field.
聚乳酸聚苯乙烯嵌段共聚物立构复合
Poly(lactic acid)PolystyreneBlock copolymerSterecomplex
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50(10), 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Rosenboom J. G.; Langer R.; Traverso G. Bioplastics for a circular economy. Nat. Rev. Mater., 2022, 7(2), 117-137. doi:10.1038/s41578-021-00407-8http://dx.doi.org/10.1038/s41578-021-00407-8
Zhuang Z. X.; Li T. T.; Ning Z. B.; Jiang N.; Gan Z. H. Melt and nucleation reinforcement for stereo complex crystallites in poly(ʟ-lactide)/lignin-grafted-poly(ᴅ-lactide) blend. Eur. Polym. J., 2022, 167, 111072. doi:10.1016/j.eurpolymj.2022.111072http://dx.doi.org/10.1016/j.eurpolymj.2022.111072
Farah S.; Anderson D. G.; Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications. Adv. Drug Deliv. Rev., 2016, 107, 367-392. doi:10.1016/j.addr.2016.06.012http://dx.doi.org/10.1016/j.addr.2016.06.012
Rasal R. M.; Janorkar A. V.; Hirt D. E. Poly(lactic acid) modifications. Prog. Polym. Sci., 2010, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003http://dx.doi.org/10.1016/j.progpolymsci.2009.12.003
Tsuji H.; Iguchi K.; Tashiro K.; Arakawa Y. Crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, poly(L-lactide)-b-poly(DL-lactide). Polym. Chem., 2020, 11(36), 5711-5724. doi:10.1039/d0py01115khttp://dx.doi.org/10.1039/d0py01115k
Ikada Y.; Jamshidi K.; Tsuji H.; Hyon S. H. Stereo complex formation between enantiomeric poly(lactides). Macromolecules, 1987, 20(4), 904-906. doi:10.1021/ma00170a034http://dx.doi.org/10.1021/ma00170a034
Liu Y. L.; Shao J.; Sun J. R.; Bian X. C.; Feng L. D.; Xiang S.; Sun B.; Chen Z. M.; Li G.; Chen X. S. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. Polym. Degrad. Stab., 2014, 101, 10-17. doi:10.1016/j.polymdegradstab.2014.01.023http://dx.doi.org/10.1016/j.polymdegradstab.2014.01.023
Chen Q.; Auras R.; Uysal-Unalan I. Role of stereo complex in advancing mass transport and thermomechanical properties of polylactide. Green Chem., 2022, 24(9), 3416-3432. doi:10.1039/d1gc04520bhttp://dx.doi.org/10.1039/d1gc04520b
Huang W.; Shi Y. M.; Wang P.; Yang Q.; Gobius du Sart G.; Zhou Y. X.; Joziasse C. A. P.; Wang R. Y.; Chen P. Facile and efficient formation of stereo complex polylactide fibers drawn at low temperatures. Polymer, 2022, 246, 124743. doi:10.1016/j.polymer.2022.124743http://dx.doi.org/10.1016/j.polymer.2022.124743
Xie Q.; Guo G.; Lu W. W.; Sun C. X.; Zhou J.; Zheng Y.; Shan G. R.; Bao Y. Z.; Pan P. J. Polymorphic homocrystallization and phase behavior of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) racemic mixture with intentionally enhanced stereo complexation ability via miscible blending. Polymer, 2020, 201, 122597. doi:10.1016/j.polymer.2020.122597http://dx.doi.org/10.1016/j.polymer.2020.122597
Brochu S.; Prud'homme R. E.; Barakat I.; Jerome R. Stereo complexation and morphology of polylactides. Macromolecules, 1995, 28(15), 5230-5239. doi:10.1021/ma00119a010http://dx.doi.org/10.1021/ma00119a010
李文泽, 刘港, 牛艳华, 黄亚江, 李光宪. 基于聚乙二醇结构调控高分子量聚乳酸立构复合体系的结晶行为. 高分子学报, 2022, 53(1), 67-78.
Li W. Z.; Wang M. Y.; Luo H.; Niu Y. H.; Huang Y. J.; Li G. X. Influence of miscible and immiscible sequences of poly(D-lactide) copolymers on the competition of stereo complex- and homo-crystallization in poly(L-lactide) blends. Polymer, 2021, 218, 123519. doi:10.1016/j.polymer.2021.123519http://dx.doi.org/10.1016/j.polymer.2021.123519
Song Y.; Wang D. J.; Jiang N.; Gan Z. H. Role of PEG segment in stereo complex crystallization for PLLA/PDLA-b-PEG-b-PDLA blends. ACS Sustain. Chem. Eng., 2015, 3(7), 1492-1500. doi:10.1021/acssuschemeng.5b00214http://dx.doi.org/10.1021/acssuschemeng.5b00214
Han L. L.; Yu C. T.; Zhou J.; Shan G. R.; Bao Y. Z.; Yun X. Y.; Dong T.; Pan P. J. Enantiomeric blends of high-molecular-weight poly(lactic acid)/poly(ethylene glycol) triblock copolymers: enhanced stereo complexation and thermomechanical properties. Polymer, 2016, 103, 376-386. doi:10.1016/j.polymer.2016.09.073http://dx.doi.org/10.1016/j.polymer.2016.09.073
Geng Z.; Xiong B. J.; Wang L. Q.; Wang K.; Ren M.; Zhang L. B.; Zhu J. T.; Yang Z. Z. Moebius strips of chiral block copolymers. Nat. Commun., 2019, 10(1), 4090. doi:10.1038/s41467-019-11991-3http://dx.doi.org/10.1038/s41467-019-11991-3
Li H.; Xiong B. J.; Geng Z.; Wang H. Y.; Gao Y. T.; Gu P.; Xie H. Y.; Xu J. P.; Zhu J. T. Temperature- and solvent-mediated confined assembly of semicrystalline chiral block copolymers in evaporative emulsion droplets. Macromolecules, 2021, 54(23), 10712-10722. doi:10.1021/acs.macromol.1c01485http://dx.doi.org/10.1021/acs.macromol.1c01485
Li H.; Mao X.; Wang H. Y.; Geng Z.; Xiong B. J.; Zhang L. B.; Liu S. M.; Xu J. P.; Zhu J. T. Kinetically dependent self-assembly of chiral block copolymers under 3D confinement. Macromolecules, 2020, 53(11), 4214-4223. doi:10.1021/acs.macromol.0c00406http://dx.doi.org/10.1021/acs.macromol.0c00406
侯小东, 何勇, 贾林, 朱英丹, 盛瑞隆, 曹阿民. 聚苯乙烯-b-聚右旋乳酸二嵌段共聚物的热性能和结晶行为研究. 高分子学报, 2010, (6), 739-746.
Ge H.; Zhang F. J.; Huang H. Y.; He T. B. Interplay between stereo complexation and microphase separation in PS-b-PLLA-b-PDLA triblock copolymers. Macromolecules, 2019, 52(3), 1004-1012. doi:10.1021/acs.macromol.8b02627http://dx.doi.org/10.1021/acs.macromol.8b02627
Du N.; Guo W. X.; Yu Q. S.; Guan S. L.; Guo L. Y.; Shen T.; Tang H.; Gan Z. H. Poly(D,L-lactic acid)-block-poly(N-(2-hydroxypropyl)methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy. Polym. Chem., 2016, 7(36), 5719-5729. doi:10.1039/c6py01113fhttp://dx.doi.org/10.1039/c6py01113f
Feng L. D.; Bian X. C.; Li G.; Chen X. S. Thermal properties and structural evolution of poly(L-lactide)/poly(D-lactide) blends. Macromolecules, 2021, 54(21), 10163-10176. doi:10.1021/acs.macromol.1c01866http://dx.doi.org/10.1021/acs.macromol.1c01866
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构