浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: qiangfu@scu.edu.cn
纸质出版日期:2023-05-20,
网络出版日期:2023-02-22,
收稿日期:2022-12-05,
录用日期:2023-01-31
扫 描 看 全 文
吴敬寒,董澎,王子瑞等.提高超高分子量聚乙烯的耐磨性:交联与结晶[J].高分子学报,2023,54(05):622-630.
Wu Jing-han,Dong Peng,Wang Zi-rui,et al.Improving Wear Resistance of Ultrahigh Molecular Weight Polyethylene: Cross-linking versus Crystallinity[J].ACTA POLYMERICA SINICA,2023,54(05):622-630.
吴敬寒,董澎,王子瑞等.提高超高分子量聚乙烯的耐磨性:交联与结晶[J].高分子学报,2023,54(05):622-630. DOI: 10.11777/j.issn1000-3304.2022.22420.
Wu Jing-han,Dong Peng,Wang Zi-rui,et al.Improving Wear Resistance of Ultrahigh Molecular Weight Polyethylene: Cross-linking versus Crystallinity[J].ACTA POLYMERICA SINICA,2023,54(05):622-630. DOI: 10.11777/j.issn1000-3304.2022.22420.
耐磨性能是超高分子量聚乙烯(UHMWPE)制品的重要评价指标,其增强机理为在摩擦表面阻止分子链滑移和脱落. 改善耐磨性在本质上是形成有效的分子链整体网络. 对于人工关节用交联UHMWPE模塑料,辐照改性会残存有自由基,容易造成氧化降解,破坏长期耐久稳定性. 发展能够替代辐照交联的新方法,具有重要的现实意义. 在本文中,我们选用不同分子量(
M
w
)的原料树脂,通过改变结晶热历史实现结晶度(
X
c
)大范围调节,以及改变
γ
辐照剂量调整交联密度(
V
d
). 测定了各种样品的体积磨损率,建立
X
c
、
V
d
、
M
w
与磨损率的关系. 研究发现,随着
X
c
、
V
d
、
M
w
增加,磨损率线性降低;更为重要的是,对于所有分子量的UHMWPE,通过增加结晶度能够使磨损率降至比传统辐照交联方法更低的水平. 利用高结晶度改善耐磨性,由于不会引起活性自由基,从根本上消除了氧化风险,具有明显的优势. 研究结果为发展新型的高耐磨人工关节用UHMWPE模塑料提供了一种新思路.
Wear resistance is an important evaluation index of ultra-high molecular weight polyethylene (UHMWPE) products
and its strengthening mechanism is to prevent molecular chain from sliding and falling off on the friction surface. In essence
the improvement of wear resistance is to form an interaction network of molecular chains. For cross-linked UHMWPE molding materials used as artificial joints
radiation modification will induce free radicals
which is easy to cause oxidative degradation and damage the long-term durability. It is of great significance to develop new method that can replace irradiation cross-linking. In this paper
we choose raw resin with different molecular weights (
M
w
)
and adjust the crystallinity (
X
c
) in a large range by changing the crystallization thermal history
and adjust the cross-linking density (
V
d
) by changing the
γ
radiation dose. The volume wear rates of various samples were measured
and the relationships between the wear rates and the values of
X
c
V
d
M
w
were established. It is found that the wear rate decreases linearly with the increase of
X
c
V
d
and
M
w
. More importantly
for each
M
w
of UHMWPE
increasing the crystallinity enables wear rate to reduce to a lower level than that of traditional irradiation crosslinking method. The introduction of high crystallinity to improve wear resistance has obvious advantages because it will not cause active free radicals
thus fundamentally eliminating the risk of oxidation. Our study provides a new idea to develop UHMWPE articles with superior wear-resistance for artificial joint field.
模塑料耐磨性结晶度交联分子量
Molding materialWear resistanceCrystallinityCross-linkingMolecular weight
Baena J.; Wu J. P.; Peng Z. X. Wear performance of UHMWPE and reinforced UHMWPE composites in arthroplasty applications. Lubricants, 2015, 3(2), 413-436. doi:10.3390/lubricants3020413http://dx.doi.org/10.3390/lubricants3020413
Kurtz, S. M. The UHMWPE Handbook: Ultra-high Molecular Weight Polyethylene in Total Joint Replacement. Amsterdam: Elsevier, 2004. 1-36. doi:10.2106/00004623-200508000-00049http://dx.doi.org/10.2106/00004623-200508000-00049
Wang A.; Sun D. C.; Stark C.; Dumbleton J. H. Wear mechanisms of UHMWPE in total joint replacements. Wear, 1995, 181-183, 241-249.
Kurtz S. M.; Muratoglu O. K.; Evans M.; Edidin A. A. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials, 1999, 20(18), 1659-1688. doi:10.1016/s0142-9612(99)00053-8http://dx.doi.org/10.1016/s0142-9612(99)00053-8
Klein J. Repair or replacement—a joint perspective. Science, 2009, 323(5910), 47-48. doi:10.1126/science.1166753http://dx.doi.org/10.1126/science.1166753
Shi W.; Li X. Y.; Dong H. Improved wear resistance of ultra-high molecular weight polyethylene by plasma immersion ion implantation. Wear, 2001, 250(1-12), 544-552. doi:10.1016/s0043-1648(01)00636-6http://dx.doi.org/10.1016/s0043-1648(01)00636-6
Xiong D. S.; Jin Z. M.. Tribological properties of ion implanted UHMWPE against Si3N4 under different lubrication conditions. Surf. Coat. Technol., 2004, 182(2-3), 149-155. doi:10.1016/j.surfcoat.2003.08.076http://dx.doi.org/10.1016/j.surfcoat.2003.08.076
Xiong D. S.; Ge S. R. Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions. Wear, 2001, 250(1-12), 242-245. doi:10.1016/s0043-1648(01)00647-0http://dx.doi.org/10.1016/s0043-1648(01)00647-0
Chang N.; Bellare A.; Cohen R. E.; Spector M. Wear behavior of bulk oriented and fiber reinforced UHMWPE. Wear, 2000, 241(1), 109-117. doi:10.1016/s0043-1648(00)00393-8http://dx.doi.org/10.1016/s0043-1648(00)00393-8
McKellop H.; Shen F. W.; Lu B.; Campbell P.; Salovey R. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J. Orthop. Res., 1999, 17(2), 157-167. doi:10.1002/jor.1100170203http://dx.doi.org/10.1002/jor.1100170203
Bracco P.; Brunella V.; Luda M. P.; Zanetti M.; Costa L. Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer, 2005, 46(24), 10648-10657. doi:10.1016/j.polymer.2005.08.095http://dx.doi.org/10.1016/j.polymer.2005.08.095
Pérez, E.; Vanderhart, D. L. A 13C CP-MAS NMR study of irradiated polyethylene. J. Polym. Sci. B Polym. Phys., 1988, 26(9), 1979-1993. doi:10.1002/polb.1988.090260913http://dx.doi.org/10.1002/polb.1988.090260913
Tilman P.; Tilquin B.; Claes P. Estimation du rapport kd/kc pour des radicaux alkyles en phase solide. J. Chim. Phys., 1982, 79, 629-632. doi:10.1051/jcp/1982790629http://dx.doi.org/10.1051/jcp/1982790629
Yun R. P.; Filip P.; Lu Y. F. Performance and evaluation of eco-friendly brake friction materials. Tribol. Int., 2010, 43(11), 2010-2019. doi:10.1016/j.triboint.2010.05.001http://dx.doi.org/10.1016/j.triboint.2010.05.001
Wang H. L.; Xu L.; Hu J. T.; Wang M. H.; Wu G. Z. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: a clear dependence of dose rate. Radiat. Phys. Chem., 2015, 115, 88-96. doi:10.1016/j.radphyschem.2015.06.012http://dx.doi.org/10.1016/j.radphyschem.2015.06.012
Kornacka E. M.; Przybytniak G.; Święszkowski W. The influence of crystallinity on radiation stability of UHMWPE. Radiat. Phys. Chem., 2013, 84, 151-156. doi:10.1016/j.radphyschem.2012.06.027http://dx.doi.org/10.1016/j.radphyschem.2012.06.027
Costa L.; Luda M. P.; Trossarelli L.; del Prever E. M. B.; Crova M.; Gallinaro P. Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials, 1998, 19(7-9), 659-668. doi:10.1016/s0142-9612(97)00160-9http://dx.doi.org/10.1016/s0142-9612(97)00160-9
Edidin A. A.; Jewett C. W.; Kalinowski A.; Kwarteng K.; Kurtz S. M. Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials, 2000, 21(14), 1451-1460. doi:10.1016/s0142-9612(00)00021-1http://dx.doi.org/10.1016/s0142-9612(00)00021-1
李飞, 郭奕友, 成惠斌, 曹长林, 钱庆荣, 肖荔人, 陈庆华. 超高分子量聚乙烯摩擦磨损行为及拉曼成像. 高分子材料科学与工程, 2020, 36(2), 82-89.
董澎, 王柯, 李军方, 傅强. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响. 高分子学报, 2020, 51(1), 117-124. doi:10.11777/j.issn1000-3304.2020.19159http://dx.doi.org/10.11777/j.issn1000-3304.2020.19159
Xiong B. J.; Chen Z. X.; Kang J. Micro-macro scale relationship in creep deformation of ultra high molecular weight polyethylene. Chinese J. Polym. Sci., 2021, 39(12), 1665-1672. doi:10.1007/s10118-021-2628-6http://dx.doi.org/10.1007/s10118-021-2628-6
Dong P.; Zhang Q.; Wang K.; Zhu B. H.; Su W.; Li J. F.; Fu Q. Pursuit of the correlation between yield strength and crystallinity in sintering-molded UHMWPE. Polymer, 2021, 215, 123352. doi:10.1016/j.polymer.2020.123352http://dx.doi.org/10.1016/j.polymer.2020.123352
Li X. L.; Ling Y. L.; Zhang G. L.; Yin Y. C.; Dai Y. J.; Zhang C. H.; Luo J. B. Preparation and tribological properties of solid-liquid synergetic self-lubricating PTFE/SiO2/PAO6 composites. Compos. B Eng., 2020, 196, 108133. doi:10.1016/j.compositesb.2020.108133http://dx.doi.org/10.1016/j.compositesb.2020.108133
Wunderlich B.; Cormier C. M. Heat of fusion of polyethylene. J. Polym. Sci. A-2 Polym. Phys., 1967, 5(5), 987-988. doi:10.1002/pol.1967.160050514http://dx.doi.org/10.1002/pol.1967.160050514
Pawlak A. The entanglements of macromolecules and their influence on the properties of polymers. Macromol. Chem. Phys., 2019, 220(10), 1900043. doi:10.1002/macp.201900043http://dx.doi.org/10.1002/macp.201900043
Muratoglu O. K.; Bragdon C. R.; O'Connor D. O.; Jasty M.; Harris W. H.. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J. Arthroplasty, 2001, 16(2), 149-160. doi:10.1054/arth.2001.20540http://dx.doi.org/10.1054/arth.2001.20540
Muratoglu O. K.; Bragdon C. R.; O'Connor D. O.; Jasty M.; Harris W. H.; Gul R.; McGarry F. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials, 1999, 20(16), 1463-1470. doi:10.1016/s0142-9612(99)00039-3http://dx.doi.org/10.1016/s0142-9612(99)00039-3
沈杰. 全关节植入用氧化稳定型交联超高分子量聚乙烯的制备与性能研究. 宁波大学博士学位论文, 2014.
Moro T.; Takatori Y.; Kyomoto M.; Ishihara K.; Kawaguchi H.; Hashimoto M.; Tanaka T.; Oshima H.; Tanaka S. Wear resistance of the biocompatible phospholipid polymer-grafted highly cross-linked polyethylene liner against larger femoral head. J. Orthop. Res., 2015, 33(7), 1103-1110. doi:10.1002/jor.22868http://dx.doi.org/10.1002/jor.22868
Endo M.; Tipper J. L.; Barton D. C.; Stone M. H.; Ingham E.; Fisher J. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc. Inst. Mech. Eng. H, 2002, 216(2), 111-122. doi:10.1243/0954411021536333http://dx.doi.org/10.1243/0954411021536333
王娜. γ射线辐照超高分子量聚乙烯的结构和磨擦磨损性能研究. 南京理工大学博士学位论文, 2005.
袁辉, 刘廷华, 刘云湘, 敖欢. 流动改性剂对UHMWPE流动及磨损性能的影响研究. 工程塑料应用, 2004, 32(5), 21-24. doi:10.3969/j.issn.1001-3539.2004.05.006http://dx.doi.org/10.3969/j.issn.1001-3539.2004.05.006
白银龙, 屈树新. UHMWPE在人工髋关节中的磨损机制及改性研究. 工程塑料应用, 2009, 37(11), 76-79. doi:10.3969/j.issn.1001-3539.2009.11.021http://dx.doi.org/10.3969/j.issn.1001-3539.2009.11.021
de Gennes P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys., 1971, 55(2), 572-579. doi:10.1063/1.1675789http://dx.doi.org/10.1063/1.1675789
0
浏览量
114
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构