浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
[ "邓云峰,男,1986年生. 2009年本科毕业于黑龙江大学化学化工与材料学院,2015年博士毕业于中国科学院长春应用化学研究所,2015~2016年加拿大滑铁卢大学博士后,2016~2017年以色列理工学院博士后,2017年至今天津大学材料学院副教授,博士生导师. 2022年获得国家自然科学基金优秀青年基金资助,主要研究方向为有机/聚合物光电功能材料的合成化学. 包括稠环化合物和醌式化合物的合成,以及共轭聚合物的直接芳基化缩聚合成. E-mail: yunfeng.deng@tju.edu.cn" ]
纸质出版日期:2023-06-20,
网络出版日期:2023-03-13,
收稿日期:2022-12-11,
录用日期:2023-01-18
扫 描 看 全 文
邓云峰,王天佐,耿晓康.含醌式结构共轭聚合物的研究进展[J].高分子学报,2023,54(06):803-817.
Deng Yun-feng,Wang Tian-zuo,Geng Xiao-kang.Recent Progress of Conjugated Polymers Containing Quinoidal Structure[J].ACTA POLYMERICA SINICA,2023,54(06):803-817.
邓云峰,王天佐,耿晓康.含醌式结构共轭聚合物的研究进展[J].高分子学报,2023,54(06):803-817. DOI: 10.11777/j.issn1000-3304.2022.22428.
Deng Yun-feng,Wang Tian-zuo,Geng Xiao-kang.Recent Progress of Conjugated Polymers Containing Quinoidal Structure[J].ACTA POLYMERICA SINICA,2023,54(06):803-817. DOI: 10.11777/j.issn1000-3304.2022.22428.
共轭聚合物由于其优异的溶液加工特性和良好的机械性能,近些年来受到了学术界和工业界的广泛关注. 将
π
电子离域性好、刚性强以及LUMO能级低的醌式单元引入共轭主链是构建高性能聚合物半导体材料的潜在方法. 然而,如何将醌式结构引入聚合物体系具有一定的挑战. 本专论总结了近年来含醌式结构共轭聚合物的研究进展,按照醌式单体的结构分类,介绍了醌式单体的设计与合成,以及含醌式结构共轭聚合物在不同光电器件中的应用,并论述了该领域研究过程中存在的问题和未来发展方向,以期为高性能聚合物半导体材料的开发提供借鉴和指导.
In recent years
conjugated polymers have attracted extensive attention from both industry and academia due to their excellent solution processability and good mechanical properties. The incorporation of quinoidal unit
featured with good π-electron delocalization
rigidity structure and low-lying LUMO energy level
into conjugated backbone is a promising approach to developing high-performance conjugated polymers. However
how to introduce such structure into polymer backbone remains a challenge. In this feature article
we summarized the recent progress of conjugated polymers containing quinoidal structure. According to the structures of quinoidal units
we discussed the design and synthesis of quinoidal monomers. Particularly
we synthesized a series of oxindole- and indandione-terminated quinoidal compounds. The terminal aromatic rings in these quinoidal compounds provide an opportunity to feasibly adjust the properties of conjugated polymers. Furthermore
compared with the reported quinoids
oxindole- and indandione-terminated quinoidal compounds tend to exhibit lower LUMO energy levels
making them promising for the construction of n-type semiconductors. The applications of conjugated polymers containing quinoidal structure in different optoelectronic devices also have been discussed. Such polymers have been widely used in organic thin-film transistors (OTFTs)
organic solar cells (OSCs)
and organic thermoelectric (OTE) devices. For example
electron mobility of above 1 cm
2
·V
-1
·s
-1
in OTFTs has been obtained for the polymers; air stable n-type OTE devices with power factor above 4.24 μW·m
-1
·K
-2
can be fabricated based on these polymers. Finally
the current problems and future development directions in the research process of quinoid based polymers are also discussed
hoping to provide useful information for the development of high-performance polymer semiconductor materials. The major issues for this field include: (1) development of new configuration-locking methods for the synthesis of isomer-free quinoid monomers; (2) development of new quinoidal monomers for the synthesis of conjugated polymers with LUMO energy levels below -4.4 eV; (3) synthesis of conjugated polymers using quinoid units for NIR-II photothermal therapy.
共轭聚合物醌式结构半导体材料窄带隙有机光电器件
Conjugated polymersQuinoidal structuresSemiconductor materialsLow bandgapOrganic optoelectronic devices
耿延候, 睢颖. 高迁移率共轭聚合物的直接芳基化缩聚合成. 高分子学报, 2019, 50(2), 109-117. doi:10.11777/j.issn1000-3304.2018.18231http://dx.doi.org/10.11777/j.issn1000-3304.2018.18231
郭云龙. 高性能双极性聚合物半导体材料与晶体管器件. 高分子学报, 2020, 51(5), 448-456. doi:10.11777/j.issn1000-3304.2020.19221http://dx.doi.org/10.11777/j.issn1000-3304.2020.19221
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展. 高分子学报, 2019, 50(10), 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Sui Y.; Deng Y. F.; Du T.; Shi Y. B.; Geng Y. H. Design strategies of n-type conjugated polymers for organic thin-film transistors. Mater. Chem. Front., 2019, 3(10), 1932-1951. doi:10.1039/c9qm00382ghttp://dx.doi.org/10.1039/c9qm00382g
Guo X. G.; Facchetti A. The journey of conducting polymers from discovery to application. Nat. Mater., 2020, 19(9), 922-928. doi:10.1038/s41563-020-0778-5http://dx.doi.org/10.1038/s41563-020-0778-5
Bronstein H.; Nielsen C. B.; Schroeder B. C.; McCulloch I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem., 2020, 4(2), 66-77. doi:10.1038/s41570-019-0152-9http://dx.doi.org/10.1038/s41570-019-0152-9
Ji X. Z.; Fang L. Quinoidal conjugated polymers with open-shell character. Polym. Chem., 2021, 12(10), 1347-1361. doi:10.1039/d0py01298jhttp://dx.doi.org/10.1039/d0py01298j
Huang J. Y.; Yu G. Recent progress in quinoidal semiconducting polymers: structural evolution and insight. Mater. Chem. Front., 2021, 5(1), 76-96. doi:10.1039/d0qm00509fhttp://dx.doi.org/10.1039/d0qm00509f
Sun Y. L.; Guo Y. L.; Liu Y. Q. Design and synthesis of high performance π-conjugated materials through antiaromaticity and quinoid strategy for organic field-effect transistors. Mater. Sci. Eng. R Rep., 2019, 136, 13-26. doi:10.1016/j.mser.2018.10.003http://dx.doi.org/10.1016/j.mser.2018.10.003
Bérubé N.; Gaudreau J.; Côté M. Low band gap polymers design approach based on a mix of aromatic and quinoid structures. Macromolecules, 2013, 46(17), 6873-6880. doi:10.1021/ma401358rhttp://dx.doi.org/10.1021/ma401358r
Liu Q.; Bottle S. E.; Sonar P. Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics. Adv. Mater., 2020, 32(4), e1903882. doi:10.1002/adma.201903882http://dx.doi.org/10.1002/adma.201903882
Kim M.; Ryu S. U.; Park S. A.; Choi K.; Kim T.; Chung D.; Park T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater., 2020, 30(20), 1904545. doi:10.1002/adfm.201904545http://dx.doi.org/10.1002/adfm.201904545
Müllen K.; Pisula, W. Donor-acceptor polymers. J. Am. Chem. Soc., 2015, 137(30), 9503-9505. doi:10.1021/jacs.5b07015http://dx.doi.org/10.1021/jacs.5b07015
Paterson A. F.; Singh S.; Fallon K. J.; Hodsden T.; Han Y.; Schroeder B. C.; Bronstein H.; Heeney M.; McCulloch I.; Anthopoulos T. D. Recent progress in high-mobility organic transistors: A reality check. Adv. Mater., 2018, 30(36), 1801079. doi:10.1002/adma.201801079http://dx.doi.org/10.1002/adma.201801079
Guo X. G.; Facchetti A.; Marks T. J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev., 2014, 114(18), 8943-9021. doi:10.1021/cr500225dhttp://dx.doi.org/10.1021/cr500225d
Zhao R. Y.; Liu J.; Wang L. X. Polymer acceptors containing B←N units for organic photovoltaics. Acc. Chem. Res., 2020, 53(8), 1557-1567. doi:10.1021/acs.accounts.0c00281http://dx.doi.org/10.1021/acs.accounts.0c00281
Miao J. H.; Wang Y. H.; Liu J.; Wang L. X. Organoboron molecules and polymers for organic solar cell applications. Chem. Soc. Rev., 2022, 51(1), 153-187. doi:10.1039/d1cs00974ehttp://dx.doi.org/10.1039/d1cs00974e
Lei T.; Wang J. Y.; Pei J. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res., 2014, 47(4), 1117-1126. doi:10.1021/ar400254jhttp://dx.doi.org/10.1021/ar400254j
Zhang C.; Zhu X. Z. N-type quinoidal oligothiophene-based semiconductors for thin-film transistors and thermoelectrics. Adv. Funct. Mater., 2020, 30(31), 2000765. doi:10.1002/adfm.202000765http://dx.doi.org/10.1002/adfm.202000765
Venkateshvaran D.; Nikolka M.; Sadhanala A.; Lemaur V.; Zelazny M.; Kepa M.; Hurhangee M.; Kronemeijer A. J.; Pecunia V.; Nasrallah I.; Romanov I.; Broch K.; McCulloch I.; Emin D.; Olivier Y.; Cornil J.; Beljonne D.; Sirringhaus H. Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515(7527), 384-388. doi:10.1038/nature13854http://dx.doi.org/10.1038/nature13854
Wadsworth A.; Chen H.; Thorley K. J.; Cendra C.; Nikolka M.; Bristow H.; Moser M.; Salleo A.; Anthopoulos T. D.; Sirringhaus H.; McCulloch I. Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors. J. Am. Chem. Soc., 2020, 142(2), 652-664. doi:10.1021/jacs.9b09374http://dx.doi.org/10.1021/jacs.9b09374
Mikie T.; Osaka I. Small-bandgap quinoid-based π-conjugated polymers. J. Mater. Chem. C, 2020, 8(41), 14262-14288. doi:10.1039/d0tc01041chttp://dx.doi.org/10.1039/d0tc01041c
Takimiya K.; Kawabata K. Thienoquinoidal system: promising molecular architecture for optoelectronic applications. J. Synth. Org. Chem. Jpn., 2018, 76(11), 1176-1184. doi:10.5059/yukigoseikyokaishi.76.1176http://dx.doi.org/10.5059/yukigoseikyokaishi.76.1176
Brown A. R.; de Leeuw D. M.; Lous E. J.; Havinga E. E. Organic n-type field-effect transistor. Synth. Met., 1994, 66(3), 257-261. doi:10.1016/0379-6779(94)90075-2http://dx.doi.org/10.1016/0379-6779(94)90075-2
Zhang C.; Zang Y. P.; Zhang F. J.; Diao Y.; McNeill C. R.; Di C. A.; Zhu X. Z.; Zhu D. B. Pursuing high-mobility n-type organic semiconductors by combination of molecule-framework and side-chain engineering. Adv. Mater., 2016, 28(38), 8456-8462. doi:10.1002/adma.201602598http://dx.doi.org/10.1002/adma.201602598
Hieber G.; Hanack M.; Wurst K.; Strähle J. Methine-brigded five-membered heterocycles as precursors for low-gap polymers. Chem. Ber., 1991, 124(7), 1597-1605. doi:10.1002/cber.19911240721http://dx.doi.org/10.1002/cber.19911240721
Takeda T.; Akutagawa T. Preparation structure, and redox behavior of bis(diarylmethylene)dihydrothiophene and its π‑extended analogues. J. Org. Chem., 2015, 80(4), 2455-2461. doi:10.1021/acs.joc.5b00021http://dx.doi.org/10.1021/acs.joc.5b00021
Ishii A.; Horikawa Y.; Takaki I.; Shibata J.; Nakayama J.; Hoshino M. Preparation of 2,5-bis(diarylmethylene)-2,5-dihydrothiophenes and their furan, selenophene, and N-methylpyrrole analogs. Tetrahedron Lett., 1991, 32(34), 4313-4316. doi:10.1016/s0040-4039(00)92158-0http://dx.doi.org/10.1016/s0040-4039(00)92158-0
Liu X. C.; He B.; Anderson C. L.; Kang J.; Chen T.; Chen J. X.; Feng S. Z.; Zhang L. J.; Kolaczkowski M. A.; Teat S. J.; Brady M. A.; Zhu C. H.; Wang L. W.; Chen J. W.; Liu Y. Para-azaquinodimethane: a compact quinodimethane variant as an ambient stable building block for high-performance low band gap polymers. J. Am. Chem. Soc., 2017, 139(24), 8355-8363. doi:10.1021/jacs.7b04031http://dx.doi.org/10.1021/jacs.7b04031
Liu X. C.; He B.; Garzón-Ruiz A.; Navarro A.; Chen T. L.; Kolaczkowski M. A.; Feng S. Z.; Zhang L. J.; Anderson C. A.; Chen J. W.; Liu Y. Unraveling the main chain and side chain effects on thin film morphology and charge transport in quinoidal conjugated polymers. Adv. Funct. Mater., 2018, 28(31), 1801874. doi:10.1002/adfm.201801874http://dx.doi.org/10.1002/adfm.201801874
Liu C.; Liu X. C.; Zheng G. H.; Gong X.; Yang C.; Liu H. Z.; Zhang L. J.; Anderson C. L.; He B.; Xie L.; Zheng R. Z.; Liang H. H.; Zhou Q. F.; Zhang Z. S.; Chen J. W.; Liu Y. An unprecedented quinoid-donor-acceptor strategy to boost the carrier mobilities of semiconducting polymers for organic field-effect transistors. J. Mater. Chem. A, 2021, 9(41), 23497-23505. doi:10.1039/d1ta06383ahttp://dx.doi.org/10.1039/d1ta06383a
Smith M. B.; Michl, J. Singlet fission. Chem. Rev., 2010, 110(11), 6891-6936. doi:10.1021/cr1002613http://dx.doi.org/10.1021/cr1002613
Rao A.; Friend R. H. Harnessing singlet exciton fission to break the Shockley-Queisser limit. Nat. Rev. Mater., 2017, 2, 17063. doi:10.1038/natrevmats.2017.63http://dx.doi.org/10.1038/natrevmats.2017.63
Wang L.; Shi X. M.; Feng S. S.; Liang W. Z.; Fu H. B.; Yao J. N. Molecular design strategy for practical singlet fission materials: the charm of donor/acceptor decorated quinoidal structure. CCS Chem., 2022, 4(8), 2748-2756. doi:10.31635/ccschem.021.202101199http://dx.doi.org/10.31635/ccschem.021.202101199
Kawata S.; Pu Y. J.; Saito A.; Kurashige Y.; Beppu T.; Katagiri H.; Hada M.; Kido J. Singlet fission of non-polycyclic aromatic molecules in organic photovoltaics. Adv. Mater., 2016, 28(8), 1585-1590. doi:10.1002/adma.201504281http://dx.doi.org/10.1002/adma.201504281
Wang L.; Liu X. C.; Shi X. M.; Anderson C. L.; Klivansky L. M.; Liu Y.; Wu Y. S.; Chen J. W.; Yao J. N.; Fu H. B. Singlet fission in a para-azaquinodimethane-based quinoidal conjugated polymer. J. Am. Chem. Soc., 2020, 142(42), 17892-17896. doi:10.1021/jacs.0c06604http://dx.doi.org/10.1021/jacs.0c06604
Cui W. B.; Yuen J.; Wudl F. Benzodipyrrolidones and their polymers. Macromolecules, 2011, 44(20), 7869-7873. doi:10.1021/ma2017293http://dx.doi.org/10.1021/ma2017293
Yue W.; Huang X. D.; Yuan J. Y.; Ma W. L.; Krebs F. C.; Yu D. H. A novel benzodipyrrolidone-based low band gap polymer for organic solar cells. J. Mater. Chem. A, 2013, 1(35), 10116-10119. doi:10.1039/c3ta12701jhttp://dx.doi.org/10.1039/c3ta12701j
Lee K. C.; Park W. T.; Noh Y. Y.; Yang C. Benzodipyrrolidone (BDP)-based polymer semiconductors containing a series of chalcogen atoms: comprehensive investigation of the effect of heteroaromatic blocks on intrinsic semiconducting properties. ACS Appl. Mater. Interfaces, 2014, 6(7), 4872-4882. doi:10.1021/am405917ahttp://dx.doi.org/10.1021/am405917a
Deng P.; Liu L.; Ren S. D.; Li H. X.; Zhang Q. N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chem. Commun., 2012, 48(55), 6960-6962. doi:10.1039/c2cc32184jhttp://dx.doi.org/10.1039/c2cc32184j
Hong W.; Sun B.; Guo C.; Yuen J.; Li Y. N.; Lu S. F.; Huang C.; Facchetti A. Dipyrrolo [2,3-b:2',3'-e]pyrazine-2,6(1H,5H)-dione based conjugated polymers for ambipolar organic thin-film transistors. Chem. Commun., 2013, 49(5), 484-486.
van Pruissen G. W. P.; Pidko E. A.; Wienk M. M.; Janssen R. A. J. High balanced ambipolar charge carrier mobility in benzodipyrrolidone conjugated polymers. J. Mater. Chem. C, 2014, 2(4), 731-735. doi:10.1039/c3tc31844chttp://dx.doi.org/10.1039/c3tc31844c
Rumer J. W.; Rossbauer S.; Planells M.; Watkins S. E.; Anthopoulos T. D.; McCulloch I. Reduced roughness for improved mobility in benzodipyrrolidone-based, n-type OFETS. J. Mater. Chem. C, 2014, 2(41), 8822-8828. doi:10.1039/c4tc01790khttp://dx.doi.org/10.1039/c4tc01790k
Pan L.; Zhan T.; Oh J.; Zhang Y.; Tang H.; Yang M.; Li M.; Yang C.; Liu X.; Cai P.; Duan C.; Huang, F; Cao, Y. N-type quinoidal polymers based on dipyrrolopyrazinedione for application in all-polymer solar cells. Chem. Eur. J., 2021, 27(54), 13527-13533. doi:10.1002/chem.202102084http://dx.doi.org/10.1002/chem.202102084
Cui W. B.; Wudl F. Dithienylbenzodipyrrolidone: new acceptor for donor-acceptor low band gap polymers. Macromolecules, 2013, 46(18), 7232-7238. doi:10.1021/ma400008hhttp://dx.doi.org/10.1021/ma400008h
Rumer J. W.; Levick M.; Dai S. Y.; Rossbauer S.; Huang Z. G.; Biniek L.; Anthopoulos T. D.; Durrant J. R.; Procter D. J.; McCulloch I. BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. Chem. Commun., 2013, 49(40), 4465-4467. doi:10.1039/c3cc40811fhttp://dx.doi.org/10.1039/c3cc40811f
Yang M. Q.; Du T.; Zhao X. X.; Huang X. L.; Pan L. H.; Pang S. T.; Tang H. R.; Peng Z. X.; Ye L.; Deng Y. F.; Sun M. L.; Duan C. H.; Huang F.; Cao Y. Low-bandgap conjugated polymers based on benzodipyrrolidone with reliable unipolar electron mobility exceeding 1 cm2·V-1·s-1. Sci. China Chem., 2021, 64(7), 1219-1227. doi:10.1007/s11426-021-9991-0http://dx.doi.org/10.1007/s11426-021-9991-0
Baeyer A. Untersuchungen über Die gruppe des indigblaus. Ber. Dtsch. Chem. Ges., 1879, 12(2), 1309-1319. doi:10.1002/cber.18790120221http://dx.doi.org/10.1002/cber.18790120221
Meyer V. Ueber benzole verschiedenen ursprungs. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2893-2894. doi:10.1002/cber.188201502279http://dx.doi.org/10.1002/cber.188201502279
Heller G. Zur konstitution des indophenins. Z. Angew. Chem., 1924, 37(52), 1017-1018. doi:10.1002/ange.19240375202http://dx.doi.org/10.1002/ange.19240375202
Tormos G. V.; Belmore K. A.; Cava M. P. The indophenine reaction revisited. Properties of a soluble dialkyl derivative. J. Am. Chem. Soc., 1993, 115(24), 11512-11515. doi:10.1021/ja00077a057http://dx.doi.org/10.1021/ja00077a057
Kim Y.; Hwang H.; Kim N. K.; Hwang K.; Park J. J.; Shin G. I.; Kim D. Y. π-Conjugated polymers incorporating a novel planar quinoid building block with extended delocalization and high charge carrier mobility. Adv. Mater., 2018, 30(22), e1706557. doi:10.1002/adma.201706557http://dx.doi.org/10.1002/adma.201706557
Huang J.; Lu S.; Chen P. A.; Wang K.; Hu Y. Y.; Liang Y.; Wang M.; Reichmanis E. Rational design of a narrow-bandgap conjugated polymer using the quinoidal thieno [3,2-b]thiophene-based building block for organic field-effect transistor applications. Macromolecules, 2019, 52(12), 4749-4756. doi:10.1021/acs.macromol.9b00370http://dx.doi.org/10.1021/acs.macromol.9b00370
Osaka I.; Abe T.; Mori H.; Saito M.; Takemura N.; Koganezawa T.; Takimiya K. Small band gap polymers incorporating a strong acceptor, thieno [3,2-b]thiophene-2,5-dione, with p-channel and ambipolar charge transport characteristics. J. Mater. Chem. C, 2014, 2(13), 2307-2312. doi:10.1039/c3tc32386bhttp://dx.doi.org/10.1039/c3tc32386b
Zhao X. X.; Cai H. J.; Deng Y. F.; Jiang Y.; Wang Z. L.; Shi Y. B.; Han Y.; Geng Y. H. Low-band gap conjugated polymers with strong absorption in the second near-infrared region based on diketopyrrolopyrrole-containing quinoidal units. Macromolecules, 2021, 54(7), 3498-3506. doi:10.1021/acs.macromol.1c00124http://dx.doi.org/10.1021/acs.macromol.1c00124
Deng Y. F.; Sun B.; He Y. H.; Quinn J.; Guo C.; Li Y. N. Thiophene-S,S-dioxidized indophenine: a quinoid-type building block with high electron affinity for constructing n-type polymer semiconductors with narrow band gaps. Angew. Chem. Int. Ed., 2016, 55(10), 3459-3462. doi:10.1002/anie.201508781http://dx.doi.org/10.1002/anie.201508781
Deng Y. F.; Quinn J.; Sun B.; He Y. H.; Ellard J.; Li Y. N. Thiophene-S,S-dioxidized indophenine (IDTO) based donor-acceptor polymers for n-channel organic thin film transistors. RSC Adv., 2016, 6(41), 34849-34854. doi:10.1039/c6ra03221dhttp://dx.doi.org/10.1039/c6ra03221d
Deng Y. F.; Sun B.; Quinn J.; He Y. H.; Ellard J.; Guo C.; Li Y. N. Thiophene-S,S-dioxidized indophenines as high performance n-type organic semiconductors for thin film transistors. RSC Adv., 2016, 6(51), 45410-45418. doi:10.1039/c6ra06316khttp://dx.doi.org/10.1039/c6ra06316k
Rieger R.; Beckmann D.; Mavrinskiy A.; Kastler M.; Müllen K. Backbone curvature in polythiophenes. Chem. Mater., 2010, 22(18), 5314-5318. doi:10.1021/cm101577jhttp://dx.doi.org/10.1021/cm101577j
Guo K.; Wu B. T.; Jiang Y.; Wang Z. L.; Liang Z. Q.; Li Y. N.; Deng Y. F.; Geng Y. H. Synthesis of an isomerically pure thienoquinoid for unipolar n-type conjugated polymers: Effect of backbone curvature on charge transport performance. J. Mater. Chem. C, 2019, 7(33), 10352-10359. doi:10.1039/c9tc03556ghttp://dx.doi.org/10.1039/c9tc03556g
Pappenfus T. M.; Helmin A. J.; Wilcox W. D.; Severson S. M.; Janzen D. E. ProDOT-assisted isomerically pure indophenines. J. Org. Chem., 2019, 84(17), 11253-11257. doi:10.1021/acs.joc.9b01525http://dx.doi.org/10.1021/acs.joc.9b01525
Sun Y. L.; Zhang Y. P.; Ran Y.; Shi L. X.; Zhang Q. S.; Chen J. Y.; Li Q. Y.; Guo Y. L.; Liu Y. Q. Methoxylation of quinoidal bithiophene as a single regioisomer building block for narrow-bandgap conjugated polymers and high-performance organic field-effect transistors. J. Mater. Chem. C, 2020, 8(43), 15168-15174. doi:10.1039/d0tc02199ghttp://dx.doi.org/10.1039/d0tc02199g
Hwang K.; Lee M. H.; Kim J.; Kim Y. J.; Kim Y.; Hwang H.; Kim I. B.; Kim D. Y. 3,4-Ethylenedioxythiophene-based isomer-free quinoidal building block and conjugated polymers for organic field-effect transistors. Macromolecules, 2020, 53(6), 1977-1987. doi:10.1021/acs.macromol.9b02237http://dx.doi.org/10.1021/acs.macromol.9b02237
Nakatsuka M.; Nakasuji K.; Murata I.; Watanabe I.; Saito G.; Enoki T.; Inokuchi H. 3,7-Dihalo-2H, 6H-benzo [1,2-b4,5-b΄]dithiophene-2,6-dione. New wurster-type acceptors isoelectronic with 2,6-anthraquinone. Chem. Lett., 1983, 12(6), 905-908. doi:10.1246/cl.1983.905http://dx.doi.org/10.1246/cl.1983.905
Kawabata K.; Saito M.; Osaka I.; Takimiya K. Very small bandgap π-conjugated polymers with extended thienoquinoids. J. Am. Chem. Soc., 2016, 138(24), 7725-7732. doi:10.1021/jacs.6b03688http://dx.doi.org/10.1021/jacs.6b03688
Yan C. Q.; Barlow S.; Wang Z. H.; Yan H.; Jen A. K. Y.; Marder S. R.; Zhan X. W. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater., 2018, 3, 18003. doi:10.1038/natrevmats.2018.3http://dx.doi.org/10.1038/natrevmats.2018.3
Hou J. H.; Inganäs O.; Friend R. H.; Gao F. Organic solar cells based on non-fullerene acceptors. Nat. Mater., 2018, 17(2), 119-128. doi:10.1038/nmat5063http://dx.doi.org/10.1038/nmat5063
Wang C.; Du T.; Deng Y. F.; Yao J. R.; Li R. Q.; Zhao X. X.; Jiang Y.; Wei H. P.; Dang Y. F.; Li R. J.; Geng Y. H. High-yield and sustainable synthesis of quinoidal compounds assisted by keto-enol tautomerism. Chem. Sci., 2021, 12(27), 9366-9371. doi:10.1039/d1sc01685ghttp://dx.doi.org/10.1039/d1sc01685g
Du T.; Gao R. H.; Deng Y. F.; Wang C.; Zhou Q.; Geng Y. H. Indandione-terminated quinoids: facile synthesis by alkoxide-mediated rearrangement reaction and semiconducting properties. Angew. Chem. Int. Ed., 2020, 59(1), 221-225. doi:10.1002/anie.201911530http://dx.doi.org/10.1002/anie.201911530
Wang C.; Du T.; Liang Z. Q.; Zhu J. Y.; Ren J.; Deng Y. F. Synthesis of low-bandgap small molecules by extending the π-conjugation of the termini in quinoidal compounds. J. Mater. Chem. C, 2021, 9(6), 2054-2062. doi:10.1039/d0tc04962jhttp://dx.doi.org/10.1039/d0tc04962j
Du T.; Liu Y. Y.; Wang C.; Deng Y. F.; Geng Y. H. N-type conjugated polymers based on an indandione-terminated quinoidal building block. Macromolecules, 2022, 55(14), 5975-5984. doi:10.1021/acs.macromol.2c01029http://dx.doi.org/10.1021/acs.macromol.2c01029
0
浏览量
68
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构