浏览全部资源
扫码关注微信
1.聚合物分子工程国家重点实验室 复旦大学高分子科学系 先进材料实验室 上海 200438
2.华东理工大学化学工程学院 化学工程国家重点实验室 上海 200237
E-mail: penghs@fudan.edu.cn
纸质出版日期:2023-04-20,
网络出版日期:2023-02-15,
收稿日期:2022-12-28,
录用日期:2023-02-03
扫 描 看 全 文
张义锋,曾凯雯,杨依蓓等.金属主链高分子的量子化学计算[J].高分子学报,2023,54(04):413-417.
Zhang Yi-feng,Zeng Kai-wen,Yang Yi-bei,et al.Quantum Chemical Calculation of Metal-backboned Polymer[J].ACTA POLYMERICA SINICA,2023,54(04):413-417.
张义锋,曾凯雯,杨依蓓等.金属主链高分子的量子化学计算[J].高分子学报,2023,54(04):413-417. DOI: 10.11777/j.issn1000-3304.2022.22451.
Zhang Yi-feng,Zeng Kai-wen,Yang Yi-bei,et al.Quantum Chemical Calculation of Metal-backboned Polymer[J].ACTA POLYMERICA SINICA,2023,54(04):413-417. DOI: 10.11777/j.issn1000-3304.2022.22451.
金属主链高分子是一类完全以金属原子作为主链的新材料,在光电、传感、电化学储能等领域都具有重要的应用前景. 但是,如何获得具有较高分子量的金属主链高分子,仍然是一个挑战. 本文通过密度泛函理论计算方法,对镍金属主链高分子进行了结构优化和稳定性分析,发现随着聚合物分子量的增加,镍金属主链高分子的单点能逐渐降低,说明高分子量的金属主链高分子具有稳定的分子构型. 但是,随着分子量的进一步提高,计算量显著增加,密度泛函理论计算方法收敛困难. 为此,本文进一步通过Hartree-Fock计算方法对该系列镍金属主链高分子进行了分子构型优化,得到了与密度泛函理论计算结果相似的规律,并且发现当分子量超过1×10
4
时,金属主链高分子仍然具有较高的结构稳定性. 此外,这种电子离域在整个金属主链上的独特金属-金属的相互作用有利于实现电荷的高效传输;以金属原子为重复单元的分子结构,有望实现金属和高分子材料性能的有效结合,可以获得较高的热失重温度和熵弹性.
Metal-backboned polymers (MBPs) are a new class of materials with metal atoms for backbones
which offer excellent electronic properties for promising applications in a variety of fields such as optoelectronics
sensing
and energy storage. However
it remains challenges to synthesize MBPs with high molecular weights for practical applications. Here
the structures of nickel-backboned polymers (NiBPs) with increasing molecular weights were optimized by density functional theory (DFT) method
based on which their stabilities were further studied. It was found that the energies of NiBPs gradually decreased with the increasing molecular weight
indicating that NiBPs with higher molecular weights showed stable molecular configurations. However
with the further increase of molecular weights
it was difficult for NiBPs to converge by DFT method. To this end
these structures were further studied by Hartree-Fock method. Similar results had been concluded as DFT calculation did
and it also proved that an NiBP with molecular weight exceeding 1×10
4
was also stable. In addition
the unique metal-metal interaction of the electron delocalization on the whole metal backbone is conducive to the efficient transmission of charge. As polymers with repeating metal atom units
MBPs are expected to have combined properties of metal and polymer materials
and may demonstrate high thermal weight loss temperatures and entropy elasticities. This work provides a theoretical basis for the synthesis of MBP materials.
金属主链镍原子高分子理论计算
Metal-backbonedNickelPolymerMolecular simulation
Zeng, K. W.; Peng, H. S. Metal-backboned polymer: conception, design and synthesis. Chinese J. Polym. Sci., 2023, 41(1), 3-6. doi:10.1007/s10118-022-2887-xhttp://dx.doi.org/10.1007/s10118-022-2887-x
Gao H. Z.; Yu R. N.; Ma Z. W.; Gong Y. S.; Zhao B.; Lv Q. L.; Tan Z. A. Recent advances of organometallic complexes in emerging photovoltaics. J. Polym. Sci., 2022, 60(6), 865-916. doi:10.1002/pol.20210592http://dx.doi.org/10.1002/pol.20210592
Wang K. J.; Amin K.; An Z. S.; Cai Z. X.; Chen H.; Chen H. Z.; Dong Y. P.; Feng X.; Fu W. Q.; Gu J. B.; Han Y. C.; Hu D. D.; Hu R. R.; Huang D.; Huang F.; Huang F. H.; Huang Y. Z.; Jin J.; Jin X.; Li Q. Q.; Li T. F.; Li Z.; Li Z. B.; Liu J. G.; Liu J.; Liu S. Y.; Peng H. S.; Qin A. J.; Qing X.; Shen Y. Q.; Shi J. B.; Sun X. M.; Tong B.; Wang B.; Wang H.; Wang L. X.; Wang S.; Wei Z. X.; Xie T.; Xu C. Y.; Xu H. P.; Xu Z. K.; Yang B.; Yu Y. L.; Zeng X.; Zhan X. W.; Zhang G. Z.; Zhang J.; Zhang M. Q.; Zhang X. Z.; Zhang X.; Zhang Y.; Zhang Y. Y.; Zhao C. S.; Zhao W. F.; Zhou Y. F.; Zhou Z. X.; Zhu J. T.; Zhu X. Y.; Tang B. Z. Advanced functional polymer materials. Mater. Chem. Front., 2020, 4(7), 1803-1915. doi:10.1039/d0qm00025fhttp://dx.doi.org/10.1039/d0qm00025f
Guo F. Q.; Kim Y. G.; Reynolds J. R.; Schanze K. S. Platinum-acetylide polymer based solar cells: Involvement of the triplet state for energy conversion. Chem. Commun. (Camb), 2006, (17), 1887-1889. doi:10.1039/b516086chttp://dx.doi.org/10.1039/b516086c
Lee C.; Lawrie B.; Pooser R.; Lee K. G.; Rockstuhl C.; Tame M. Quantum plasmonic sensors. Chem. Rev., 2021, 121(8), 4743-4804. doi:10.1021/acs.chemrev.0c01028http://dx.doi.org/10.1021/acs.chemrev.0c01028
Ates H. C.; Nguyen P. Q.; Gonzalez-Macia L.; Morales-Narváez E.; Güder F.; Collins J. J.; Dincer C. End-to-end design of wearable sensors. Nat. Rev. Mater., 2022, 7(11), 887-907. doi:10.1038/s41578-022-00460-xhttp://dx.doi.org/10.1038/s41578-022-00460-x
Jitendra K. B.; Kim R. D. Chain compounds based on transition metal backbones: new life for an old topic. Angew. Chem. Int. Ed. Engl., 2002, 41(23), 4453-4457. doi:10.1002/1521-3773(20021202)41:23<4453::aid-anie4453>3.0.co;2-1http://dx.doi.org/10.1002/1521-3773(20021202)41:23<4453::aid-anie4453>3.0.co;2-1
Aida T.; Meijer E. W.; Stupp S. I. Functional supramolecular polymers. Science, 2012, 335(6070), 813-817. doi:10.1126/science.1205962http://dx.doi.org/10.1126/science.1205962
etyawan W.; Curtarolo S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci., 2010, 49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010http://dx.doi.org/10.1016/j.commatsci.2010.05.010
Jóhannesson G. H.; Bligaard T.; Ruban A. V.; Skriver H. L.; Jacobsen K. W.; Nørskov J. K. Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett., 2002, 88(25), 255506. doi:10.1103/physrevlett.88.255506http://dx.doi.org/10.1103/physrevlett.88.255506
Qiang Y. C.; Li W. H. Accelerated pseudo-spectral method of self-consistent field theory via crystallographic fast Fourier transform. Macromolecules, 2020, 53(22), 9943-9952. doi:10.1021/acs.macromol.0c01974http://dx.doi.org/10.1021/acs.macromol.0c01974
Xu Z. W.; Dong Q. S.; Zhang L. S.; Li W. H. Enhanced dielectric permittivity of hierarchically double-gyroid nanocomposites via macromolecular engineering of block copolymers. Nanoscale, 2022, 14(41), 15275-15280. doi:10.1039/d2nr04516hhttp://dx.doi.org/10.1039/d2nr04516h
Zhao S. C.; Cai T. Y.; Zhang L. S.; Li W. H.; Lin J. P. Autonomous construction of phase diagrams of block copolymers by theory-assisted active machine learning. ACS Macro Lett., 2021, 10(5), 598-602. doi:10.1021/acsmacrolett.1c00133http://dx.doi.org/10.1021/acsmacrolett.1c00133
Brown I. D. Recent developments in the methods and applications of the bond valence model. Chem. Rev., 2009, 109(12), 6858-6919. doi:10.1021/cr900053khttp://dx.doi.org/10.1021/cr900053k
Ismayilov R. H.; Wang W. Z.; Lee G. H.; Yeh C. Y.; Hua S. A.; Song Y.; Rohmer M. M.; Bénard M.; Peng S. M. Two linear undecanickel mixed-valence complexes: increasing the size and the scope of the electronic properties of nickel metal strings. Angew. Chem. Int. Ed., 2011, 50(9), 2045-2048. doi:10.1002/anie.201006695http://dx.doi.org/10.1002/anie.201006695
Cordero B.; Gómez V.; Platero-Prats A. E.; Revés M.; Echeverría J.; Cremades E.; Barragán F.; Alvarez S. Covalent radii revisited. Dalton Trans., 2008(21), 2832-2838. doi:10.1039/b801115jhttp://dx.doi.org/10.1039/b801115j
Wang C. C.; Lo W. C.; Chou C. C.; Lee G. H.; Chen J. M.; Peng S. M. Synthesis, crystal structures, and magnetic properties of a series of linear pentanickel(II) complexes: [Ni5(μ5-tpda)4X2](X=Cl-, CN-, N3-, NCS-) and [Ni5(μ5-tpda)4(CH3CN)2]-(PF6)2 (tpda2- = the tripyridyldiamido dianion). Inorg. Chem., 1998, 37(16), 4059-4065.
Peng H. S.; Sun X. M.; Cai F. J.; Chen X. L.; Zhu Y. C.; Liao G. P.; Chen D. Y.; Li Q. W.; Lu Y. F.; Zhu Y. T.; Jia Q. X. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat. Nanotechnol., 2009, 4(11), 738-741. doi:10.1038/nnano.2009.264http://dx.doi.org/10.1038/nnano.2009.264
Zhang H. Y.; Jiang X. Y.; Wu W.; Mo Y. R. Electron conjugation versus π-π repulsion in substituted benzenes: Why the carbon-nitrogen bond in nitrobenzene is longer than in aniline. Phys. Chem. Chem. Phys., 2016, 18(17), 11821-11828. doi:10.1039/c6cp00471ghttp://dx.doi.org/10.1039/c6cp00471g
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构