浏览全部资源
扫码关注微信
北京分子科学国家研究中心 北京大学化学与分子工程学院 生物有机与分子工程教育部重点实验室 北京 100871
[ "朱戎,男,1988年生. 北京大学化学与分子工程学院课题组长、研究员. 2010年毕业于北京大学化学与分子工程学院,获理学学士学位;2015年毕业于麻省理工学院化学系,获理学博士学位;2015~2018年麻省理工学院化学系开展博士后研究. 2022年获国家自然科学基金优秀青年科学基金资助. 主要研究方向为过渡金属催化小分子和高分子合成新方法的开发,涉及:(1)炔类高分子催化合成;(2)高价有机钴催化;(3)价键异构体化学.E-mail: rongzhu@pku.edu.cn " ]
纸质出版日期:2023-06-20,
网络出版日期:2023-03-28,
收稿日期:2023-01-02,
录用日期:2023-02-09
扫 描 看 全 文
孙晗力,王子元,朱戎.过渡金属催化炔类高分子合成进展[J].高分子学报,2023,54(06):745-760.
Sun Han-li,Wang Zi-yuan,Zhu Rong.Advances in Transition-Metal-Catalyzed Synthesis of Alkyne Polymers[J].ACTA POLYMERICA SINICA,2023,54(06):745-760.
孙晗力,王子元,朱戎.过渡金属催化炔类高分子合成进展[J].高分子学报,2023,54(06):745-760. DOI: 10.11777/j.issn1000-3304.2023.23003.
Sun Han-li,Wang Zi-yuan,Zhu Rong.Advances in Transition-Metal-Catalyzed Synthesis of Alkyne Polymers[J].ACTA POLYMERICA SINICA,2023,54(06):745-760. DOI: 10.11777/j.issn1000-3304.2023.23003.
过渡金属催化反应的蓬勃发展有力地推动了结构多样、功能丰富的炔类高分子的合成和应用研究. 从炔烃单体出发合成炔类高分子经典的策略包括:(1)炔基碳氢(卤)键活化,对应偶联聚合;(2)金属卡拜或卡宾对碳碳三键的活化,对应复分解聚合. 最近,我们课题组的工作引入了第三种模式,即通过炔丙位化学键的活化,形成联烯基金属物种,进而介导累积烯烃的原位生成并链式聚合,得到炔烃主链. 本专论围绕以上3种反应模式,论述近年来具有代表性的炔类高分子合成方法新发展,并从机理的角度重点讨论新兴的链式聚合方法.
The development of transition-metal-catalyzed reactions has remarkably facilitated the synthesis and applications of alkyne polymers of diverse structures and functions. Classical synthetic strategy of alkyne polymers based on acetylenic monomers includes: (1) acetylenic bond activation that leads to polycouplings; (2) carbon-carbon triple bond activation by metal carbynes/carbenes that leads to metathesis polymerizations. Recently
our group introduced a third mode based on copper-mediated propargylic bond activation of propargylic electrophiles
which generates allenyl copper species as key intermediates. The allenyl copper complex is involved in the
in
situ
formation and chain-growth polymerization of [
n
]cumulene (
n
=3
5)
which eventually affords a unique alkyne backbone with carbon-carbon triple bonds spaced by two sp
3
carbons with exclusive regioselectivity. This article serves to describe recent developments of transition-metal-catalyzed synthesis of alkyne polymers based on polycouplings
metathesis
and propargylic activation
respectively. In particular
the chain-growth methods in each category are emphasized from a mechanistic perspective because of their potential in controlling the molecular weight and distribution
end groups
sequences
topology of the resulting alkyne polymers. This includes the catalyst transfer Sonogashira-type polycoupling
the ring-opening alkyne metathesis polymerization of strained alkynes
metathesis and metallotropy polymerization
and the emerging copper-catalyzed condensation polymerization of propargylic electrophiles developed by our group. The synergy between organometallic chemistry and synthetic polymer chemistry provides important driving force for both fields.
过渡金属催化炔类高分子炔丙基取代链式聚合累积烯烃
Transition-metal catalysisAlkyne polymersPropargylic substitutionChain-growthCumulenes
Xu S. Q.; Kim E. H.; Wei A.; Negishi E. I. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Sci. Technol. Adv. Mater., 2014, 15(4), 044201. doi:10.1088/1468-6996/15/4/044201http://dx.doi.org/10.1088/1468-6996/15/4/044201
Grubbs R. H. Olefin-metathesis catalysts for the preparation of molecules and materials. Angew. Chem. Int. Ed., 2006, 45(23), 3760-3765. doi:10.1002/anie.200600680http://dx.doi.org/10.1002/anie.200600680
Liu J. Z.; Lam J. W. Y.; Tang B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev., 2009, 109(11), 5799-5867. doi:10.1021/cr900149dhttp://dx.doi.org/10.1021/cr900149d
Liu Y. J.; Lam J. W. Y.; Tang B. Z. Conjugated polymers developed from alkynes. Natl. Sci. Rev., 2015, 2(4), 493-509. doi:10.1093/nsr/nwv047http://dx.doi.org/10.1093/nsr/nwv047
He B. Z.; Huang J. C.; Liu X. Y.; Zhang J.; Lam J. W. Y.; Tang B. Z. Polymerizations of activated alkynes. Prog. Polym. Sci., 2022, 126, 101503. doi:10.1016/j.progpolymsci.2022.101503http://dx.doi.org/10.1016/j.progpolymsci.2022.101503
Li B. X.; Wang J.; He B. Z.; Qin A. J.; Tang B. Z. Activated internal alkyne-based polymerization. Chinese J. Chem., 2022, 40, 2001-2013. doi:10.1002/cjoc.202200073http://dx.doi.org/10.1002/cjoc.202200073
Liu X. L.; Han T.; Lam J. W. Y.; Tang B. Z. Functional heterochain polymers constructed by alkyne multicomponent polymerizations. Macromol. Rapid Commun., 2021, 42(6), e2000386. doi:10.1002/marc.202000386http://dx.doi.org/10.1002/marc.202000386
Nishiura M.; Hou Z. M. Organolanthanide catalyzed regio- and stereoselective dimerization of terminal alkynes and polymerization of aromatic diynes. J. Mol. Catal. A Chem., 2004, 213(1), 101-106. doi:10.1016/j.molcata.2003.10.053http://dx.doi.org/10.1016/j.molcata.2003.10.053
Lauher J. W.; Fowler F. W.; Goroff N. S. Single-crystal-to-single-crystal topochemical polymerizations by design. Acc. Chem. Res., 2008, 41(9), 1215-1229. doi:10.1021/ar8001427http://dx.doi.org/10.1021/ar8001427
Zhang Y.; Zhao E. G.; Deng H. Q.; Lam J. W. Y.; Tang B. Z. Development of a transition metal-free polymerization route to functional conjugated polydiynes from a haloalkyne-based organic reaction. Polym. Chem., 2016, 7(14), 2492-2500. doi:10.1039/c6py00050ahttp://dx.doi.org/10.1039/c6py00050a
Motoshige A.; Kakinuma J.; Iyoda T.; Sanji T. A fast controlled synthesis of poly(p-phenyleneethynylene)s under transition-metal-free conditions. Polym. Chem., 2016, 7(13), 2323-2328. doi:10.1039/c6py00030dhttp://dx.doi.org/10.1039/c6py00030d
Siemsen P.; Livingston R. C.; Diederich F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed., 2000, 39(15), 2632-2657. doi:10.1002/1521-3773(20000804)39:15<2632::aid-anie2632>3.0.co;2-fhttp://dx.doi.org/10.1002/1521-3773(20000804)39:15<2632::aid-anie2632>3.0.co;2-f
Bunz, U. H. Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem. Rev., 2000, 100(4), 1605-1644. doi:10.1021/cr990257jhttp://dx.doi.org/10.1021/cr990257j
Li C. J. The development of catalytic nucleophilic additions of terminal alkynes in water. Acc. Chem. Res., 2010, 43(4), 581-590. doi:10.1021/ar9002587http://dx.doi.org/10.1021/ar9002587
Liu Y. J.; Gao M.; Lam J. W. Y.; Hu R. R.; Tang B. Z. Copper-catalyzed polycoupling of diynes, primary amines, and aldehydes: a new one-pot multicomponent polymerization tool to functional polymers. Macromolecules, 2014, 47(15), 4908-4919. doi:10.1021/ma501477whttp://dx.doi.org/10.1021/ma501477w
Dunetz J. R.; Danheiser R. L. Copper-mediated N-alkynylation of carbamates, ureas, and sulfonamides. a general method for the synthesis of ynamides. Org. Lett., 2003, 5(21), 4011-4014. doi:10.1021/ol035647dhttp://dx.doi.org/10.1021/ol035647d
Zhang Y. S.; Hsung R. P.; Tracey M. R.; Kurtz K. C. M.; Vera E. L. Copper sulfate-pentahydrate-1,0-phenanthroline catalyzed amidations of alkynyl bromides. synthesis of heteroaromatic amine substituted ynamides. Org. Lett., 2004, 6(7), 1151-1154. doi:10.1021/ol049827ehttp://dx.doi.org/10.1021/ol049827e
Wu X. Y.; Wei B.; Hu R. R.; Tang B. Z. Polycouplings of alkynyl bromides and sulfonamides toward poly(ynesulfonamide)s with stable Csp-N bonds. Macromolecules, 2017, 50(15), 5670-5678. doi:10.1021/acs.macromol.7b01155http://dx.doi.org/10.1021/acs.macromol.7b01155
Zhang Z. K.; Wang Q.; Liu H. M.; Li T.; Ren Y. Ultramicroporous organophosphorus polymers via self-accelerating P-C coupling reactions: kinetic effects on crosslinking environments and porous structures. J. Am. Chem. Soc., 2022, 144(26), 11748-11756. doi:10.1021/jacs.2c03759http://dx.doi.org/10.1021/jacs.2c03759
Beletskaya I. P.; Afanasiev V. V.; Kazankova M. A.; Efimova I. V.; Antipin M. U. A convenient and direct route to phosphinoalkynes via copper-catalyzed cross-coupling of terminal alkynes with chlorophosphanes. Synthesis, 2003, (18), 2835-2838. doi:10.1055/s-2003-42493http://dx.doi.org/10.1055/s-2003-42493
Zheng C.; Deng H. Q.; Zhao Z. J.; Qin A. J.; Hu R. R.; Tang B. Z. Multicomponent tandem reactions and polymerizations of alkynes, carbonyl chlorides, and thiols. Macromolecules, 2015, 48(7), 1941-1951. doi:10.1021/acs.macromol.5b00175http://dx.doi.org/10.1021/acs.macromol.5b00175
Deng H. Q.; Hu R. R.; Leung A. C. S.; Zhao E. G.; Lam J. W. Y.; Tang B. Z. Construction of regio- and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. Polym. Chem., 2015, 6(24), 4436-4446. doi:10.1039/c5py00477bhttp://dx.doi.org/10.1039/c5py00477b
Deng H. Q.; He Z. K.; Lam J. W. Y.; Tang B. Z. Regio- and stereoselective construction of stimuli-responsive macromolecules by a sequential coupling-hydroamination polymerization route. Polym. Chem., 2015, 6(48), 8297-8305. doi:10.1039/c5py01424ghttp://dx.doi.org/10.1039/c5py01424g
Deng H. Q.; Zhao E. G.; Leung A. C. S.; Hu R. R.; Zhang Y.; Lam J. W. Y.; Tang B. Z. Multicomponent sequential polymerizations of alkynes, carbonyl chloride and amino ester salts toward helical and luminescent polymers. Polym. Chem., 2016, 7(9), 1836-1846. doi:10.1039/c6py00024jhttp://dx.doi.org/10.1039/c6py00024j
Deng H. Q.; Hu R. R.; Zhao E. G.; Chan C. Y. K.; Lam J. W. Y.; Tang B. Z. One-pot three-component tandem polymerization toward functional poly(arylene thiophenylene) with aggregation-enhanced emission characteristics. Macromolecules, 2014, 47(15), 4920-4929. doi:10.1021/ma501190ghttp://dx.doi.org/10.1021/ma501190g
Tang X.; Zheng C.; Chen Y.; Zhao Z.; Qin A.; Hu R.; Tang B. Z. Multicomponent Tandem polymerizations of aromatic diynes, terephthaloyl chloride, and hydrazines toward functional conjugated polypyrazoles. Macromolecules 2016, 49 (24), 9291-9300. doi:10.1021/acs.macromol.6b02192http://dx.doi.org/10.1021/acs.macromol.6b02192
Muschelknautz C.; Frank W.; Müller T. J. J. Rapid access to unusual solid-state luminescent merocyanines by a novel one-pot three-component synthesis. Org. Lett., 2011, 13(10), 2556-2559. doi:10.1021/ol200655shttp://dx.doi.org/10.1021/ol200655s
Tang X. J.; Zhang L. H.; Hu R. R.; Tang B. Z. Multicomponent tandem polymerization of aromatic alkynes, carbonyl chloride, and Fischer’s base toward poly(diene merocyanine)s. Chin. J. Chem., 2019, 37(12), 1264-1270. doi:10.1002/cjoc.201900256http://dx.doi.org/10.1002/cjoc.201900256
Huang H. C.; Qiu Z. J.; Han T.; Kwok R. T. K.; Lam J. W. Y.; Tang B. Z. Synthesis of functional poly(propargyl imine)s by multicomponent polymerizations of bromoarenes, isonitriles, and alkynes. ACS Macro Lett., 2017, 6(12), 1352-1356. doi:10.1021/acsmacrolett.7b00872http://dx.doi.org/10.1021/acsmacrolett.7b00872
Oi S.; Fukue Y.; Nemoto K.; Inoue Y. Synthesis of poly(alkyl alkynoates) from diynes, CO2, and alkyl dihalides by a copper(I) salt catalyst. Macromolecules, 1996, 29(7), 2694-2695. doi:10.1021/ma9514784http://dx.doi.org/10.1021/ma9514784
Guo C. X.; Yu B.; Xie J. N.; He L. N. Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO2 in ambient conditions. Green Chem., 2015, 17(1), 474-479. doi:10.1039/c4gc01638fhttp://dx.doi.org/10.1039/c4gc01638f
Song B.; He B. Z.; Qin A. J.; Tang B. Z. Direct polymerization of carbon dioxide, diynes, and alkyl dihalides under mild reaction conditions. Macromolecules, 2018, 51(1), 42-48. doi:10.1021/acs.macromol.7b02109http://dx.doi.org/10.1021/acs.macromol.7b02109
Song B.; Zhang R. Y.; Hu R.; Chen X.; Liu D. M.; Guo J. L.; Xu X. T.; Qin A. J.; Tang B. Z. Site-selective, multistep functionalizations of CO2-based hyperbranched poly(alkynoate)s toward functional polymetric materials. Adv. Sci., 2020, 7(17), 2000465. doi:10.1002/advs.202000465http://dx.doi.org/10.1002/advs.202000465
Miyakoshi R.; Yokoyama A.; Yokozawa T. Catalyst-transfer polycondensation. mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc., 2005, 127(49), 17542-17547. doi:10.1021/ja0556880http://dx.doi.org/10.1021/ja0556880
Sheina E. E.; Liu J. S.; Iovu M. C.; Laird D. W.; McCullough R. D. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules, 2004, 37(10), 3526-3528. doi:10.1021/ma0357063http://dx.doi.org/10.1021/ma0357063
Kang S. S.; Ono R. J.; Bielawski C. W. Controlled catalyst transfer polycondensation and surface-initiated polymerization of a p-phenyleneethynylene-based monomer. J. Am. Chem. Soc., 2013, 135(13), 4984-4987. doi:10.1021/ja401740mhttp://dx.doi.org/10.1021/ja401740m
Su M.; Liu N.; Wang Q.; Wang H. Q.; Yin J.; Wu Z. Q. Facile synthesis of poly(phenyleneethynylene)-block-polyisocyanide copolymers via two mechanistically distinct, sequential living polymerizations using a single catalyst. Macromolecules, 2016, 49(1), 110-119. doi:10.1021/acs.macromol.5b02555http://dx.doi.org/10.1021/acs.macromol.5b02555
Kang S. S.; Todd A. D.; Paul A.; Lee S. Y.; Bielawski C. W. Controlled syntheses of poly(phenylene ethynylene)s with regiochemically-tuned optical band gaps and ordered morphologies. Macromolecules, 2018, 51(15), 5972-5978. doi:10.1021/acs.macromol.8b00728http://dx.doi.org/10.1021/acs.macromol.8b00728
Jagadesan P.; Schanze K. S. Poly(phenylene ethynylene) conjugated polyelectrolytes synthesized via chain-growth polymerization. Macromolecules, 2019, 52(10), 3845-3851. doi:10.1021/acs.macromol.9b00288http://dx.doi.org/10.1021/acs.macromol.9b00288
Krouse S. A.; Schrock R. R. Preparation of polycyclooctyne by ring-opening polymerization employing d0 tungsten and molybdenum alkylidyne complexes. Macromolecules, 1989, 22(6), 2569-2576. doi:10.1021/ma00196a004http://dx.doi.org/10.1021/ma00196a004
Fürstner A. The ascent of alkyne metathesis to strategy-level status. J. Am. Chem. Soc., 2021, 143(38), 15538-15555. doi:10.1021/jacs.1c08040http://dx.doi.org/10.1021/jacs.1c08040
Wu X.; Tamm M. Recent advances in the development of alkyne metathesis catalysts. Beilstein J. Org. Chem., 2011, 7, 82-93. doi:10.3762/bjoc.7.12http://dx.doi.org/10.3762/bjoc.7.12
Zhang W.; Moore J. Alkyne metathesis: catalysts and synthetic applications. Adv. Synth. Catal., 2007, 349(1-2), 93-120. doi:10.1002/adsc.200600476http://dx.doi.org/10.1002/adsc.200600476
Yang H. S.; Jin Y. H.; Du Y.; Zhang W. Application of alkyne metathesis in polymer synthesis. J. Mater. Chem. A, 2014, 2(17), 5986-5993. doi:10.1039/c3ta14227bhttp://dx.doi.org/10.1039/c3ta14227b
Jyothish K.; Zhang W. Introducing a podand motif to alkyne metathesis catalyst design: a highly active multidentate molybdenum(VI) catalyst that resists alkyne polymerization. Angew. Chem. Int. Ed., 2011, 50(15), 3435-3438. doi:10.1002/anie.201007559http://dx.doi.org/10.1002/anie.201007559
Du Y.; Yang H. S.; Zhu C. P.; Ortiz M.; Okochi K. D.; Shoemaker R.; Jin Y. H.; Zhang W. Highly active multidentate ligand-based alkyne metathesis catalysts. Chem. Eur. J., 2016, 22(23), 7959-7963. doi:10.1002/chem.201505174http://dx.doi.org/10.1002/chem.201505174
Cui M. X.; Bai W.; Sung H. H. Y.; Williams I. D.; Jia G. C. Robust alkyne metathesis catalyzed by air stable d2 Re(V) alkylidyne complexes. J. Am. Chem. Soc., 2020, 142(31), 13339-13344. doi:10.1021/jacs.0c06581http://dx.doi.org/10.1021/jacs.0c06581
Peterson G. I.; Yang S.; Choi T. L. Synthesis of functional polyacetylenes via cyclopolymerization of diyne monomers with Grubbs-type catalysts. Acc. Chem. Res., 2019, 52(4), 994-1005. doi:10.1021/acs.accounts.8b00594http://dx.doi.org/10.1021/acs.accounts.8b00594
Hu K. D.; Yang H. S.; Zhang W.; Qin Y. Solution processable polydiacetylenes (PDAs) through acyclic enediyne metathesis polymerization. Chem. Sci., 2013, 4(9), 3649-3653. doi:10.1039/c3sc51264ahttp://dx.doi.org/10.1039/c3sc51264a
Lu G. L.; Yang H. S.; Zhu Y. L.; Huggins T.; Ren Z. J.; Liu Z. N.; Zhang W. Synthesis of a conjugated porous Co(ii) porphyrinylene-ethynylene framework through alkyne metathesis and its catalytic activity study. J. Mater. Chem. A, 2015, 3(9), 4954-4959. doi:10.1039/c4ta06231khttp://dx.doi.org/10.1039/c4ta06231k
Zhu Y. L.; Yang H. S.; Jin Y. H.; Zhang W. Porous poly(aryleneethynylene) networks through alkyne metathesis. Chem. Mater., 2013, 25(18), 3718-3723. doi:10.1021/cm402090khttp://dx.doi.org/10.1021/cm402090k
Hu Y. M.; Wu C. Y.; Pan Q. Y.; Jin Y. H.; Lyu R.; Martinez V.; Huang S. F.; Wu J. Y.; Wayment L. J.; Clark N. A.; Raschke M. B.; Zhao Y. J.; Zhang W. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth., 2022, 1(6), 449-454. doi:10.1038/s44160-022-00068-7http://dx.doi.org/10.1038/s44160-022-00068-7
Fischer F. R.; Nuckolls C. Design of living ring-opening alkyne metathesis. Angew. Chem. Int. Ed., 2010, 49(40), 7257-7260. doi:10.1002/anie.201003549http://dx.doi.org/10.1002/anie.201003549
Bellone D. E.; Bours J.; Menke E. H.; Fischer F. R. Highly selective molybdenum ONO pincer complex initiates the living ring-opening metathesis polymerization of strained alkynes with exceptionally low polydispersity indices. J. Am. Chem. Soc., 2015, 137(2), 850-856. doi:10.1021/ja510919vhttp://dx.doi.org/10.1021/ja510919v
von Kugelgen S.; Bellone D. E.; Cloke R. R.; Perkins W. S.; Fischer F. R. Initiator control of conjugated polymer topology in ring-opening alkyne metathesis polymerization. J. Am. Chem. Soc., 2016, 138(19), 6234-6239. doi:10.1021/jacs.6b02422http://dx.doi.org/10.1021/jacs.6b02422
von Kugelgen S.; Sifri R.; Bellone D.; Fischer F. R. Regioselective carbyne transfer to ring-opening alkyne metathesis initiators gives access to telechelic polymers. J. Am. Chem. Soc., 2017, 139(22), 7577-7585. doi:10.1021/jacs.7b02225http://dx.doi.org/10.1021/jacs.7b02225
Jeong H.; von Kugelgen S.; Bellone D.; Fischer F. R. Regioselective termination reagents for ring-opening alkyne metathesis polymerization. J. Am. Chem. Soc., 2017, 139(43), 15509-15514. doi:10.1021/jacs.7b09390http://dx.doi.org/10.1021/jacs.7b09390
von Kugelgen S.; Piskun I.; Griffin J. H.; Eckdahl C. T.; Jarenwattananon N. N.; Fischer F. R. Templated synthesis of end-functionalized graphene nanoribbons through living ring-opening alkyne metathesis polymerization. J. Am. Chem. Soc., 2019, 141(28), 11050-11058. doi:10.1021/jacs.9b01805http://dx.doi.org/10.1021/jacs.9b01805
Padwa A.; Austin D. J.; Gareau Y.; Kassir J. M.; Xu S. L. Rearrangement of alkynyl and vinyl carbenoids via the rhodium(II)-catalyzed cyclization reaction of alpha-diazo ketones. J. Am. Chem. Soc., 1993, 115(7), 2637-2647. doi:10.1021/ja00060a012http://dx.doi.org/10.1021/ja00060a012
van Otterlo W. A. L.; Ngidi E. L.; de Koning C. B.; Fernandes M. A. Synthesis of dienynes from alkenes and diynes using ruthenium-mediated ring-closing metathesis. Tetrahedron Lett., 2004, 45(4), 659-662. doi:10.1016/j.tetlet.2003.11.063http://dx.doi.org/10.1016/j.tetlet.2003.11.063
Kim M.; Lee D. Metathesis and metallotropy: a versatile combination for the synthesis of oligoenynes. J. Am. Chem. Soc., 2005, 127(51), 18024-18025. doi:10.1021/ja057153chttp://dx.doi.org/10.1021/ja057153c
Kang C.; Park H.; Lee J. K.; Choi T. L. Cascade polymerization via controlled tandem olefin metathesis/metallotropic 1, 3-shift reactions for the synthesis of fully conjugated polyenynes. J. Am. Chem. Soc., 2017, 139(33), 11309-11312. doi:10.1021/jacs.7b04913http://dx.doi.org/10.1021/jacs.7b04913
Kang C.; Kwon S.; Sung J. C.; Kim J.; Baik M. H.; Choi T. L. Living metathesis and metallotropy polymerization gives conjugated polyenynes from multialkynes: how to design sequence-specific cascades for polymers. J. Am. Chem. Soc., 2018, 140(47), 16320-16329. doi:10.1021/jacs.8b10269http://dx.doi.org/10.1021/jacs.8b10269
Kang C.; Sung J. C.; Kim K.; Hong S. H.; Choi T. L. Synthesis of conjugated polyenynes with alternating six-and five-membered rings via β-selective cascade metathesis and metallotropy polymerization. ACS Macro Lett., 2020, 9(3), 339-343. doi:10.1021/acsmacrolett.9b00986http://dx.doi.org/10.1021/acsmacrolett.9b00986
Ljungdahl N.; Kann N. Transition-metal-catalyzed propargylic substitution. Angew. Chem. Int. Ed., 2009, 48(4), 642-644. doi:10.1002/anie.200804114http://dx.doi.org/10.1002/anie.200804114
Wei X. F.; Wakaki T.; Itoh T.; Li H. L.; Yoshimura T.; Miyazaki A.; Oisaki K.; Hatanaka M.; Shimizu Y.; Kanai M. Catalytic regio- and enantioselective proton migration from skipped enynes to allenes. Chem, 2019, 5(3), 585-599. doi:10.1016/j.chempr.2018.11.022http://dx.doi.org/10.1016/j.chempr.2018.11.022
Nishibayashi Y. Development of asymmetric propargylic substitution reactions using transition metal catalysts. Chem. Lett., 2021, 50(6), 1282-1288. doi:10.1246/cl.210126http://dx.doi.org/10.1246/cl.210126
Wang X.; Liu Y. J.; Fan X. Y.; Wang J.; Ngai W. S. C.; Zhang H.; Li J. F.; Zhang G.; Lin J.; Chen P. R. Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J. Am. Chem. Soc., 2019, 141(43), 17133-17141. doi:10.1021/jacs.9b05833http://dx.doi.org/10.1021/jacs.9b05833
Sakata K.; Nishibayashi Y. Mechanism and reactivity of catalytic propargylic substitution reactions via metal-allenylidene intermediates: a theoretical perspective. Catal. Sci. Technol., 2018, 8(1), 12-25. doi:10.1039/c7cy01382ehttp://dx.doi.org/10.1039/c7cy01382e
Sun H. L.; Wu B.; Liu D. Q.; Yu Z. D.; Wang J. J.; Liu Q. Y.; Liu X. C.; Niu D. W.; Dou J. H.; Zhu R. Synthesis of polydiynes via an unexpected dimerization/polymerization sequence of C3 propargylic electrophiles. J. Am. Chem. Soc., 2022, 144(19), 8807-8817. doi:10.1021/jacs.2c02816http://dx.doi.org/10.1021/jacs.2c02816
Franz M.; Januszewski J. A.; Wendinger D.; Neiss C.; Movsisyan L. D.; Hampel F.; Anderson H. L.; Görling A.; Tykwinski R. R. Cumulene rotaxanes: stabilization and study of [9]cumulenes. Angew. Chem. Int. Ed., 2015, 54(22), 6645-6649. doi:10.1002/anie.201501810http://dx.doi.org/10.1002/anie.201501810
Pollack S. K.; Fiseha A. Butatriene-based polymer chemistry. New route to substituted poly(acetylene)s through the base-catalyzed rearrangement of poly(2-butyne-1,4-diyl)s. Macromolecules, 1998, 31(6), 2002-2006. doi:10.1021/ma9709922http://dx.doi.org/10.1021/ma9709922
Wu B.; Su H. Z.; Wang Z. Y.; Yu Z. D.; Sun H. L.; Yang F.; Dou J. H.; Zhu R. Copper-catalyzed formal dehydration polymerization of propargylic alcohols via cumulene intermediates. J. Am. Chem. Soc., 2022, 144(10), 4315-4320. doi:10.1021/jacs.2c00599http://dx.doi.org/10.1021/jacs.2c00599
Su H. Z.; Wu B.; Wang J. B.; Zhu R. Copper-catalyzed C(3+1) copolymerization of propargyl carbonates and aryldiazomethanes. Giant, 2023, 13, 100139. doi:10.1016/j.giant.2023.100139http://dx.doi.org/10.1016/j.giant.2023.100139
Li M.; Duan X. L.; Jiang Y.; Sun X. H.; Xu X.; He J. N.; Zheng Y. B.; Song W. Z.; Zheng N. Three-component asymmetric polymerization toward chiral polymer. CCS Chem., 2022, 4(10), 3402-3415. doi:10.31635/ccschem.021.202101655http://dx.doi.org/10.31635/ccschem.021.202101655
Wu B.; Ding Q. J.; Wang Z. L.; Zhu R. Alkyne polymers from stable butatriene homologues: controlled radical polymerization of vinylidenecyclopropanes. J. Am. Chem. Soc., 2023, 145(4), 2045-2051. doi:10.1021/jacs.2c12220http://dx.doi.org/10.1021/jacs.2c12220
Yao Q. L.; Liu B. X.; Cao T. X.; Zhu S. F. Migratory insertion of copper-allenylidene from propargyl ester. Chem. Commun., 2022, 58(32), 4969-4972. doi:10.1039/d2cc00681bhttp://dx.doi.org/10.1039/d2cc00681b
0
浏览量
116
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构