浏览全部资源
扫码关注微信
1.太原理工大学材料科学与工程学院 太原 030024
2.山西浙大新材料与化工研究院 太原 030001
3.高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
E-mail: liufuyong@tyut.edu.cn
zhengqiang@zju.edu.cn
纸质出版日期:2023-08-20,
网络出版日期:2023-05-25,
收稿日期:2023-01-11,
录用日期:2023-03-21
扫 描 看 全 文
郭文君,刘璐,刘付永等.不同微孔结构二氧化硅粉体填充三元乙丙橡胶的力学性能及Mullins效应[J].高分子学报,2023,54(08):1241-1252.
Guo Wen-jun,Liu Lu,Liu Fu-yong,et al.Mechanical Properties and Mullins Effect of Ethylene Propylene Diene Monomer Vulcanizes Reinforced with Silica Powders with Different Micropore Structures[J].ACTA POLYMERICA SINICA,2023,54(08):1241-1252.
郭文君,刘璐,刘付永等.不同微孔结构二氧化硅粉体填充三元乙丙橡胶的力学性能及Mullins效应[J].高分子学报,2023,54(08):1241-1252. DOI: 10.11777/j.issn1000-3304.2023.23010.
Guo Wen-jun,Liu Lu,Liu Fu-yong,et al.Mechanical Properties and Mullins Effect of Ethylene Propylene Diene Monomer Vulcanizes Reinforced with Silica Powders with Different Micropore Structures[J].ACTA POLYMERICA SINICA,2023,54(08):1241-1252. DOI: 10.11777/j.issn1000-3304.2023.23010.
研究了不同微孔结构,粒径相当的二氧化硅气凝胶(AS)、气相法白炭黑(FS)和球形二氧化硅(SS)填充补强三元乙丙橡胶(EPDM)硫化胶的力学性能和Mullins效应. 研究发现,具有3倍多于FS比表面积和孔隙体积的AS补强EPDM效果更好,补强后硫化胶拉伸强度比纯EPDM提高928%,比FS/EPDM高4.3%;AS补强后硫化胶的撕裂强度比纯EPDM提高411%,比FS/EPDM提高65.5%. SS对硫化胶力学性能基本没有提高. AS和FS在补强EPDM方面表现出了类似的机理,两者在EPDM中聚集形成了分形维数相近(1.75~1.80)、具有自相似结构的团簇,通过范德华吸附作用吸附在团簇孔隙和表面的结合橡胶将团簇与EPDM分子链段连接共同构筑起三维物理交联网络,起到高效补强效果;结合胶的含量强烈依赖于填料的比表面积和孔隙体积,并决定了三维物理交联网络的强弱,因此AS在补强EPDM方面表现出了更为出色的效果.
Ethylene propylene diene monomer (EPDM) was filled with silica aerogel (AS)
spherical silica (SS) and fumed silica (FS)
which have different micropore structures and closed particle size. The mechanical properties and Mullins effect of EPDM vulcanizates before and after reinforced were analyzed. It was found that
AS with 3 times more specific surface area and pore volume than FS had a much higher reinforcement efficiency for EPDM. The tensile strength of EPDM vulcanizates reinforced with AS is 928% higher than that of pure EPDM and 4.3% higher than that of FS/EPDM. The tear strength of AS/EPDM is 411% higher than that of pure EPDM and 65.5% higher than that of FS/EPDM. SS did not improve the mechanical properties of vulcanizate. AS and FS have similar reinforcement mechanism in reinforcing EPDM. Above a critical content
Self-similar
rigid clusters formed through a diffusion-controlled cluster-cluster aggregation (CCA) with similar fractal dimension (1.75‒1.80) and EPDM chains are connected by the bound molecular segments absorbed in the pore or on the cluster surface through van der Waals force to form physical cross-linking networks. The amount of bound segments
strongly depends on the specific surface area and pore volume of filler
determines the strength of physical networks and the consequent reinforcement efficiency. Therefore
AS shows a higher efficiency in reinforcing EPDM.
二氧化硅粉体粒子微孔结构橡胶补强力学性能Mullins效应
Silica powderMicropore structureRubber reinforcementMechanical propertiesMullins effect
王梦蛟, 迈克尔·莫里斯. 粒状填料对橡胶的补强. 北京: 化学工业出版社, 2021.
宋义虎, 郑强. 橡胶纳米复合材料微观结构与补强机理. 高分子材料科学与工程, 2021, 37(1), 252-260. doi:10.16865/j.cnki.1000-7555.2021.0047http://dx.doi.org/10.16865/j.cnki.1000-7555.2021.0047
宋义虎, 杜淼, 杨红梅, 郑强. 橡胶材料的结构与黏弹性. 高分子学报, 2013, (9), 1115-1130. doi:10.3724/SP.J.1105.2013.13135http://dx.doi.org/10.3724/SP.J.1105.2013.13135
Diani J.; Fayolle B.; Gilormini P. A review on the Mullins effect. Eur. Polym. J., 2009, 45(3), 601-612. doi:10.1016/j.eurpolymj.2008.11.017http://dx.doi.org/10.1016/j.eurpolymj.2008.11.017
Xu Z. J.; Song Y. H.; Zheng Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer, 2019, 185, 121953. doi:10.1016/j.polymer.2019.121953http://dx.doi.org/10.1016/j.polymer.2019.121953
Mullins L. Effect of stretching on the properties of rubber. Rubber Chem. Technol., 1948, 21(2), 281-300. doi:10.5254/1.3546914http://dx.doi.org/10.5254/1.3546914
Bouasse H.; Carrière Z. Sur les courbes de traction du caoutchouc vulcanisé. Ann. De La Fac. Des Sci. De Toulouse Mathématiques, 1903, 5(3), 257-283. doi:10.5802/afst.205http://dx.doi.org/10.5802/afst.205
Mullins L. Softening of rubber by deformation. Rubber Chem. Technol., 1969, 42(1), 339-362. doi:10.5254/1.3539210http://dx.doi.org/10.5254/1.3539210
Mullins L.; Tobin N. R. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J. Appl. Polym. Sci., 1965, 9(9), 2993-3009. doi:10.1002/app.1965.070090906http://dx.doi.org/10.1002/app.1965.070090906
Blanchard A. F.; Parkinson D. Breakage of carbon-rubber networks by applied stress. Rubber Chem. Technol., 1952, 25(4), 808-842. doi:10.5254/1.3543444http://dx.doi.org/10.5254/1.3543444
Bueche F. Molecular basis for the mullins effect. J. Appl. Polym. Sci., 1960, 4(10), 107-114. doi:10.1002/app.1960.070041017http://dx.doi.org/10.1002/app.1960.070041017
Houwink R. Slipping of molecules during the deformation of reinforced rubber. Rubber Chem. Technol., 1956, 29(3), 888-893. doi:10.5254/1.3542602http://dx.doi.org/10.5254/1.3542602
Kraus G.; Childers C. W.; Rollmann K. W. Stress softening in carbon black-reinforced vulcanizates. Strain rate and temperature effects. J. Appl. Polym. Sci., 1966, 10(2), 229-244. doi:10.1002/app.1966.070100205http://dx.doi.org/10.1002/app.1966.070100205
Hanson D. E.; Hawley M.; Houlton R.; Chitanvis K.; Rae P.; Orler E. B.; Wrobleski D. A. Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer, 2005, 46(24), 10989-10995. doi:10.1016/j.polymer.2005.09.039http://dx.doi.org/10.1016/j.polymer.2005.09.039
Fukahori Y. New progress in the theory and model of carbon black reinforcement of elastomers. J. Appl. Polym. Sci., 2005, 95(1), 60-67. doi:10.1002/app.20802http://dx.doi.org/10.1002/app.20802
Dargazany R.; Itskov M. A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers. Int. J. Solids Struct., 2009, 46(16), 2967-2977. doi:10.1016/j.ijsolstr.2009.03.022http://dx.doi.org/10.1016/j.ijsolstr.2009.03.022
Cantournet S.; Desmorat R.; Besson J. Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int. J. Solids Struct., 2009, 46(11-12), 2255-2264. doi:10.1016/j.ijsolstr.2008.12.025http://dx.doi.org/10.1016/j.ijsolstr.2008.12.025
Plagge J.; Klüppel M. A physically based model of stress softening and hysteresis of filled rubber including rate- and temperature dependency. Int. J. Plast., 2017, 89, 173-196. doi:10.1016/j.ijplas.2016.11.010http://dx.doi.org/10.1016/j.ijplas.2016.11.010
Lorenz H.; Freund M.; Juhre D.; Ihlemann J.; Klüppel M. Constitutive generalization of a microstructure-based model for filled elastomers. Macromol. Theory Simul., 2011, 20(2), 110-123. doi:10.1002/mats.201000054http://dx.doi.org/10.1002/mats.201000054
Ogden R. W.; Roxburgh D. G. A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A, 1999, 455(1988), 2861-2877. doi:10.1098/rspa.1999.0431http://dx.doi.org/10.1098/rspa.1999.0431
Nasdala L.; Kempe A.; Rolfes R. An elastic molecular model for rubber inelasticity. Comput. Mater. Sci., 2015, 106, 83-99. doi:10.1016/j.commatsci.2015.04.036http://dx.doi.org/10.1016/j.commatsci.2015.04.036
Klüppel M. The role of disorder in filler reinforcement of elastomers on various length scales. Adv. Polym. Sci., 2003, 164(2003), 1-86.
Sodhani D.; Reese S. Finite element-based micromechanical modeling of microstructure morphology in filler-reinforced elastomer. Macromolecules, 2014, 47(9), 3161-3169. doi:10.1021/ma402404xhttp://dx.doi.org/10.1021/ma402404x
Li Z. Y.; Wen F. X.; Hussain M.; Song Y. H.; Zheng Q. Scaling laws of Mullins effect in nitrile butadiene rubber nanocomposites. Polymer, 2020, 193, 122350. doi:10.1016/j.polymer.2020.122350http://dx.doi.org/10.1016/j.polymer.2020.122350
Li Z. Y.; Xu H. L.; Xia X. X.; Song Y. H.; Zheng Q. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites. Polymer, 2019, 171, 106-114. doi:10.1016/j.polymer.2019.03.043http://dx.doi.org/10.1016/j.polymer.2019.03.043
Su B.; Shi G.; Liao Y.; Zhang Y.; Wang W.; Xi J. Research progress on functional materials preparation of silica from industrial solid wastes. Mater. Rev., 2021, 35(2A), 03026-03032.
Guzel Kaya G.; Deveci H. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: areview. J. Ind. Eng. Chem., 2020, 89, 13-27. doi:10.1016/j.jiec.2020.05.019http://dx.doi.org/10.1016/j.jiec.2020.05.019
Estaji S.; Paydayesh A.; Mousavi S. R.; Ali Khonakdar H.; Abiyati M. M. Polycarbonate/poly(methyl methacrylate)/silica aerogel blend composites for advanced transparent thermal insulations: mechanical, thermal, and optical studies. Polym. Compos., 2021, 42(10), 5323-5334. doi:10.1002/pc.26226http://dx.doi.org/10.1002/pc.26226
雷曼云, 高群, 欧阳春发, 郑康生, 施宇涛, 徐耀民. 疏水二氧化硅粉体对高温硫化硅橡胶性能的影响. 高分子材料科学与工程, 2020, 36(7), 46-53. doi:10.16865/j.cnki.1000-7555.2020.0124http://dx.doi.org/10.16865/j.cnki.1000-7555.2020.0124
王振豪, 陈勃, 高飞, 汪书苹, 李向梅, 刘晶冰. 二氧化硅气凝胶/三元乙丙橡胶复合隔热材料的制备与性能研究. 复合材料科学与工程, 2022(1), 86-90.
Shojaei Dindarloo A.; Karrabi M.; Hamid M.; Ghoreishy R. Various nano-particles influences on structure, viscoelastic, Vulcanization and mechanical behaviour of EPDM nano-composite rubber foam. Plast. Rubber Compos., 2019, 48(5), 218-225. doi:10.1080/14658011.2019.1596394http://dx.doi.org/10.1080/14658011.2019.1596394
Bailly M.; Kontopoulou M.; El Mabrouk K. Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer, 2010, 51(23), 5506-5515. doi:10.1016/j.polymer.2010.09.051http://dx.doi.org/10.1016/j.polymer.2010.09.051
Dorfmann A.; Ogden R. W. A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct., 2004, 41(7), 1855-1878. doi:10.1016/j.ijsolstr.2003.11.014http://dx.doi.org/10.1016/j.ijsolstr.2003.11.014
Rickaby S. R.; Scott N. H. A cyclic stress softening model for the Mullins effect. Int. J. Solids Struct., 2013, 50(1), 111-120. doi:10.1016/j.ijsolstr.2012.09.006http://dx.doi.org/10.1016/j.ijsolstr.2012.09.006
Mai T. T.; Morishita Y.; Urayama K. Induced anisotropy by Mullins effect in filled elastomers subjected to stretching with various geometries. Polymer, 2017, 126, 29-39. doi:10.1016/j.polymer.2017.08.012http://dx.doi.org/10.1016/j.polymer.2017.08.012
Xu H. L.; Song Y. H.; Zhang Q. X.; Zheng Q. Contributions of silica network and interfacial fraction in reinforcement and Payne effect of polypropylene glycol nanocomposites. Polymer, 2018, 138, 139-145. doi:10.1016/j.polymer.2018.01.056http://dx.doi.org/10.1016/j.polymer.2018.01.056
Song Y. H.; Zheng Q. A guide for hydrodynamic reinforcement effect in nanoparticle-filled polymers. Crit. Rev. Solid State Mater. Sci., 2016, 41(4), 318-346. doi:10.1080/10408436.2015.1135415http://dx.doi.org/10.1080/10408436.2015.1135415
Dupres S.; Long D. R.; Albouy P. A.; Sotta P. Local deformation in carbon black-filled polyisoprene rubbers studied by NMR and X-ray diffraction. Macromolecules, 2009, 42(7), 2634-2644. doi:10.1021/ma900006yhttp://dx.doi.org/10.1021/ma900006y
Trabelsi S.; Albouy P. A.; Rault J. Effective local deformation in stretched filled rubber. Macromolecules, 2003, 36(24), 9093-9099. doi:10.1021/ma0303566http://dx.doi.org/10.1021/ma0303566
Gavrilov A. A.; Chertovich A. V.; Khalatur P. G.; Khokhlov A. R. Study of the mechanisms of filler reinforcement in elastomer nanocomposites. Macromolecules, 2014, 47(15), 5400-5408. doi:10.1021/ma500947ghttp://dx.doi.org/10.1021/ma500947g
Qin K. D.; Zaman A. A. Viscosity of concentrated colloidal suspensions: comparison of bidisperse models. J. Colloid Interface Sci., 2003, 266(2), 461-467. doi:10.1016/s0021-9797(03)00615-5http://dx.doi.org/10.1016/s0021-9797(03)00615-5
Gan S. C.; Wu Z. L., Xu H. L.; Song Y. H.; Zheng Q. Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the payne effect. Macromolecules, 2016, 49(4), 1454-1463. doi:10.1021/acs.macromol.5b02701http://dx.doi.org/10.1021/acs.macromol.5b02701
Heinrich G.; Klüppel M.; Vilgis T. A. Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci., 2002, 6(3), 195-203. doi:10.1016/s1359-0286(02)00030-xhttp://dx.doi.org/10.1016/s1359-0286(02)00030-x
Westermann S.; Kreitschmann M.; Pyckhout-Hintzen W.; Richter D.; Straube E. Strain amplification effects in polymer networks. Phys. B Condens. Matter, 1997, 234-236, 306-307.
Huber G.; Vilgis T. Universal properties of filled rubbers: mechanisms for reinforcement on different length scales. Kautschuk Gummi Kunststoffe, 1999, 52, 102-107.
Heinrich G.; Klüppel, M. Recent advances in the theory of filler networking in elastomers. In: Filled Elastomers Drug Delivery Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. 1-44.
Piau J. M.; Dorget M.; Palierne J. F.; Pouchelon A. Shear elasticity and yield stress of silica-silicone physical gels: fractal approach. J. Rheol., 1999, 43(2), 305-314. doi:10.1122/1.550989http://dx.doi.org/10.1122/1.550989
0
浏览量
80
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构