浏览全部资源
扫码关注微信
1.南昌大学化学化工学院/高分子及能源化学研究院 南昌 330031
2.江西师范大学化学化工学院 氟硅能源材料与化学教育部重点实验室 南昌 330022
3.中国科学院化学研究所 北京 100190
[ "胡笑添,男,1990年生,2013年本科毕业于南昌大学,2016年硕士毕业于南昌大学,师从陈义旺教授. 同年,进入中国科学院化学研究所攻读博士学位,师从宋延林研究员. 2019年加入南昌大学工作至今,现担任教授、博士生导师,2022年获国家自然科学基金优秀青年基金资助. 主持包括国家自然科学基金面上项目/青年基金、中央军委装发部预研项目等项目13项. 目前已发表SCI学术论文90余篇,其中以第一/通讯作者在Nat. Commun.,Joule,Adv. Mater.,Angew. Chem. Int. Ed.,Energ. Environ. Sci.,Adv. Funct. Mater.等国际学术期刊发表论文37篇,H因子36,引用4800余次,授权发明专利5项. 主要从事柔性可穿戴光伏器件研究,目前主要围绕系统性解决柔性器件设计、界面调控以及大面积印刷器件等问题开展研究. E-mail: happyhu@ncu.edu.cn" ]
纸质出版日期:2023-06-20,
网络出版日期:2023-04-19,
收稿日期:2023-01-19,
录用日期:2023-03-03
扫 描 看 全 文
胡笑添,刘思奇,宋延林等.新型薄膜太阳电池器件:柔性设计与印刷制造[J].高分子学报,2023,54(06):910-926.
Hu Xiao-tian,Liu Si-qi,Song Yan-lin,et al.New Thin-film Solar Cells: Flexible Design and Printing Manufacturing[J].ACTA POLYMERICA SINICA,2023,54(06):910-926.
胡笑添,刘思奇,宋延林等.新型薄膜太阳电池器件:柔性设计与印刷制造[J].高分子学报,2023,54(06):910-926. DOI: 10.11777/j.issn1000-3304.2023.23019.
Hu Xiao-tian,Liu Si-qi,Song Yan-lin,et al.New Thin-film Solar Cells: Flexible Design and Printing Manufacturing[J].ACTA POLYMERICA SINICA,2023,54(06):910-926. DOI: 10.11777/j.issn1000-3304.2023.23019.
作为新型薄膜太阳电池的代表,有机/钙钛矿太阳电池的光电转换效率在最近十几年内实现了巨大突破. 同时,由于其质轻、柔韧性好及可溶液法低成本印刷制备等特点,新型薄膜太阳电池还展现出了应用于柔性器件的潜质,结合与其他功能性柔性电子设备的集成设计,可以满足人们对便携式移动电源和可穿戴设备日益增长的物质需求. 作者研究团队近年来围绕柔性薄膜太阳电池集成设计与印刷的关键科学和技术问题,主要针对器件的易脆性和柔性印刷形貌重现性差的问题,开展了系统研究并取得系列创新成果. 本专论中重点介绍了在柔性透明电极的设计、柔性界面工程调控、光电转换活性层柔性增韧设计和大面积柔性印刷策略的研究进展,并对柔性薄膜太阳电池组件的发展进行了展望.
As the representative of new thin-film solar cells
the photoelectric conversion efficiency of organic/perovskite solar cells has achieved a great breakthrough in the last decade. At the same time
due to its light-weight
flexibility and low-cost printable preparation by solution process
the new thin-film solar cells also show potential for flexible devices. Combined with other functional flexible electronic devices
the integrated design can meet people's growing living needs for portable mobile power and wearable devices. In recent years
the author's research team focused on the key scientific and technical issues of integrated design and printing of flexible thin-film solar cells
mainly aiming at the problems of the fragility of devices and the poor reproducibility of flexible printing morphology
carried out systematic research and obtained a series of innovative achievements. In this feature article
the design of flexible transparent electrode
the engineering control of flexible interface
the design of flexible toughening of active layer for photoelectric conversion and the strategy of large-area flexible printing are discussed
and the development of flexible thin-film solar cell modules is prospected.
有机太阳电池钙钛矿光伏柔性电子剪切印刷仿生设计
Organic solar cellsPerovskite photovoltaicsFlexible electronicsShear printingBionic design
Zhao Y.; Ma F.; Qu Z. H.; Yu S. Q.; Shen T.; Deng H. X.; Chu X. B.; Peng X. X.; Yuan Y. B.; Zhang X. W.; You J. B. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605), 531-534. doi:10.1126/science.abp8873http://dx.doi.org/10.1126/science.abp8873
Min H.; Lee D. Y.; Kim J.; Kim G.; Lee K. S.; Kim J.; Paik M. J.; Kim Y. K.; Kim K. S.; Kim M. G.; Shin T. J.; Seok S. I. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598(7881), 444-450. doi:10.1038/s41586-021-03964-8http://dx.doi.org/10.1038/s41586-021-03964-8
Zhu L.; Zhang M.; Xu J. Q.; Li C.; Yan J.; Zhou G. Q.; Zhong W. K.; Hao T. Y.; Song J. L.; Xue X. N.; Zhou Z. C.; Zeng R.; Zhu H. M.; Chen C. C.; MacKenzie R. C. I.; Zou Y. C.; Nelson J.; Zhang Y. M.; Sun Y. M.; Liu F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater., 2022, 21(6), 656-663. doi:10.1038/s41563-022-01244-yhttp://dx.doi.org/10.1038/s41563-022-01244-y
Jiang Y. Y.; Dong X. Y.; Sun L. L.; Liu T. F.; Qin F.; Xie C.; Jiang P.; Hu L.; Lu X.; Zhou X. M.; Meng W.; Li N.; Brabec C. J.; Zhou Y. H. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy, 2022, 7(4), 352-359. doi:10.1038/s41560-022-00997-9http://dx.doi.org/10.1038/s41560-022-00997-9
Li H. Y.; Zuo C. T.; Angmo D. C.; Weerasinghe H.; Gao M.; Yang J. L. Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2: CsI layer. Nanomicro Lett., 2022, 14(1), 79. doi:10.1007/s40820-022-00815-7http://dx.doi.org/10.1007/s40820-022-00815-7
Yang L.; Feng J. S.; Liu Z. K.; Duan Y. W.; Zhan S.; Yang S. M.; He K.; Li Y.; Zhou Y. W.; Yuan N. Y.; Ding J. N.; Liu S. F. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater., 2022, 34(24), e2201681. doi:10.1002/adma.202201681http://dx.doi.org/10.1002/adma.202201681
Wan J.; Wu Y.; Sun R.; Qiao J. W.; Hao X. T.; Min J. An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency. Energy Environ. Sci., 2022, 15(12), 5192-5201. doi:10.1039/d2ee03134ehttp://dx.doi.org/10.1039/d2ee03134e
Li M. H.; Zhou J. J.; Tan L. G.; Li H.; Liu Y.; Jiang C. F.; Ye Y. R.; Ding L. M.; Tress W.; Yi C. Y. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. The Innovation, 2022, 3(6), 100310. doi:10.1016/j.xinn.2022.100310http://dx.doi.org/10.1016/j.xinn.2022.100310
Zheng Z. H.; Li F. M.; Gong J.; Ma Y. Y.; Gu J. W.; Liu X. C.; Chen S. H.; Liu M. Z. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater., 2022, 34(21), 2109879. doi:10.1002/adma.202109879http://dx.doi.org/10.1002/adma.202109879
Wang Y. L.; Wang X. H.; Lin B. J.; Bi Z. Z.; Zhou X. B.; Naveed H. B.; Zhou K.; Yan H. P.; Tang Z.; Ma W. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells. Adv. Energy Mater., 2020, 10(28), 2000826. doi:10.1002/aenm.202000826http://dx.doi.org/10.1002/aenm.202000826
Zeng G.; Chen W. J.; Chen X. B.; Hu Y.; Chen Y.; Zhang B.; Chen H. Y.; Sun W. W.; Shen Y. X.; Li Y. W.; Yan F.; Li Y. F. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19), 8658-8668. doi:10.1021/jacs.2c01503http://dx.doi.org/10.1021/jacs.2c01503
Kim Y. Y.; Yang T. Y.; Suhonen R.; Kemppainen A.; Hwang K.; Jeon N. J.; Seo J. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat. Commun., 2020, 11(1), 5146. doi:10.1038/s41467-020-18940-5http://dx.doi.org/10.1038/s41467-020-18940-5
Lan Y. J.; Wang Y.; Lai Y.; Cai Z. R.; Tao M. Q.; Wang Y. D.; Li M. Z.; Dong X.; Song Y. L. Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy, 2022, 100, 107523. doi:10.1016/j.nanoen.2022.107523http://dx.doi.org/10.1016/j.nanoen.2022.107523
Di Giacomo F.; Fakharuddin A.; Jose R.; Brown T. M. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci., 2016, 9(10), 3007-3035. doi:10.1039/c6ee01137chttp://dx.doi.org/10.1039/c6ee01137c
Zheng X. J.; Zuo L. J.; Zhao F.; Li Y. K.; Chen T. Y.; Shan S. Q.; Yan K. R.; Pan Y. W.; Xu B. W.; Li C. Z.; Shi M. M.; Hou J. H.; Chen H. Z. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater., 2022, 34(17), e2200044. doi:10.1002/adma.202200044http://dx.doi.org/10.1002/adma.202200044
Wang Z.; Lu Y. L.; Xu Z. H.; Hu J. L.; Chen Y. J.; Zhang C. L.; Wang Y. S.; Guo F.; Mai Y. H. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20. Adv. Sci. (Weinh), 2021, 8(22), e2101856. doi:10.1002/advs.202101856http://dx.doi.org/10.1002/advs.202101856
Bu T. L.; Li J.; Li H. Y.; Tian C. C.; Su J.; Tong G. Q.; Ono L. K.; Wang C.; Lin Z. P.; Chai N. Y.; Zhang X. L.; Chang J. J.; Lu J. F.; Zhong J.; Huang W. C.; Qi Y. B.; Cheng Y. B.; Huang F. Z. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548), 1327-1332. doi:10.1126/science.abh1035http://dx.doi.org/10.1126/science.abh1035
Bu T. L.; Ono L. K.; Li J.; Su J.; Tong G. Q.; Zhang W.; Liu Y. Q.; Zhang J. H.; Chang J. J.; Kazaoui S.; Huang F. Z.; Cheng Y. B.; Qi Y. B. Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy, 2022, 7(6), 528-536. doi:10.1038/s41560-022-01039-0http://dx.doi.org/10.1038/s41560-022-01039-0
Chen C. S.; Chen J. X.; Han H. C.; Chao L. F.; Hu J. F.; Niu T. T.; Dong H.; Yang S. W.; Xia Y. D.; Chen Y. H.; Huang W. Perovskite solar cells based on screen-printed thin films. Nature, 2022, 612(7939), 266-271. doi:10.1038/s41586-022-05346-0http://dx.doi.org/10.1038/s41586-022-05346-0
Wang Z. G.; Han Y. F.; Yan L. P.; Gong C.; Kang J. C.; Zhang H.; Sun X.; Zhang L. P.; Lin J.; Luo Q.; Ma C. Q. High power conversion efficiency of 13.61for% 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes. Adv. Funct. Mater., 2021, 31(4), 2007276. doi:10.1002/adfm.202007276http://dx.doi.org/10.1002/adfm.202007276
Hu X. T.; Chen L.; Zhang Y.; Hu Q.; Yang J. L.; Chen Y. W. Large-scale flexible and highly conductive carbon transparent electrodes via roll-to-roll process and its high performance lab-scale indium tin oxide-free polymer solar cells. Chem. Mater., 2014, 26(21), 6293-6302. doi:10.1021/cm5033942http://dx.doi.org/10.1021/cm5033942
Hu X. T.; Chen L.; Ji T.; Zhang Y.; Hu A. F.; Wu F. Y.; Li G.; Chen Y. W. Roll-to-roll production of graphene hybrid electrodes for high-efficiency, flexible organic photoelectronics. Adv. Mater. Interfaces, 2015, 2(17), 1500445. doi:10.1002/admi.201500445http://dx.doi.org/10.1002/admi.201500445
Hu X. T.; Chen L.; Tan L. C.; Ji T.; Zhang Y.; Zhang L.; Zhang D.; Chen Y. W. In situ polymerization of ethylenedioxythiophene from sulfonated carbon nanotube templates: toward high efficiency ITO-free solar cells. J. Mater. Chem. A, 2016, 4(17), 6645-6652. doi:10.1039/c6ta00287khttp://dx.doi.org/10.1039/c6ta00287k
Hu A. F.; Tan L. C.; Hu X. T.; Hu L.; Ai Q. Y.; Meng X. C.; Chen L.; Chen Y. W. Crystallization and conformation engineering of solution-processed polymer transparent electrodes with high conductivity. J. Mater. Chem. C, 2017, 5(2), 382-389. doi:10.1039/c6tc04446hhttp://dx.doi.org/10.1039/c6tc04446h
Hu X. T.; Meng X. C.; Zhang L.; Zhang Y. Y.; Cai Z. R.; Huang Z. Q.; Su M.; Wang Y.; Li M. Z.; Li F. Y.; Yao X.; Wang F. Y.; Ma W.; Chen Y. W.; Song Y. L. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule, 2019, 3(9), 2205-2218. doi:10.1016/j.joule.2019.06.011http://dx.doi.org/10.1016/j.joule.2019.06.011
龚陈祥, 程书平, 孟祥川, 胡笑添, 陈义旺. PEDOT导电高分子在柔性能量转化与存储器件的研究进展. 化学学报, 2021, 79(7): 853-868. doi:10.6023/A21030106http://dx.doi.org/10.6023/A21030106
Yang X.; Hu X. T.; Wang Q. X.; Xiong J.; Yang H. J.; Meng X. C.; Tan L. C.; Chen L.; Chen Y. W. Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template. ACS Appl. Mater. Interfaces, 2017, 9(31), 26468-26475. doi:10.1021/acsami.7b08606http://dx.doi.org/10.1021/acsami.7b08606
Wang Q. X.; Hu X. T.; Yang X.; Liu G. L.; Meng X. C.; Xie Y. P.; Xiao Y. B.; Liu J. L.; Tan L. C.; Chen Y. W. Large-scale ultra-adhesive and mechanically flexible silver grids transparent electrodes by solution process. Org. Electron., 2018, 61, 296-303. doi:10.1016/j.orgel.2018.06.007http://dx.doi.org/10.1016/j.orgel.2018.06.007
Hu X. T.; Chen L.; Tan L. C.; Zhang Y.; Hu L.; Xie B.; Chen Y. W. Versatile MoS2 nanosheets in ITO-free and semi-transparent polymer power-generating glass. Sci. Rep., 2015, 5, 12161. doi:10.1038/srep12161http://dx.doi.org/10.1038/srep12161
Chen W. P.; Zhang R. J.; Yang X.; Wang H. Y.; Yang H. J.; Hu X. T.; Zhang S. H. A 1D: 2D structured AgNW: MXene composite transparent electrode with high mechanical robustness for flexible photovoltaics. J. Mater. Chem. C, 2022, 10(22), 8625-8633. doi:10.1039/d2tc01178fhttp://dx.doi.org/10.1039/d2tc01178f
Hu X. T.; Meng X. C.; Xiong J.; Huang Z. Q.; Yang X.; Tan L. C.; Chen Y. W. Roll-to-roll fabrication of flexible orientated graphene transparent electrodes by shear force and one-step reducing post-treatment. Adv. Mater. Technol., 2017, 2(12), 1700138. doi:10.1002/admt.201700138http://dx.doi.org/10.1002/admt.201700138
Meng X. C.; Hu X. T.; Yang X.; Yin J. P.; Wang Q. X.; Huang L. Q.; Yu Z.; Hu T.; Tan L. C.; Zhou W. H.; Chen Y. W. Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics. ACS Appl. Mater. Interfaces, 2018, 10(10), 8917-8925. doi:10.1021/acsami.8b00093http://dx.doi.org/10.1021/acsami.8b00093
Gong C. X.; Zhang L.; Meng X. C.; Xing Z.; Rao L.; Wang H. Y.; Huang Z. Q.; Tan L. C.; Hu T.; Hu X. T.; Chen Y. W. A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Sci. China Chem., 2021, 64(5), 834-843. doi:10.1007/s11426-020-9951-1http://dx.doi.org/10.1007/s11426-020-9951-1
Hu X. T.; Chen L.; Chen Y. W. Universal and versatile MoO3-based hole transport layers for efficient and stable polymer solar cells. J. Phys. Chem. C, 2014, 118(19), 9930-9938. doi:10.1021/jp501995thttp://dx.doi.org/10.1021/jp501995t
Zhang S. H.; Wang H. Y.; Duan X.; Rao L.; Gong C. X.; Fan B. J.; Xing Z.; Meng X. C.; Xie B.; Hu X. T. Printable and homogeneous NiOx hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells. Adv. Funct. Mater., 2021, 31(47), 2106495. doi:10.1002/adfm.202106495http://dx.doi.org/10.1002/adfm.202106495
Wang H. Y.; Huang Z. Q.; Xiao S. Q.; Meng X. C.; Xing Z.; Rao L.; Gong C. X.; Wu R. S.; Hu T.; Tan L. C.; Hu X. T.; Zhang S. H.; Chen Y. W. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J. Mater. Chem. A, 2021, 9(9), 5759-5768. doi:10.1039/d0ta12067ghttp://dx.doi.org/10.1039/d0ta12067g
Xie B.; Zhang Y. L.; Li Y.; Chen W. L.; Hu X. T.; Zhang S. H. Solution preparation of molybdenum oxide on graphene: a hole transport layer for efficient perovskite solar cells with a 1.12 V high open-circuit voltage. J. Mater. Sci. Mater. Electron., 2020, 31(8), 6248-6254. doi:10.1007/s10854-020-03179-zhttp://dx.doi.org/10.1007/s10854-020-03179-z
Yang X.; Yang H. J.; Hu X. T.; Li W. T.; Fang Z. M.; Zhang K. F.; Huang R.; Li J. M.; Yang Z.; Song Y. L. Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%. J. Mater. Chem. A, 2020, 8(10), 5308-5314. doi:10.1039/c9ta13922bhttp://dx.doi.org/10.1039/c9ta13922b
Wu X. T.; Liu S. Q.; Li H. J.; Meng X. C.; Hu X. T.; Guo R.; Chen Y. W. High light-utilization-efficiency organic photovoltaic windows with over 40% transmittance enabled by a printable bionic photonic reflector. Adv. Opt. Mater., 2022, 10(23), 2201803. doi:10.1002/adom.202201803http://dx.doi.org/10.1002/adom.202201803
Liu C.; Tu J.; Hu X. T.; Huang Z. Q.; Meng X. C.; Yang J.; Duan X. P.; Tan L. C.; Li Z.; Chen Y. W. Hole transportation: enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability. Adv. Funct. Mater., 2019, 29(18), 1970117. doi:10.1002/adfm.201970117http://dx.doi.org/10.1002/adfm.201970117
Zhang R. J.; Huang Z. Q.; Chen W. P.; Lyu B. Z.; Zhang H.; He X. J.; Hu X. T.; Song Y. L.; Choy W. C. H. A self-assembled vertical-gradient and well-dispersed MXene structure for flexible large-area perovskite modules. Adv. Funct. Mater., 2023, 33(5), 2210063. doi:10.1002/adfm.202210063http://dx.doi.org/10.1002/adfm.202210063
Hu X. T.; Huang Z. Q.; Zhou X.; Li P. W.; Wang Y.; Huang Z. D.; Su M.; Ren W. J.; Li F. Y.; Li M. Z.; Chen Y. W.; Song Y. L. Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater., 2017, 29(42), 1703236. doi:10.1002/adma.201703236http://dx.doi.org/10.1002/adma.201703236
Meng X. C.; Cai Z. R.; Zhang Y. Y.; Hu X. T.; Xing Z.; Huang Z. Q.; Huang Z. D.; Cui Y. J.; Hu T.; Su M.; Liao X. F.; Zhang L.; Wang F. Y.; Song Y. L.; Chen Y. W. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun., 2020, 11(1), 3016. doi:10.1038/s41467-020-16831-3http://dx.doi.org/10.1038/s41467-020-16831-3
Xu G. D.; Hu X. T.; Liao X. F.; Chen Y. W. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics. Chinese J. Polym. Sci., 2021, 39(11), 1441-1447. doi:10.1007/s10118-021-2586-zhttp://dx.doi.org/10.1007/s10118-021-2586-z
Huang Z. Q.; Hu X. T.; Liu C.; Meng X. C.; Huang Z. D.; Yang J.; Duan X. P.; Long J.; Zhao Z. P.; Tan L. C.; Song Y. L.; Chen Y. W. Water-resistant and flexible perovskite solar cells via a glued interfacial layer. Adv. Funct. Mater., 2019, 29(37), 1902629. doi:10.1002/adfm.201902629http://dx.doi.org/10.1002/adfm.201902629
Meng X. C.; Hu X. T.; Zhang Y. Y.; Huang Z. Q.; Xing Z.; Gong C. X.; Rao L.; Wang H. Y.; Wang F. Y.; Hu T.; Tan L. C.; Song Y. L.; Chen Y. W. A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater., 2021, 31(52), 2106460. doi:10.1002/adfm.202106460http://dx.doi.org/10.1002/adfm.202106460
Xue T. Y.; Chen G. S.; Hu X. T.; Su M.; Huang Z. Q.; Meng X. C.; Jin Z.; Ma J. L.; Zhang Y. Q.; Song Y. L. Mechanically robust and flexible perovskite solar cells via a printable and gelatinous interface. ACS Appl. Mater. Interfaces, 2021, 13(17), 19959-19969. doi:10.1021/acsami.1c00813http://dx.doi.org/10.1021/acsami.1c00813
Fan B. J.; Xiong J.; Zhang Y. Y.; Gong C. X.; Li F.; Meng X. C.; Hu X. T.; Yuan Z. Y.; Wang F. Y.; Chen Y. W. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater., 2022, 34(29), e2201840. doi:10.1002/adma.202201840http://dx.doi.org/10.1002/adma.202201840
Huang Z. Q.; Hu X. T.; Liu C.; Tan L. C.; Chen Y. W. Solar cells: nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance. Adv. Funct. Mater., 2017, 27(41), 1703061. doi:10.1002/adfm.201703061http://dx.doi.org/10.1002/adfm.201703061
Hu X. T.; Huang Z. Q.; Li F. Y.; Su M.; Huang Z. D.; Zhao Z. P.; Cai Z. R.; Yang X.; Meng X. C.; Li P. W.; Wang Y.; Li M. Z.; Chen Y. W.; Song Y. L. Nacre-inspired crystallization and elastic "brick-and-mortar" structure for a wearable perovskite solar module. Energy Environ. Sci., 2019, 12(3), 979-987. doi:10.1039/c8ee01799ahttp://dx.doi.org/10.1039/c8ee01799a
Meng X. C.; Xing Z.; Hu X. T.; Huang Z. Q.; Hu T.; Tan L. C.; Li F. Y.; Chen Y. W. Stretchable perovskite solar cells with recoverable performance. Angew. Chem. Int. Ed., 2020, 59(38), 16602-16608. doi:10.1002/anie.202003813http://dx.doi.org/10.1002/anie.202003813
Xue T. Y.; Huang Z. Q.; Zhang P.; Su M.; Hu X. T.; Wu T. Q.; Fan B. J.; Chen G. S.; Yu G. H.; Liu W. T.; Liu X. Y.; Zhang Y. Q.; Song Y. L. A shape memory scaffold for body temperature self-repairing wearable perovskite solar cells with efficiency exceeding 21%. InfoMat, 2022, 4(12), e12358. doi:10.1002/inf2.12358http://dx.doi.org/10.1002/inf2.12358
Li F.; Gong C. X.; Fan B. J.; Xing Z.; Meng X. C.; Zhang S. H.; Hu X. T.; Chen Y. W. 3D network-assisted crystallization for fully printed perovskite solar cells with superior irradiation stability. Adv. Funct. Mater., 2022, 32(39), 2206412. doi:10.1002/adfm.202206412http://dx.doi.org/10.1002/adfm.202206412
Xue T. Y.; Chen D.; Su M.; Hu X. T.; Huang Z. Q.; Wu T. Q.; Yu G. H.; Jiang K. J.; Zhang Y. Q.; Song Y. L. Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. J. Mater. Chem. A, 2022, 10(36), 18762-18772. doi:10.1039/d2ta04502hhttp://dx.doi.org/10.1039/d2ta04502h
Hu X. T.; Meng X. C.; Yang X.; Huang Z. Q.; Xing Z.; Li P. W.; Tan L. C.; Su M.; Li F. Y.; Chen Y. W.; Song Y. L. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci. Bull., 2021, 66(6), 527-535. doi:10.1016/j.scib.2020.10.023http://dx.doi.org/10.1016/j.scib.2020.10.023
Rao L.; Meng X. C.; Xiao S. Q.; Xing Z.; Fu Q. X.; Wang H. Y.; Gong C. X.; Hu T.; Hu X. T.; Guo R.; Chen Y. W. Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew. Chem. Int. Ed., 2021, 60(26), 14693-14700. doi:10.1002/anie.202104201http://dx.doi.org/10.1002/anie.202104201
Guo R.; Rao L.; Liu Q. J.; Wang H. Y.; Gong C. X.; Fan B. J.; Xing Z.; Meng X. C.; Hu X. T. Atmospheric stable and flexible Sn-based perovskite solar cells via a bio-inspired antioxidative crystal template. J. Energy Chem., 2022, 66, 612-618. doi:10.1016/j.jechem.2021.09.013http://dx.doi.org/10.1016/j.jechem.2021.09.013
Huang Z. Q.; Hu X. T.; Zhao Z. P.; Meng X. C.; Su M.; Xue T. Y.; Chi J. M.; Xie H. F.; Cai Z. R.; Chen Y. W.; Li L.; Song Y. L. Releasing nanocapsules for high-throughput printing of stable perovskite solar cells. Adv. Energy Mater., 2021, 11(34), 2170132. doi:10.1002/aenm.202170132http://dx.doi.org/10.1002/aenm.202170132
Yang X.; Yang H. J.; Su M.; Zhao J. M.; Meng X. C.; Hu X. T.; Xue T. Y.; Huang Z. Q.; Lu Y.; Li Y. Z.; Yang Z. Scalable flexible perovskite solar cells based on a crystalline and printable template with intelligent temperature sensitivity. Sol. RRL, 2022, 6(4), 2100991. doi:10.1002/solr.202100991http://dx.doi.org/10.1002/solr.202100991
Meng X. C.; Zhang L.; Xie Y. P.; Hu X. T.; Xing Z.; Huang Z. Q.; Liu C.; Tan L. C.; Zhou W. H.; Sun Y. M.; Ma W.; Chen Y. W. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater., 2019, 31(41), e1903649. doi:10.1002/adma.201970294http://dx.doi.org/10.1002/adma.201970294
Liu S. Q.; Chen D.; Hu X. T.; Xing Z.; Wan J.; Zhang L.; Tan L. C.; Zhou W. H.; Chen Y. W. Printable and large-area organic solar cells enabled by a ternary pseudo-planar heterojunction strategy. Adv. Funct. Mater., 2020, 30(36), 2003223. doi:10.1002/adfm.202003223http://dx.doi.org/10.1002/adfm.202003223
Li H. J.; Liu S. Q.; Wu X. T.; Qi Q. C.; Zhang H. Y.; Meng X. C.; Hu X. T.; Ye L.; Chen Y. W. A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy Environ. Sci., 2022, 15(5), 2130-2138. doi:10.1039/d2ee00639ahttp://dx.doi.org/10.1039/d2ee00639a
Liu S. Q.; Li H. J.; Wu X. T.; Chen D.; Zhang L.; Meng X. C.; Tan L. C.; Hu X. T.; Chen Y. W. Pseudo-planar heterojunction organic photovoltaics with optimized light utilization for printable solar windows. Adv. Mater., 2022, 34(23), e2201604. doi:10.1002/adma.202201604http://dx.doi.org/10.1002/adma.202201604
Chen D.; Liu S. Q.; Hu X. T.; Wu F. Y.; Liu J. B.; Zhou K. K.; Ye L.; Chen L.; Chen Y. W. Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. Sci. China Chem., 2022, 65(1), 182-189. doi:10.1007/s11426-021-1094-yhttp://dx.doi.org/10.1007/s11426-021-1094-y
Zhang L.; Zhao H.; Yuan J.; Lin B. J.; Xing Z.; Meng X. C.; Ke L. L.; Hu X. T.; Ma W.; Yuan Y. B. Blade-coated efficient and stable large-area organic solar cells with optimized additive. Org. Electron., 2020, 83, 105771. doi:10.1016/j.orgel.2020.105771http://dx.doi.org/10.1016/j.orgel.2020.105771
Zhang L.; Yang S. Z.; Ning B. C.; Yang F.; Deng W.; Xing Z.; Bi Z. Z.; Zhou K.; Zhang Y.; Hu X. T.; Yang B.; Yang J. L.; Zou Y. P.; Ma W.; Yuan Y. B. Modulation of vertical component distribution for large-area thick-film organic solar cells. Sol. RRL, 2022, 6(1), 2100838. doi:10.1002/solr.202100838http://dx.doi.org/10.1002/solr.202100838
Meng X. C.; Xing Z.; Hu X. T.; Chen Y. W. Large-area flexible organic solar cells: printing technologies and modular design. Chinese J. Polym. Sci., 2022, 40(12), 1522-1566. doi:10.1007/s10118-022-2803-4http://dx.doi.org/10.1007/s10118-022-2803-4
Li H. J.; Liu S. Q.; Wu X. T.; Yao S. Y.; Hu X. T.; Chen Y. W. Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy Environ. Sci., 2023, 16(1), 76-88. doi:10.1039/d2ee03246ehttp://dx.doi.org/10.1039/d2ee03246e
Huang Z. Q.; Hu X. T.; Xing Z.; Meng X. C.; Duan X. P.; Long J.; Hu T.; Tan L. C.; Chen Y. W. Stabilized and operational PbI2 precursor ink for large-scale perovskite solar cells via two-step blade-coating. J. Phys. Chem. C, 2020, 124(15), 8129-8139. doi:10.1021/acs.jpcc.0c00908http://dx.doi.org/10.1021/acs.jpcc.0c00908
Xing Z.; Lin S. Y.; Meng X. C.; Hu T.; Li D. X.; Fan B. J.; Cui Y. J.; Li F. Y.; Hu X. T.; Chen Y. W. A highly tolerant printing for scalable and flexible perovskite solar cells. Adv. Funct. Mater., 2021, 31(50), 2107726. doi:10.1002/adfm.202107726http://dx.doi.org/10.1002/adfm.202107726
Gong C. X.; Fan B. J.; Li F.; Xing Z.; Meng X. C.; Hu T.; Hu X. T.; Chen Y. W. An enhanced couette flow printing strategy to recover efficiency losses by area and substrate differences in perovskite solar cells. Energy Environ. Sci., 2022, 15(10), 4313-4322. doi:10.1039/d2ee00966hhttp://dx.doi.org/10.1039/d2ee00966h
Guo S. S.; Liu K. K.; Rao L.; Hu X. T.; Chen Y. W. Preparation of perovskite solar cells in the air: degradation mechanism and prospects on large-area fabrication. Chinese J. Chem., 2023, 41(5), 599-617. doi:10.1002/cjoc.202200442http://dx.doi.org/10.1002/cjoc.202200442
0
浏览量
69
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构