浏览全部资源
扫码关注微信
1.北京服装学院材料设计与工程学院 北京市服装材料研究开发与评价重点实验室 北京 100029
2.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
[ "张文娟,女,1977年生. 2003年硕士毕业于山东大学,2006年博士毕业于中国科学院化学研究所. 2006~2008年,日本奈良先端科技大学院大学(JSPS博士后);2008~2015年,中国科学院化学研究所,副研究员;2013~2014,德国耶拿大学有机大分子研究所(访问学者);2015年至今,北京服装学院,教授. 获得2009年北京市科技进步一等奖、2011年中国石油和化学工业联合会科技进步奖一等奖. 主要研究方向为金属有机化合物的设计合成及催化烯烃聚合、环酯开环聚合等." ]
[ "孙文华,男,1963年生. 中国科学院化学研究所研究员、中国科学院大学岗位教授、中国科学院工程塑料重点实验室学术委员会副主任;欧洲科学院院士、英国皇家化学会会士. 1986年毕业于兰州大学,在中国科学院兰州化学物理研究所获得硕士和博士学位,1993年,中国科学院兰州化物所副研究员. 1995~1999年日本北海道大学催化中心工作,分别为JSPS和JST研究员和COE访问教授;1999年10月至今,中国科学院化学研究所工作,先后获得2011年北京市自然科学一等奖和2011年中国石油和化学工业联合会科技进步奖一等奖,2013年中国侨界贡献奖,2014年度中国科学院“科技贡献奖”. 研究方向为新型乙烯聚合和低聚催化剂设计、工艺与聚乙烯结构精准调控,创制了铁、钴、镍等配合物催化剂,实现了首个铁催化剂在石化产业中的应用,以及首套乙烯低聚在亚洲的生产. 乙烯聚合制备高度线性聚乙烯和单纯乙烯聚合制备高支化聚乙烯(聚乙烯弹性体)的产业化应用正在推进中." ]
纸质出版日期:2023-05-20,
网络出版日期:2023-03-17,
收稿日期:2023-01-19,
录用日期:2023-02-13
扫 描 看 全 文
王云,张文娟,王行等.乙烯反应中的铁配合物催化剂:从概念到产业化[J].高分子学报,2023,54(05):564-583.
Wang Yun,Zhang Wen-juan,Wang Xing,et al.Iron Complex Catalysts in Ethylene Reactivity: from Concept to Commercialization[J].ACTA POLYMERICA SINICA,2023,54(05):564-583.
王云,张文娟,王行等.乙烯反应中的铁配合物催化剂:从概念到产业化[J].高分子学报,2023,54(05):564-583. DOI: 10.11777/j.issn1000-3304.2023.23021.
Wang Yun,Zhang Wen-juan,Wang Xing,et al.Iron Complex Catalysts in Ethylene Reactivity: from Concept to Commercialization[J].ACTA POLYMERICA SINICA,2023,54(05):564-583. DOI: 10.11777/j.issn1000-3304.2023.23021.
聚烯烃的核心是催化剂,地球上丰度最高的过渡元素铁的配合物在催化乙烯反应中展示了优异性能,本文综述了用于乙烯低聚与聚合的铁配合物催化剂的最新进展. 通过调控所用配体的电子效应和空间位阻可以实现乙烯催化性能与所得聚合物微观结构的控制;铁催化剂具有独特的优势,不仅实现
α
-烯烃制备,而且可以制备高度线性聚乙烯包括制备窄分布的聚乙烯蜡. 铁催化剂未来将在高附加值聚乙烯有巨大应用潜力.
Polyethylene and
α
-olefins have been major products in petrochemical industry
in which their catalysts have been recognized as key points within the industrial processes. The iron
the most abundant element of transition metals in the Earth's crust
has attracted considerable attention from researchers due to its minimal price
low toxicity and favourable biocompatibility. Surprisingly
iron complexes as catalysts show excellent performance in the catalytic systems such as oligomerization or/and polymerization of ethylene. Relied on their electronic and steric influences of substituents within ligand compounds used
iron complexes not only show different catalytic activities of ethylene reactivity but also produce different products from oligomers with low molecular weights to polyethylenes with various molecular weights. In another word
the microstructures of the resulting products can be controlled by finely tuning the electronic effects and steric hindrance of the ligands used to achieve a variety of products with highly linear and molecular weight differences from
α
-olefins and highly linear polyethylene. In addition
most polyethylenes obtained have been approved with narrow distributions
especially for some types of polyethylene wax. In this review
the progress of iron complex catalysts for ethylene oligomerization or/and polymerization is reviewed
indicating the effects of ligand frameworks and their modifications through using different substituents as well as the differences in the catalytic activities and the microstructural properties of the obtained products. It would be temporarily short of its interest and attractiveness in academy
however
its industrial application would drive funds and keep its further investigations. To enhance the living life of any science
the 2-(imino)phenanthroline-iron catalysts were used in ethylene oligomerization to successfully produce
α
-olefins in a 50 kt/y process by Sinopec Maoming Branch in September 2021
which promoted Sinopec to construct a further developed process with 200 kt/y in Tianjin at November of 2021. It is the first iron catalyst being used in the petrochemical industry
moreover
it is the first process for a full range of
α
-olefins achieved in Asian area until now. Therefore
the iron complex catalysts are highly promising and useful in advanced products including
α
-olefins
polyethylene wax and linear polyethylenes.
铁配合物乙烯低聚乙烯聚合聚乙烯α-烯烃
Iron complexesEthylene oligomerizationEthylene polymerizationPolyethyleneα-Olefins
Ghosh M. K.; Maiti S. Polyolefins technology. J. Polym. Mater., 1999, 16, 113-134.
Zell T.; Milstein D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization. Acc. Chem. Res., 2015, 48(7), 1979-1994. doi:10.1021/acs.accounts.5b00027http://dx.doi.org/10.1021/acs.accounts.5b00027
McGuinness D. S. Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem. Rev., 2011, 111(3), 2321-2341. doi:10.1021/cr100217qhttp://dx.doi.org/10.1021/cr100217q
Boudier A.; Breuil P., A R.; Magna L.; Olivier-Bourbigou H.; Braunstein P. Ethylene oligomerization using iron complexes: beyond the discovery of bis(imino)pyridine ligands. Chem. Commun., 2014, 50(12), 1398-1407. doi:10.1039/c3cc47834chttp://dx.doi.org/10.1039/c3cc47834c
Fawcett E. W.; Gibson R. O.; Perrin M. W.; Patton J. G.; Williams E. G. Polymerization of olefins. British patent 472590, 1939-04-11.
Ziegler K.; Holzkamp E.; Breil H.; Martin H. Polymerisation von äthylen und anderen olefinen. Angew. Chem., 1955, 67(16), 426. doi:10.1002/ange.19550671610http://dx.doi.org/10.1002/ange.19550671610
Natta G.; Pino P.; Corradini P.; Danusso F.; Mantica E.; Mazzanti G.; Moraglio G. Crystalline high polymers of α-olefins. J. Am. Chem. Soc., 1955, 77(6), 1708-1710. doi:10.1021/ja01611a109http://dx.doi.org/10.1021/ja01611a109
Galli P.; Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Prog. Polym. Sci., 2001, 26(8), 1287-1336. doi:10.1016/s0079-6700(01)00029-6http://dx.doi.org/10.1016/s0079-6700(01)00029-6
Johnson L. K.; Killian C. M.; Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and alpha.-olefins. J. Am. Chem. Soc., 1995, 117(23), 6414-6415. doi:10.1021/ja00128a054http://dx.doi.org/10.1021/ja00128a054
Britovsek G. J. P.; Gibson V. C.; Kimberley B. S.; Maddox P. J.; McTavish S. J.; Solan G. A.; White A. J. P.; Williams D. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun., 1998, (7), 849-850. doi:10.1039/a801933ihttp://dx.doi.org/10.1039/a801933i
Small B. L.; Brookhart M.; Bennett A. M. A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc., 1998, 120(16), 4049-4050. doi:10.1021/ja9802100http://dx.doi.org/10.1021/ja9802100
Ittel S. D.; Johnson L. K.; Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev., 2000, 100(4), 1169-1204. doi:10.1021/cr9804644http://dx.doi.org/10.1021/cr9804644
Wang Z.; Liu Q. B.; Solan G. A.; Sun W. H. Recent advances in Ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/ polymer structure. Coord. Chem. Rev., 2017, 350, 68-83. doi:10.1016/j.ccr.2017.06.003http://dx.doi.org/10.1016/j.ccr.2017.06.003
Bianchini C.; Giambastiani G.; Rios I. G.; Mantovani G.; Meli A.; Segarra A. M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord. Chem. Rev., 2006, 250(11-12), 1391-1418. doi:10.1016/j.ccr.2005.12.018http://dx.doi.org/10.1016/j.ccr.2005.12.018
Sun W. H.; Jie S. Y.; Zhang S.; Zhang W.; Song Y. X.; Ma H. W.; Chen J. T.; Wedeking K.; Fröhlich R. Iron complexes bearing 2-imino-1,10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization. Organometallics, 2006, 25(3), 666-677. doi:10.1021/om050891phttp://dx.doi.org/10.1021/om050891p
Britovsek G. J. P.; Bruce M.; Gibson V. C.; Kimberley B. S.; Maddox P. J.; Mastroianni S.; McTavish S. J.; Redshaw C.; Solan G. A.; Strömberg S.; White A. J. P.; Williams D. J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)Pyridyl ligands: synthesis, structures, and studiespolymerization. J. Am. Chem. Soc., 1999, 121(38), 8728-8740. doi:10.1021/ja990449whttp://dx.doi.org/10.1021/ja990449w
Britovsek G. J.; Mastroianni S.; Solan G. A.; Baugh S. P.; Redshaw C.; Gibson V. C.; White A. J.; Williams D. J.; Elsegood M. R. Oligomerisation of ethylene by bis(imino)pyridyliron and-cobalt complexes. Chem. Eur. J., 2000, 6(12), 2221-2231. doi:10.1002/1521-3765(20000616)6:12<2221::aid-chem2221>3.0.co;2-uhttp://dx.doi.org/10.1002/1521-3765(20000616)6:12<2221::aid-chem2221>3.0.co;2-u
Small B. L.; Brookhart M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. J. Am. Chem. Soc., 1998, 120(28), 7143-7144. doi:10.1021/ja981317qhttp://dx.doi.org/10.1021/ja981317q
Ma Z.; Sun W. H.; Li Z. L.; Shao C. X.; Hu Y. L.; Li X. H. Ethylene polymerization by iron complexes with symmetrical and unsymmetrical ligands. Polym. Int., 2002, 51(10), 994-997. doi:10.1002/pi.913http://dx.doi.org/10.1002/pi.913
Chen Y. F.; Chen R. F.; Qian C. T.; Dong X. C.; Sun J. Halogen-substituted 2,6-bis(imino)pyridyl iron and cobalt complexes: highly active catalysts for polymerization and oligomerization of ethylene. Organometallics, 2003, 22(21), 4312-4321. doi:10.1021/om0302894http://dx.doi.org/10.1021/om0302894
Chen Y. F.; Qian C. T.; Sun J. Fluoro-substituted 2, 6-bis(imino)pyridyl iron and cobalt complexes: high-activity ethylene oligomerization catalysts. Organometallics, 2003, 22(6), 1231-1236. doi:10.1021/om020818ohttp://dx.doi.org/10.1021/om020818o
Görl C.; Alt H. G. Influence of the para-substitution in bis(arylimino)pyridine iron complexes on the catalytic oligomerization and polymerization of ethylene. J. Organomet. Chem., 2007, 692(21), 4580-4592. doi:10.1016/j.jorganchem.2007.05.036http://dx.doi.org/10.1016/j.jorganchem.2007.05.036
Ionkin A. S.; Marshall W. J.; Adelman D. J.; Fones B. B.; Fish B. M.; Schiffhauer M. F.; Soper P. D.; Waterland R. L.; Spence R. E.; Xie T. Y. High-temperature catalysts for the production of α-olefins based on iron(II) and iron(III) tridentate bis(imino)pyridine complexes modified by nitrilo group. J. Polym. Sci. A Polym. Chem., 2008, 46(2), 585-611. doi:10.1002/pola.22408http://dx.doi.org/10.1002/pola.22408
Long Z. R.; Wu B.; Yang P. J.; Li G.; Liu Y. Y.; Yang X. J. Synthesis and characterization of para-nitro substituted 2, 6-bis(phenylimino)pyridyl Fe(II) and Co(II) complexes and their ethylene polymerization properties. J. Organomet. Chem., 2009, 694(23), 3793-3799. doi:10.1016/j.jorganchem.2009.07.027http://dx.doi.org/10.1016/j.jorganchem.2009.07.027
Xie G. Y.; Li T. C.; Zhang A. Q. Highly active and selective ethylene oligomerization catalysts: asymmetric 2,6-bis(imino)pyridyl iron (II) complexes with alkyl and halogen substitutients. Inorg. Chem. Commun., 2010, 13(10), 1199-1202. doi:10.1016/j.inoche.2010.07.003http://dx.doi.org/10.1016/j.inoche.2010.07.003
Cámpora J.; Naz A. M.; Palma P.; Rodríguez-Delgado A.; Álvarez E.; Tritto I.; Boggioni L. Iron and cobalt complexes of 4-alkyl-2,6-diiminopyridine ligands: synthesis and ethylene polymerization catalysis. Eur. J. Inorg. Chem., 2008, 2008(11), 1871-1879. doi:10.1002/ejic.200701220http://dx.doi.org/10.1002/ejic.200701220
Guo L. H.; Gao H. Y.; Zhang L.; Zhu F. M.; Wu Q. An unsymmetrical iron(II) bis(imino)pyridyl catalyst for ethylene polymerization: effect of a bulky ortho substituent on the thermostability and molecular weight of polyethylene. Organometallics, 2010, 29(9), 2118-2125. doi:10.1021/om9010356http://dx.doi.org/10.1021/om9010356
Görl C.; Alt H. G. Iron complexes with ω-alkenyl substituted bis(arylimino)pyridine ligands as catalyst precursors for the oligomerization and polymerization of ethylene. J. Mol. Catal. A Chem., 2007, 273(1-2), 118-132. doi:10.1016/j.molcata.2007.04.001http://dx.doi.org/10.1016/j.molcata.2007.04.001
Ionkin A. S.; Marshall W. J.; Adelman D. J.; Fones B. B.; Fish B. M.; Schiffhauer M. F. Modification of iron(II) tridentate bis(imino)pyridine complexes by a boryl group for the production of α-olefins at high temperature. Organometallics, 2008, 27(8), 1902-1911. doi:10.1021/om800036bhttp://dx.doi.org/10.1021/om800036b
Lin W. H.; Zhang L. P.; Gao J. H.; Zhang Q. Y.; Ma Y. P.; Liu H.; Sun W. H. 6-Arylimino-2-(2-(1-phenylethyl)naphthalen-1-yl)-iminopyridylmetal (Fe and Co) complexes as highly active precatalysts for ethylene polymerization: influence of metal and/or substituents on the active, thermostable performance of their complexes and resultant polyethylenes. Molecules, 2020, 25(18), 4244. doi:10.3390/molecules25184244http://dx.doi.org/10.3390/molecules25184244
Wang S. L.; Li B. X.; Liang T. L.; Redshaw C.; Li Y. S.; Sun W. H. Synthesis, characterization and catalytic behavior toward ethylene of 2-[1-(4,6-dimethyl-2-benzhydrylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridylmetal(iron or cobalt) chlorides. Dalton Trans., 2013, 42(25), 9188-9197. doi:10.1039/c3dt00011ghttp://dx.doi.org/10.1039/c3dt00011g
Yu J. G.; Liu H.; Zhang W. J.; Hao X.; Sun W. H. Access to highly active and thermally stable iron procatalysts using bulky 2-[1-(2,6-dibenzhydryl-4-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands. Chem. Commun., 2011, 47(11), 3257-3259. doi:10.1039/c0cc05373bhttp://dx.doi.org/10.1039/c0cc05373b
Mahmood Q.; Guo J. J.; Zhang W. J.; Ma Y. P.; Liang T. L.; Sun W. H. Concurrently improving the thermal stability and activity of ferrous precatalysts for the production of saturated/unsaturated polyethylene. Organometallics, 2018, 37(6), 957-970. doi:10.1021/acs.organomet.7b00909http://dx.doi.org/10.1021/acs.organomet.7b00909
Cao X. P.; He F.; Zhao W. Z.; Cai Z. G.; Hao X.; Shiono T.; Redshaw C.; Sun W. H. 2-[1-(2,6-Dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron(II) dichlorides: synthesis, characterization and ethylene polymerization behavior. Polymer, 2012, 53(9), 1870-1880. doi:10.1016/j.polymer.2012.02.050http://dx.doi.org/10.1016/j.polymer.2012.02.050
Mahmood Q.; Yue E. L.; Guo J. J.; Zhang W. J.; Ma Y. P.; Hao X.; Sun W. H. Nitro-functionalized bis(imino)pyridylferrous chlorides as thermo-stable precatalysts for linear polyethylenes with high molecular weights. Polymer, 2018, 159, 124-137. doi:10.1016/j.polymer.2018.11.016http://dx.doi.org/10.1016/j.polymer.2018.11.016
Zhao W. Z.; Yu J. G.; Song S. J.; Yang W. H.; Liu H.; Hao X.; Redshaw C.; Sun W. H. Controlling the ethylene polymerization parameters in iron pre-catalysts of the type 2-[1-(2,4-dibenzhydryl-6-methylphenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron dichloride. Polymer, 2012, 53(1), 130-137. doi:10.1016/j.polymer.2011.11.024http://dx.doi.org/10.1016/j.polymer.2011.11.024
Han M. Y.; Oleynik I. I.; Ma Y. P.; Oleynik I. V.; Solan G. A.; Hao X.; Sun W. H. Modulating thermostability and productivity of benzhydryl-substituted bis(imino)pyridine-iron C2H4 polymerization catalysts through ortho-CnH2n-1 (n=5, 6, 8, 12) ring size adjustment. Eur. J. Inorg. Chem., 2022, 2022(21), e202200224. doi:10.1002/ejic.202200224http://dx.doi.org/10.1002/ejic.202200224
Zhao W. Z.; Yue E. L.; Wang X. X.; Yang W. H.; Chen Y.; Hao X.; Cao X. P.; Sun W. H. Activity and stability spontaneously enhanced toward ethylene polymerization by employing 2-(1-(2, 4-dibenzhydrylnaphthylimino)ethyl)-6-(1-(arylimino)ethyl) pyridyliron(II) dichlorides. J. Polym. Sci. A Polym. Chem., 2017, 55(6), 988-996. doi:10.1002/pola.28459http://dx.doi.org/10.1002/pola.28459
Sun W. H.; Zhao W. Z.; Yu J. G.; Zhang W. J.; Hao X.; Redshaw C. Enhancing the activity and thermal stability of iron precatalysts using 2-(1-{2,6-bis[bis(4-fluorophenyl)methyl]-4-methylphenylimino}ethyl)-6-[1-(arylimino)ethyl]pyridines. Macromol. Chem. Phys., 2012, 213(12), 1266-1273. doi:10.1002/macp.201200051http://dx.doi.org/10.1002/macp.201200051
Zhang Q. Y.; Zhang R. D.; Han M. Y.; Yang W. H.; Liang T. L.; Sun W. H. 4,4'-Difluorobenzhydryl-modified bis(imino)-pyridyliron(ii) chlorides as thermally stable precatalysts for strictly linear polyethylenes with narrow dispersities. Dalton Trans., 2020, 49(22), 7384-7396. doi:10.1039/d0dt01344ghttp://dx.doi.org/10.1039/d0dt01344g
Zhang R. D.; Han M. Y.; Ma Y. P.; Solan G. A.; Liang T. L.; Sun W. H. Steric and electronic modulation of iron catalysts as a route to remarkably high molecular weight linear polyethylenes. Dalton Trans., 2019, 48(47), 17488-17498. doi:10.1039/c9dt03880ahttp://dx.doi.org/10.1039/c9dt03880a
Liu T.; Ma Y. P.; Solan G.; Liang T. L.; Sun W. H. Exploring ortho-(4,4'-dimethoxybenzhydryl) substitution in iron ethylene polymerization catalysts: co-catalyst effects, thermal stability, and polymer molecular weight variations. Appl. Organomet. Chem., 2021, 35(7), e6259. doi:10.1002/aoc.6259http://dx.doi.org/10.1002/aoc.6259
Zhang W. J.; Wang S. L.; Du S. Z.; Guo C. Y.; Hao X.; Sun W. H. 2-(1-(2,4-Bis((di(4-fluorophenyl)methyl)-6-methylphenylimino)ethyl)-6-(1-(arylimino)ethyl)pyridylmetal (iron or cobalt) complexes: synthesis, characterization, and ethylene polymerization behavior. Macromol. Chem. Phys., 2014, 215(18), 1797-1809. doi:10.1002/macp.201400140http://dx.doi.org/10.1002/macp.201400140
Zhang Q. Y.; Zuo Z.; Ma Y. P.; Liang T. L.; Yang X. Z.; Sun W. H. Fluorinated 2,6-bis(arylimino)pyridyl iron complexes targeting bimodal dispersive polyethylenes: probing chain termination pathways via a combined experimental and DFT study. Dalton Trans., 2022, 51(21), 8290-8302. doi:10.1039/d2dt00868hhttp://dx.doi.org/10.1039/d2dt00868h
Yuan S. F.; Fan Z.; Han M. Y.; Yan Y.; Flisak Z.; Ma Y. P.; Liang T. L.; Sun W. H. Enhancing performance of a bis(arylimino)pyridine-iron precatalyst for ethylene polymerization by substitution with a 2,4-bis(4,4'-dimethoxybenzhydryl)-6-methylphenyl group. Eur. J. Inorg. Chem., 2021, 2021(16), 1571-1580. doi:10.1002/aoc.5638http://dx.doi.org/10.1002/aoc.5638
Guo L. W.; Zhang W. J.; Cao F. R.; Jiang Y. S.; Zhang R. D.; Ma Y. P.; Solan G. A.; Sun Y.; Sun W. H. Remote dibenzocycloheptyl substitution on a bis(arylimino)pyridyl-iron ethylene polymerization catalyst; enhanced thermal stability and unexpected effects on polymer properties. Polym. Chem., 2021, 12(29), 4214-4225. doi:10.1039/d1py00660fhttp://dx.doi.org/10.1039/d1py00660f
Zada M.; Vignesh A.; Suo H. Y.; Ma Y. P.; Liu H.; Sun W. H. NNN-type iron(II) complexes consisting sterically hindered dibenzocycloheptyl group: Synthesis and catalytic activity towards ethylene polymerization. Mol. Catal., 2020, 492, 110981. doi:10.1016/j.mcat.2020.110981http://dx.doi.org/10.1016/j.mcat.2020.110981
Zhang W. J.; Chai W. B.; Sun W. H.; Hu X. Q.; Redshaw C.; Hao X. 2-(1-(Arylimino)ethyl)-8-arylimino-5,6, 7-trihydroquinoline iron(II) chloride complexes: synthesis, characterization, and ethylene polymerization behavior. Organometallics, 2012, 31(14), 5039-5048. doi:10.1021/om300388mhttp://dx.doi.org/10.1021/om300388m
Zhang R. D.; Han M. Y.; Oleynik I. V.; Solan G. A.; Oleynik I. I.; Ma Y. P.; Liang T. L.; Sun W. H. Boosting activity, thermostability, and lifetime of iron ethylene polymerization catalysts through gem-dimethyl substitution and incorporation of ortho-cycloalkyl substituents. Appl. Organomet. Chem., 2021, 35(11), e6376. doi:10.1002/aoc.6376http://dx.doi.org/10.1002/aoc.6376
Huang F.; Xing Q. F.; Liang T. L.; Flisak Z.; Ye B.; Hu X. Q.; Yang W. H.; Sun W. H. 2-(1-Aryliminoethyl)-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridyl iron(ii) dichloride: synthesis, characterization, and the highly active and tunable active species in ethylene polymerization. Dalton Trans., 2014, 43(44), 16818-16829. doi:10.1039/c4dt02102ahttp://dx.doi.org/10.1039/c4dt02102a
Zhang Y. F.; Suo H. Y.; Huang F.; Liang T. L.; Hu X. Q.; Sun W. H. Thermo-stable 2-(arylimino)benzylidene-9-arylimino-5,6,7,8cyclohepta-tetrahydro[b]pyridyliron(II) precatalysts toward ethylene polymerization and highly linear polyethylenes. J. Polym. Sci. A Polym. Chem., 2017, 55(5), 830-842. doi:10.1002/pola.28433http://dx.doi.org/10.1002/pola.28433
Guo J. J.; Zhang W. J.; Oleynik I. I.; Solan G. A.; Oleynik I. V.; Liang T. L.; Sun W. H. Probing the effect of ortho-cycloalkyl ring size on activity and thermostability in cycloheptyl-fused N,N,N-iron ethylene polymerization catalysts. Dalton Trans., 2020, 49(1), 136-146. doi:10.1039/c9dt04325jhttp://dx.doi.org/10.1039/c9dt04325j
Han M. Y.; Zhang Q. Y.; Oleynik I. I.; Suo H. Y.; Oleynik I. V.; Solan G. A.; Ma Y. P.; Liang T. L.; Sun W. H. Adjusting ortho-cycloalkyl ring size in a cycloheptyl-fused N,N,N-iron catalyst as means to control catalytic activity and polyethylene properties. Catalysts, 2020, 10(9), 1002. doi:10.3390/catal10091002http://dx.doi.org/10.3390/catal10091002
Ba J. J.; Du S. Z.; Yue E. L.; Hu X. Q.; Flisak Z.; Sun W. H. Constrained formation of 2-(1-(arylimino)ethyl)-7-arylimino-6, 6-dimethylcyclopentapyridines and their cobalt(ii) chloride complexes: synthesis, characterization and ethylene polymerization. RSC Adv., 2015, 5(41), 32720-32729. doi:10.1039/c5ra04722fhttp://dx.doi.org/10.1039/c5ra04722f
Appukuttan V. K.; Liu Y. S.; Son B. C.; Ha C. S.; Suh H.; Kim I. Iron and cobalt complexes of 2,3,7,8-tetrahydroacridine-4,5(1H,6H)-diimine sterically modulated by substituted aryl rings for the selective oligomerization to polymerization of ethylene. Organometallics, 2011, 30(8), 2285-2294.
Du S. Z.; Wang X. X.; Zhang W. J.; Flisak Z.; Sun Y.; Sun W. H. A practical ethylene polymerization for vinyl-polyethylenes: synthesis, characterization and catalytic behavior of α,α′-bisimino-2,3:5,6-bis(pentamethylene)pyridyliron chlorides. Polym. Chem., 2016, 7(25), 4188-4197. doi:10.1039/c6py00745ghttp://dx.doi.org/10.1039/c6py00745g
Wang Z.; Zhang R. D.; Zhang W. J.; Solan G. A.; Liu Q. B.; Liang T. L.; Sun W. H. Enhancing thermostability of iron ethylene polymerization catalysts through N,N,N-chelation of doubly fused α,α′-bis(arylimino)-2,3:5,6-bis(hexamethylene)pyridines. Catal. Sci. Technol., 2019, 9(8), 1933-1943. doi:10.1039/c9cy00293fhttp://dx.doi.org/10.1039/c9cy00293f
Wang Z.; Solan G. A.; Ma Y. P.; Liu Q. B.; Liang T. L.; Sun W. H. Fusing carbocycles of inequivalent ring size to a bis(imino)pyridine-iron ethylene polymerization catalyst: distinctive effects on activity, PE molecular weight, and dispersity. Research, 2019, 2019, 9426063. doi:10.34133/2019/9426063http://dx.doi.org/10.34133/2019/9426063
Bariashir C.; Wang Z.; Ma Y. P.; Vignesh A.; Hao X.; Sun W. H. Finely tuned α,α′-bis(arylimino)-2,3:5,6-bis-(pentamethylene)pyridine-based practical iron precatalysts for targeting highly linear and narrow dispersive polyethylene waxes with vinyl ends. Organometallics, 2019, 38(22), 4455-4470. doi:10.1021/acs.organomet.9b00562http://dx.doi.org/10.1021/acs.organomet.9b00562
Zhang Q. Y.; Yang W. H.; Wang Z.; Solan G. A.; Liang T. L.; Sun W. H. Doubly fused N, N, N-iron ethylene polymerization catalysts appended with fluoride substituents; probing catalytic performance via a combined experimental and MLR study. Catal. Sci. Technol., 2021, 11(13), 4605-4618. doi:10.1039/d1cy00821hhttp://dx.doi.org/10.1039/d1cy00821h
Lin W. H.; Zhang L. P.; Solan G.; Ma Y. P.; Liang T. L.; Sun W. H. Naphthalenyl-substituted α,α′-bisimino‐2,3: 5,6‐bis(pentamethylene)pyridines as thermally robust supports for iron ethylene polymerization catalysts. Eur. J. Inorg. Chem.; 2021, 2021(44), 4530-4538. doi:10.1002/ejic.202100595http://dx.doi.org/10.1002/ejic.202100595
Suo H. Y.; Li Z. L.; Oleynik I. V.; Wang Z.; Oleynik I. I.; Ma Y. P.; Liu Q. B.; Sun W. H. Achieving strictly linear polyethylenes by the NNN-Fe precatalysts finely tuned with different sizes of ortho-cycloalkyl substituents. Appl. Organomet. Chem., 2020, 34(11), e5937. doi:10.1002/aoc.5937http://dx.doi.org/10.1002/aoc.5937
Wang Z.; Solan G. A.; Zhang W. J.; Sun W. H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev., 2018, 363, 92-108. doi:10.1016/j.ccr.2018.02.016http://dx.doi.org/10.1016/j.ccr.2018.02.016
Zhang W. J.; Sun W. H.; Redshaw C. Tailoring iron complexes for ethylene oligomerization and/or polymerization. Dalton Trans., 2013, 42(25), 8988-8997. doi:10.1039/c2dt32337khttp://dx.doi.org/10.1039/c2dt32337k
Ma J.; Feng C.; Wang S. L.; Zhao K. Q.; Sun W. H.; Redshaw C.; Solan G. A. Bi- and tri-dentate imino-based iron and cobalt pre-catalysts for ethylene oligo-/ polymerization. Inorg. Chem. Front., 2014, 1(1), 14-34. doi:10.1039/c3qi00028ahttp://dx.doi.org/10.1039/c3qi00028a
Wang L. Y.; Sun W. H.; Han L. Q.; Yang H. J.; Hu Y. L.; Jin X. L. Late transition metal complexes bearing 2,9-bis(imino)-1,10-phenanthrolinyl ligands: Synthesis, characterization and their ethylene activity. J. Organomet. Chem., 2002, 658(1-2), 62-70. doi:10.1016/s0022-328x(02)01623-6http://dx.doi.org/10.1016/s0022-328x(02)01623-6
Britovsek G. J. P.; Baugh S. P. D.; Hoarau O.; Gibson V. C.; Wass D. F.; White A. J. P.; Williams D. J. The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems. Inorg. Chim. Acta, 2003, 345, 279-291. doi:10.1016/s0020-1693(02)01293-8http://dx.doi.org/10.1016/s0020-1693(02)01293-8
Jie S. Y.; Zhang S.; Sun W. H.; Kuang X. F.; Liu T. F.; Guo J. P. Iron(II) complexes ligated by 2-imino-1,10-phenanthrolines: preparation and catalytic behavior toward ethylene oligomerization. J. Mol. Catal. A Chem., 2007, 269(1-2), 85-96. doi:10.1016/j.molcata.2007.01.008http://dx.doi.org/10.1016/j.molcata.2007.01.008
Zhang M.; Zhang W. J.; Xiao T.; Xiang J. F.; Hao X.; Sun W. H. 2-Ethyl-ketimino-1,10-phenanthroline iron(II) complexes as highly active catalysts for ethylene oligomerization. J. Mol. Catal. A Chem., 2010, 320(1-2), 92-96. doi:10.1016/j.molcata.2010.01.009http://dx.doi.org/10.1016/j.molcata.2010.01.009
Jie, S. Y.; Zhang, S.; Sun, W. H. 2-Arylimino-9-phenyl-1,10-phenanthrolinyl-iron, -cobalt and-nickel complexes: synthesis, characterization and ethylene oligomerization behavior. Eur. J. Inorg. Chem., 2007, 2007(35), 5584-5598. doi:10.1002/ejic.200700690http://dx.doi.org/10.1002/ejic.200700690
Zhang, M.; Hao, P.; Zuo, W. W.; Jie, S. Y.; Sun, W. H. 2-(Benzimidazol-2-yl)-1,10-phenanthrolyl metal (Fe and Co) complexes and their catalytic behaviors toward ethylene oligomerization. J. Organomet. Chem., 2008, 693(3), 483-491. doi:10.1016/j.jorganchem.2007.11.020http://dx.doi.org/10.1016/j.jorganchem.2007.11.020
Zhang, M.; Gao, R.; Hao, X.; Sun, W. H. 2-Oxazoline/benzoxazole-1,10-phenanthrolinylmetal (iron, cobalt or nickel) dichloride: synthesis, characterization and their catalytic reactivity for the ethylene oligomerization. J. Organomet. Chem., 2008, 693(26), 3867-3877. doi:10.1016/j.jorganchem.2008.09.046http://dx.doi.org/10.1016/j.jorganchem.2008.09.046
Guo J. J.; Chen Q.; Zhang W. J.; Liang T. L.; Sun W. H. The benzhydryl-modified 2-imino-1,10-phenanthrolyliron precatalyst in ethylene oligomerization. J. Organomet. Chem., 2021, 936, 121713. doi:10.1016/j.jorganchem.2021.121713http://dx.doi.org/10.1016/j.jorganchem.2021.121713
Nomura K.; Sidokmai W.; Imanishi Y. Ethylene polymerization catalyzed by ruthenium and iron complexes containing 2,6-bis(2-oxazolin-2-yl)pyridine (pybox) ligand-cocatalyst system. Bull. Chem. Soc. Jpn., 2000, 73(3), 599-605. doi:10.1246/bcsj.73.599http://dx.doi.org/10.1246/bcsj.73.599
Zabel D.; Schubert A.; Wolmershäuser G.; Jones R. L.; Thiel W. R. Iron and cobalt complexes of tridentate N-donor ligands in ethylene polymerization: efficient shielding of the active sites by simple phenyl groups. Eur. J. Inorg. Chem., 2008, 2008(23), 3648-3654. doi:10.1002/ejic.200800374http://dx.doi.org/10.1002/ejic.200800374
Tenza K.; Hanton M. J.; Slawin A. M. Z. Ethylene oligomerization using first-row transition metal complexes featuring heterocyclic variants of bis(imino)pyridine ligands. Organometallics, 2009, 28(16), 4852-4867. doi:10.1021/om900280jhttp://dx.doi.org/10.1021/om900280j
Karam A. R.; Catarí E. L.; López-Linares F.; Agrifoglio G.; Albano C. L.; Díaz-Barrios A.; Lehmann T. E.; Pekerar S. V.; Albornoz L. A.; Atencio R.; González T.; Ortega H. B.; Joskowics P. Synthesis, characterization and olefin polymerization studies of iron(II) and cobalt(II) catalysts bearing 2,6-bis(pyrazol-1-yl)pyridines and 2,6-bis(pyrazol-1-ylmethyl)pyridines ligands. Appl. Catal. A Gen., 2005, 280(2), 165-173. doi:10.1016/j.apcata.2004.10.047http://dx.doi.org/10.1016/j.apcata.2004.10.047
Lenges G. M. Polymerization of ethylene. US patent 0061987. 2002-05-23.
Sun W. H.; Hao P.; Li G.; Zhang S.; Wang W. Q.; Yi J. J.; Asma M.; Tang N. Synthesis and characterization of iron and cobalt dichloride bearing 2-quinoxalinyl-6-iminopyridines and their catalytic behavior toward ethylene reactivity. J. Organomet. Chem., 2007, 692(21), 4506-4518. doi:10.1016/j.jorganchem.2007.04.027http://dx.doi.org/10.1016/j.jorganchem.2007.04.027
Xiao L. W.; Gao R.; Zhang M.; Li Y.; Cao X. P.; Sun W. H. 2-(1H-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl iron(II) and cobalt(II) dichlorides: syntheses, characterizations, and catalytic behaviors toward ethylene reactivity. Organometallics, 2009, 28(7), 2225-2233. doi:10.1021/om801141nhttp://dx.doi.org/10.1021/om801141n
Chen Y. J.; Hao P.; Zuo W. W.; Gao K.; Sun W. H. 2-(1-Isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl transition metal (Fe, Co, and Ni) dichlorides: syntheses, characterizations and their catalytic behaviors toward ethylene reactivity. J. Organomet. Chem., 2008, 693(10), 1829-1840. doi:10.1016/j.jorganchem.2008.02.007http://dx.doi.org/10.1016/j.jorganchem.2008.02.007
Sun W. H.; Hao P.; Zhang S.; Shi Q. S.; Zuo W. W.; Tang X. B.; Lu X. M. Iron(II) and cobalt(II) 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl complexes as catalysts for ethylene oligomerization and polymerization. Organometallics, 2007, 26(10), 2720-2734. doi:10.1021/om0700819http://dx.doi.org/10.1021/om0700819
Zhang L. P.; Hou X. H.; Yu J. G.; Chen X.; Hao X.; Sun W. H. 2-(R-1H-Benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridyliron(II) dichlorides: synthesis, characterization and the ethylene oligomerization behavior. Inorg. Chim. Acta, 2011, 379(1), 70-75. doi:10.1016/j.ica.2011.09.035http://dx.doi.org/10.1016/j.ica.2011.09.035
Song S. J.; Gao R.; Zhang M.; Li Y.; Wang F. S.; Sun W. H. 2-β-Benzothiazolyl-6-iminopyridylmetal dichlorides and the catalytic behavior towards ethylene oligomerization and polymerization. Inorg. Chim. Acta, 2011, 376(1), 373-380. doi:10.1016/j.ica.2011.06.037http://dx.doi.org/10.1016/j.ica.2011.06.037
Wang K. F.; Wedeking K.; Zuo W. W.; Zhang D. H.; Sun W. H. Iron(II) and cobalt(II) complexes bearing N-((pyridin-2-yl)methylene)-quinolin-8-amine derivatives: synthesis and application to ethylene oligomerization. J. Organomet. Chem., 2008, 693(6), 1073-1080. doi:10.1016/j.jorganchem.2007.12.030http://dx.doi.org/10.1016/j.jorganchem.2007.12.030
Zhang S.; Sun W. H.; Xiao T.; Hao X. Ferrous and cobaltous chlorides bearing 2,8-bis(imino)quinolines: Highly active catalysts for ethylene polymerization at high temperature. Organometallics, 2010, 29(5), 1168-1173. doi:10.1021/om9010142http://dx.doi.org/10.1021/om9010142
Xiao T.; Zhang S.; Li B. X.; Hao X.; Redshaw C.; Li Y. S.; Sun W. H. Ferrous and cobaltous chloride complexes bearing 2-(1-(arylimino)methyl)-8-(1H-benzimidazol-2-yl)quinolines: synthesis, characterization and catalytic behavior in ethylene polymerization. Polymer, 2011, 52(25), 5803-5810. doi:10.1016/j.polymer.2011.10.037http://dx.doi.org/10.1016/j.polymer.2011.10.037
Schmiege B. M.; Carney M. J.; Small B. L.; Gerlach D. L.; Halfen J. A. Alternatives to pyridinediimine ligands: syntheses and structures of metal complexes supported by donor-modified α-diimine ligands. Dalton Trans., 2007(24), 2547-2562. doi:10.1039/b702197fhttp://dx.doi.org/10.1039/b702197f
Small B. L.; Rios R.; Fernandez E. R.; Carney M. J. Oligomerization of ethylene using new iron catalysts bearing pendant donor modified α-diimine ligands. Organometallics, 2007, 26(7), 1744-1749. doi:10.1021/om0611406http://dx.doi.org/10.1021/om0611406
Small B. L.; Rios R.; Fernandez E. R.; Gerlach D. L.; Halfen J. A.; Carney M. J. Oligomerization of ethylene using new tridentate iron catalysts bearing α-diimine ligands with pendant S and P donors. Organometallics, 2010, 29(24), 6723-6731. doi:10.1021/om1007743http://dx.doi.org/10.1021/om1007743
Gibson V. C.; Redshaw C.; Solan G. A.; White A. J. P.; Williams D. J. Aluminum alkyl-mediated route to novel N, N, O-chelates for five-coordinate iron(II) chloride complexes: synthesis, structures, and ethylene polymerization studies. Organometallics, 2007, 26(20), 5119-5123. doi:10.1021/om700611qhttp://dx.doi.org/10.1021/om700611q
Bariashir C.; Wang Z.; Du S. Z.; Solan G. A.; Huang C. B.; Liang T. L.; Sun W. H. Cycloheptyl-fused NNO-ligands as electronically modifiable supports for M(II) (M = Co, Fe) chloride precatalysts; probing performance in ethylene oligo-/ polymerization. J. Polym. Sci. A Polym. Chem., 2017, 55(24), 3980-3989. doi:10.1002/pola.28767http://dx.doi.org/10.1002/pola.28767
Zhang D.; Zhang Y. L.; Hou W. J.; Guan Z. B.; Huang Z. Phosphine-iminoquinoline iron complexes for ethylene polymerization and copolymerization. Organometallics, 2017, 36(19), 3758-3764. doi:10.1021/acs.organomet.7b00537http://dx.doi.org/10.1021/acs.organomet.7b00537
Hou W. J.; Tang C. R.; Liu G. X.; Huang Z. Thio-imino-tetrahydroacridine iron complexes for ethylene polymerization. Organometallics, 2022, 41(22), 3115-3121. doi:10.1021/acs.organomet.2c00321http://dx.doi.org/10.1021/acs.organomet.2c00321
Barbaro P.; Bianchini C.; Giambastiani G.; Rios I. G.; Meli A.; Oberhauser W.; Segarra A. M.; Sorace L.; Toti A. Synthesis of new polydentate nitrogen ligands and their use in ethylene polymerization in conjunction with iron(II) and cobalt(II) bis-halides and methylaluminoxane. Organometallics, 2007, 26(18), 4639-4651. doi:10.1021/om7005062http://dx.doi.org/10.1021/om7005062
Wang L. C.; Sun J. Q. Methylene bridged binuclear bis(imino)pyridyl iron(II) complexes and their use as catalysts together with Al(i-Bu)3 for ethylene polymerization. Inorg. Chim. Acta, 2008, 361(7), 1843-1849. doi:10.1016/j.ica.2007.09.039http://dx.doi.org/10.1016/j.ica.2007.09.039
Xing Q. F.; Zhao T.; Qiao Y. S.; Wang L.; Redshaw C.; Sun W. H. Synthesis, characterization and ethylene polymerization behavior of binuclear iron complexes bearing N,N'-bis(1-(6-(1-(arylimino)ethyl) pyridin-2-yl)ethylidene)benzidines. RSC Adv., 2013, 3(48), 26184-26193. doi:10.1039/c3ra42631ahttp://dx.doi.org/10.1039/c3ra42631a
Chen Q.; Zhang W. J.; Solan G. A.; Zhang R. D.; Guo L. W.; Hao X.; Sun W. H. CH(phenol)-bridged bis(imino)pyridines as compartmental supports for diiron precatalysts for ethylene polymerization: exploring cooperative effects on performance. Organometallics, 2018, 37(21), 4002-4014. doi:10.1021/acs.organomet.8b00602http://dx.doi.org/10.1021/acs.organomet.8b00602
Liu J. Y.; Li Y. S.; Liu J. Y.; Li Z. S. Ethylene polymerization with a highly active and long-lifetime macrocycle trinuclear 2,6-bis(imino)pyridyliron. Macromolecules, 2005, 38(7), 2559-2563. doi:10.1021/ma047685yhttp://dx.doi.org/10.1021/ma047685y
Takeuchi D.; Takano S.; Takeuchi Y.; Osakada K. Ethylene polymerization at high temperatures catalyzed by double-decker-type dinuclear iron and cobalt complexes: dimer effect on stability of the catalyst and polydispersity of the product. Organometallics, 2014, 33(19), 5316-5323. doi:10.1021/om500629ahttp://dx.doi.org/10.1021/om500629a
Champouret Y. D. M.; Maréchal J. D.; Dadhiwala I.; Fawcett J.; Palmer D.; Singh K.; Solan G. A. Mono- vs. bi-metallic assembly on a bulky bis(imino)terpyridine framework: a combined experimental and theoretical study. Dalton Trans., 2006(19), 2350-2361. doi:10.1039/b516083ahttp://dx.doi.org/10.1039/b516083a
Armitage A. P.; Champouret Y. D. M.; Grigoli H.; Pelletier J. D. A.; Singh K.; Solan G. A. Probing the effect of binding site and metal centre variation in pentadentate oligopyridylimine-bearing bimetallic (Fe2, Co2, Ni2) ethylene oligomerisation catalysts. Eur. J. Inorg. Chem., 2008, 2008(29), 4597-4607. doi:10.1002/ejic.200800650http://dx.doi.org/10.1002/ejic.200800650
Zhang S.; Vystorop I.; Tang Z. H.; Sun W. H. Bimetallic (iron or cobalt) complexes bearing 2-methyl-2,4-bis(6-iminopyridin-2-yl)-1H-1, 5-benzodiazepines for ethylene reactivity. Organometallics, 2007, 26(9), 2456-2460. doi:10.1021/om070062zhttp://dx.doi.org/10.1021/om070062z
Zhang S.; Sun W. H.; Kuang X. F.; Vystorop I.; Yi J. J. Unsymmetric bimetal(II) complexes: Synthesis, structures and catalytic behaviors toward ethylene. J. Organomet. Chem., 2007, 692(23), 5307-5316. doi:10.1016/j.jorganchem.2007.08.020http://dx.doi.org/10.1016/j.jorganchem.2007.08.020
Sun W. H.; Xing Q. F.; Yu J. G.; Novikova E.; Zhao W. Z.; Tang X. B.; Liang T. L.; Redshaw C. Probing the characteristics of mono- or bimetallic (iron or cobalt) complexes bearing 2, 4-bis(6-iminopyridin-2-yl)-3H-benzazepines: Synthesis, characterization, and ethylene reactivity. Organometallics, 2013, 32(8), 2309-2318. doi:10.1021/om301086phttp://dx.doi.org/10.1021/om301086p
Bouwkamp M. W.; Lobkovsky E.; Chirik P. J. Bis(imino)pyridine iron(II) alkyl cations for olefin polymerization. J. Am. Chem. Soc., 2005, 127(27), 9660-9661. doi:10.1021/ja0524447http://dx.doi.org/10.1021/ja0524447
Irrgang T.; Keller S.; Maisel H.; Kretschmer W.; Kempe R. Sterically demanding iminopyridine ligands. Eur. J. Inorg. Chem., 2007, 2007(26), 4221-4228. doi:10.1002/ejic.200700322http://dx.doi.org/10.1002/ejic.200700322
Xiao T.; Zhang S.; Kehr G.; Hao X.; Erker G.; Sun W. H. Bidentate iron(II) dichloride complexes bearing substituted 8-(benzimidazol-2-yl)quinolines: Synthesis, characterization, and ethylene polymerization behavior. Organometallics, 2011, 30(13), 3658-3665. doi:10.1021/om200338bhttp://dx.doi.org/10.1021/om200338b
Song S. J.; Zhao W. Z.; Wang L.; Redshaw C.; Wang F. S.; Sun W. H. Synthesis, characterization and catalytic behavior toward ethylene of cobalt(II) and iron(II) complexes bearing 2-(1-aryliminoethylidene)quinolines. J. Organomet. Chem., 2011, 696(18), 3029-3035. doi:10.1016/j.jorganchem.2011.06.003http://dx.doi.org/10.1016/j.jorganchem.2011.06.003
Song S. J.; Xiao T.; Redshaw C.; Hao X.; Wang F. S.; Sun W. H. Iron(II) and cobalt(II) complexes bearing 8-(1quinaldines-aryliminoethylidene): Synthesis, characterization and ethylene dimerization behavior. J. Organomet. Chem., 2011, 696(13), 2594-2599. doi:10.1016/j.jorganchem.2011.03.039http://dx.doi.org/10.1016/j.jorganchem.2011.03.039
0
浏览量
146
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构