Processing math: 100%
 注册 登录 English Version 中国高分子学术平台
快报 | 更新时间:2023-09-25
    • 聚丁烯-1熔体结晶直接形成晶型Ⅲ

    • Direct Crystallization of Form III from Polybutene-1 Melt

    • 刘菁华

      ,  

      李景庆

      ,  

      刘宾元

      ,  

      蒋世春

      ,  
    • 高分子学报   2023年54卷第8期 页码:1139-1143
    • 作者机构:

      1.天津大学材料学院 天津 300072

      2.河北工业大学高分子科学与工程系 河北省功能高分子重点实验室 天津 300130

    • 作者简介:

      E-mail: scjiang@tju.edu.cn

    • DOI:10.11777/j.issn1000-3304.2023.23052    

      中图分类号:
    • 纸质出版日期:2023-08-20

      网络出版日期:2023-05-18

      收稿日期:2023-03-06

      录用日期:2023-04-18

    扫 描 看 全 文

  • 引用本文

    阅读全文PDF

  • 刘菁华,李景庆,刘宾元等.聚丁烯-1熔体结晶直接形成晶型Ⅲ[J].高分子学报,2023,54(08):1139-1143. DOI: 10.11777/j.issn1000-3304.2023.23052.

    Liu Jing-hua,Li Jing-qing,Liu Bin-yuan,et al.Direct Crystallization of Form III from Polybutene-1 Melt[J].ACTA POLYMERICA SINICA,2023,54(08):1139-1143. DOI: 10.11777/j.issn1000-3304.2023.23052.

  •  
  •  
    论文导航

    摘要

    通过广角X射线衍射和示差扫描量热技术测定了低等规度聚丁烯-1 (PB-1)在不同温度熔融并非等温结晶后形成的结晶结构. 首次观测到在常压条件下均聚聚丁烯-1熔体结晶形成晶型Ⅲ,并且发现非等温结晶过程中晶型Ⅲ的相对含量随熔融温度的升高而增加,实验结果将有助于理解PB-1的结晶和晶型转变行为.

    Abstract

    The crystalline structure of polybutene-1 (PB-1) with low tacticity was investigated by wide angle X-ray diffraction and differential scanning calorimetry after heating to different melting temperatures and non-isothermal crystallization. The formation of form III was observed for the first time in the melt crystallization of PB-1 at atmospheric pressure. It was revealed that the fraction of the form III increased with the melting temperature during the non-isothermal crystallization. The results would be helpful to understand the crystallization and crystal transformation behaviors of PB-1.

    图文摘要

    abstract

    首次观测到常压条件下均聚聚丁烯-1 熔体结晶形成晶型Ⅲ. 非等温结晶过程中,晶型Ⅲ的相对含量随熔体温度的升高而增加;熔体温度高于150 ℃后,晶型Ⅲ的相对含量增加缓慢. 分子链中的立构缺陷和对称性降低导致样品中直接形成晶型Ⅲ.

    关键词

    聚丁烯-1; 熔体结晶; 晶型III

    Keywords

    Polybutylene-1; Melt crystallization; Form III

    等规聚丁烯(iPB-1)分子链具有左/右螺旋构象,宏观上表现为外消旋特性[

    1]. 不同条件下能够形成晶型I、II、III和I',有时发生多种晶型共存的情况,其中晶型I、晶型III和晶型I'可以稳定存在,而晶型II会自发转变成晶型I[2]. 具有实际应用价值的晶型I赋予聚丁烯-1抗冲击性、耐热蠕变性等优良性质,因而聚丁烯-1被誉为“塑料黄金”[3~5].

    晶型Ⅲ是具有4/1螺旋链的斜方晶系[

    6],与外消旋的晶型Ⅰ、晶型Ⅱ不同,为手性结构[1],晶胞参数为a = (1.238±0.008) nm, b = (0.888±0.006) nm, c = (0.756±0.005) nm[7],空间群结构为P212121. 获得晶型III主要途径有溶液结晶、应力诱导结晶、共聚或共混. 在良溶剂中,控制结晶温度可以形成晶型III结构[8~10]. 门永锋等[11]发现iPB-1的晶型I'和在二氧化碳超临界流体中形成的晶型III的结晶机理与溶液结晶相同. De Rosa等[12]发现含立体缺陷的聚丁烯-1在加压成型中可以形成晶型III结晶. 此外,在聚丁烯-1中加入成核剂也可在熔体结晶过程中形成晶型III[13,14].

    鉴于含立构缺陷的分子链可以形成晶格为4/1螺旋构象的晶型III,我们设计并合成了低等规度的聚丁烯-1,首次在常压下从均聚聚丁烯-1的熔体结晶中观测到了晶型III.

    1 实验部分

    通过茂金属催化剂在35 ℃的溶液中对丁烯-1进行聚合反应,聚合结束后用10%的酸化乙醇破坏并洗去催化剂,然后通过沉淀、过滤、干燥得到PB-1;核磁共振(NMR)表征结果表明合成的PB-1的等规度为41.1%;凝胶渗透色谱(GPC)测得合成PB-1的质量平均分子量为2.1×104 g/mol,分子量分布指数为1.86.

    广角X射线衍射(WAXD)测试利用D8 Advanced X射线衍射仪(BRUKER)测定PB-1的结晶结构. X射线波长λ = 0.15418 nm,测试角度范围是5°~30°,步长0.01°,扫描速度0.1 s/步. 示差扫描量热测试(DSC)使用DSC 450 (Linkam Scientific Instruments Ltd.)对样品的热性能在高纯度氮气保护下进行测定. 采用的测试程序为:升温至设定温度并保温10 min,之后冷却至室温,再次升温测定加热曲线,升降温速率均为10 ℃/min.

    众所周知,PB-1的晶型I、晶型I'和晶型III室温下可以稳定存在,晶型II会自发转变成晶型I[

    15,16].由于晶型II(200)晶面的典型衍射峰和晶型III(110)晶面的典型衍射峰重叠,因此待到晶型II转变成晶型I后通过WAXD测试更有利于观测晶型III是否存在. 图1(a)中的结果为初始样品加热到180 ℃以后降至室温,在室温下完成II-I晶型转变后测得的广角X射线衍射结果. 从图中的广角X射线衍射结果可明显观察到12.2°、13.9°、17.2°处的晶型III的特征衍射峰,证明熔体结晶过程中直接形成了稳定的晶型III. 图1(b)中的DSC升温曲线只表现出一个110 ℃左右的宽熔融峰,对应转变得到的大量的晶型I晶体的熔融,证明转变后的结晶以晶型I为主,低温区晶型III的熔融峰被晶型I熔融峰覆盖.

    fig

      

    Fig. 1  WAXD profile measured at room temperature (a) and DSC heating curve (b) of the PB-1 sample after heating to 180 ℃, cooling to room temperature and finishing crystallization transformation.

    icon 下载:  原图 | 高精图 | 低精图

    为了进一步了解样品加热到180 ℃熔融结束降至室温时的结晶结构,对降至室温后的样品立刻进行了广角X射线衍射和DSC测定,所得结果如图2所示. 图2(a)中X射线衍射结果表明转变前主要结晶为晶型II,还存在少量晶型III和晶型I或晶型I',通过图2(b)中DSC熔融曲线的熔融峰对应于降温过程生成晶型II晶体的熔融,晶型III和晶型I或I'的含量较低,吸热曲线没有观察到明显的对应熔融峰,由图1(b)可知,晶型I的熔融峰在110 ℃附近,图2(b)中的DSC升温曲线表明样品中没有晶型I在110 ℃左右的明显熔融吸热,因此确定为晶型I'.

    fig

      

    Fig. 2  WAXD profile measured at room temperature (a) and DSC heating curve (b) of the PB-1 sample after heating to 180 ℃ and cooling to room temperature.

    icon 下载:  原图 | 高精图 | 低精图

    从聚丁烯-1溶液结晶行为可以知道,溶液结晶温度对晶型III的形成有关键影响[

    8~10]. 聚丁烯-1结晶时形成的构象具有一定的温度依赖性,不同的温度下可能会形成不同比例的晶型结构. 因此,我们将初生原始样品加热到不同温度熔融后以相同速率降至室温,在晶型转变前以及完成后,通过WAXD对样品的结构进行了测定,发现晶型III的含量随熔融温度的变化而变化,结果如图3所示.

    fig

      

    Fig. 3  WAXD profiles measured at room temperature of the PB-1 samples after heating to various temperatures and then cooling to room temperatures before (a) and after (b) crystallization transformation.

    icon 下载:  原图 | 高精图 | 低精图

    为了更好地了解熔融温度对晶型III的影响,我们利用以下方程对相对含量进行了计算.

    fIII=AIII(110)AIII((110) + AI(110) (1)

    其中AⅢ(110)AI(110)分别为晶型III的(110)晶面和晶型I的(110)晶面特征衍射峰的积分面积. 通过Peakfit软件对样品衍射峰进行分峰并对峰面积进行积分可以获得处于10.0°和12.2°的2θ处的晶型Ⅰ和晶型Ⅰ'(110)晶面和晶型III(110)晶面的衍射峰面积,利用方程(1)计算了晶型III的相对含量,计算结果如图4所示. 从图4中的结果可知,晶型III的相对含量随熔融温度的升高而增加,但熔融温度高于150 ℃以后增长变缓.

    fig

      

    Fig. 4  The relative fraction of form Ⅲ (obtained from WAXD) in the PB-1 samples after heating to various temperatures, cooling to room temperature and finishing crystallization transformation.

    icon 下载:  原图 | 高精图 | 低精图

    从熵的角度考虑,晶型III的熵是聚丁烯-1晶型中最低的,因此晶型III的含量随熔融温度的变化可能与分子链的熵随温度的变化以及分子链中的立构缺陷对分子链调整构象排入晶格的行为有关. 晶型III晶格的4/1螺旋结构是聚丁烯-1结晶中最疏松的晶型,低等规度聚丁烯-1分子链立构缺陷、低对称性导致分子链构象调整和变化有利于4/1螺旋构象在晶格中的堆积,从而有利于晶型III的形成. 随着熔融温度的降低,更多的无规分子链形成螺旋,同时短螺旋延伸为较长的螺旋. 此时,具有“更短”和“更宽”链构象的晶型III不再是最有利的构象. 熔融温度高于150 ℃时,晶型III相对含量逐渐稳定,在充分熔融的熔体中达到平衡. 等规度的降低导致的分子链排列缺陷,有利于松散结构晶型III的形成,从而可以直接从均聚聚丁烯-1的熔体结晶中形成晶型III.

    2 结论

    综上所述,低等规度聚丁烯-1中的立构缺陷可以导致熔体结晶过程中直接形成稳定的晶型Ⅲ. 随熔融温度的升高,晶型Ⅲ的相对含量逐渐增加,高于150 ℃后,晶型Ⅲ的相对含量增加缓慢. 分子链中的立构缺陷和对称性降低导致分子链排列松散,从而有利于形成晶型Ⅲ. 本文所报道的PB-1的结晶行为将有助于理解PB-1的结晶和转变过程.

    参考文献

    1

    Lotz B. What can polymer crystal structure tell about polymer crystallization processes? Eur. Phys. J. E, 2000, 3(2), 185-194. doi:10.1007/s101890070031 [百度学术] 

    2

    Asada T.; Sasada J.; Onogi S. Rheo-optical studies of high polymers. XXI. The deformation process and crystal transformation in polybutene-1. Polym. J., 1972, 3(3), 350-356. doi:10.1295/polymj.3.350 [百度学术] 

    3

    Marigo A.; Marega C.; Cecchin G.; Collina G.; Ferrara G. Phase transition II → I in isotactic poly-1-butene: wide- and small-angle X-ray scattering measurements. Eur. Polym. J., 2000, 36(1), 131-136. doi:10.1016/s0014-3057(99)00043-9 [百度学术] 

    4

    Maruyama M.; Sakamoto Y.; Nozaki K.; Yamamoto T.; Kajioka H.; Toda A.; Yamada K. Kinetic study of the II-I phase transition of isotactic polybutene-1. Polymer, 2010, 51(23), 5532-5538. doi:10.1016/j.polymer.2010.09.066 [百度学术] 

    5

    Chvátalová L.; Beníček L.; Berková K.; Čermák R.; Obadal M.; Verney V.; Commereuc S. Effect of annealing temperature on phase composition and tensile properties in isotactic poly(1-butene). J. Appl. Polym. Sci., 2012, 124, 3407-3412. doi:10.1002/app.35360 [百度学术] 

    6

    Rosa C.; Auriemma F.; Ballesteros O. R.; Esposito F.; Laguzza D.; Girolamo R.; Resconi L. Crystallization properties and polymorphic behavior of isotactic poly(1-butene) from metallocene catalysts: the crystallization of form I from the melt. Macromolecules, 2009, 42(21), 8286-8297. doi:10.1021/ma901453x [百度学术] 

    7

    Cojazzi G.; Malta V.; Celotti G.; Zannetti R. Crystal structure of form III of isotactic poly-1-butene. Die Makromolekulare Chemie, 1976, 177(3), 915-926. doi:10.1002/macp.1976.021770328 [百度学术] 

    8

    Geacintov C.; Schotland R. S.; Miles R. B. Phase transition of crystalline polybutene-1 in form III. J. Polym. Sci. B Polym. Lett., 1963, 1(11), 587-591. doi:10.1002/pol.1963.110011103 [百度学术] 

    9

    Qiu X.; Hu C. L.; Li J. Q.; Huang D. H.; Jiang S. C. Role of conformation in crystal formation and transition of polybutene-1. CrystEngComm, 2019, 21(29), 4243-4249. doi:10.1039/c9ce00576e [百度学术] 

    10

    Rakus J. P.; Mason C. D. The direct formation of modification I' polybutene-1. J. Polym. Sci. B Polym. Lett., 1966, 4(7), 467-468. doi:10.1002/pol.1966.110040706 [百度学术] 

    11

    Lu Y.; Lyu D.; Han C. H.; Yang X.; Lee P. C.; Men Y. F. Crystallization of polybutene-1 into forms I', II, and III under high pressure CO2: in situ synchrotron X-ray diffraction, WAXD mapping, and DSC investigations. Macromolecules, 2022, 55(23), 10534-10542. doi:10.1021/acs.macromol.2c01807 [百度学术] 

    12

    De Rosa C.; Auriemma F.; Villani M.; Ruiz de Ballesteros O.; Di Girolamo R.; Tarallo O.; Malafronte A. Mechanical properties and stress-induced phase transformations of metallocene isotactic poly(1-butene): the influence of stereodefects. Macromolecules, 2014, 47(3), 1053-1064. doi:10.1021/ma402239k [百度学术] 

    13

    Aronne A.; Napolitano R.; Pirozzi B. Thermodynamic stabilities of the three crystalline forms of isotactic poly-1-butene as a function of temperature. Eur. Polym. J., 1986, 22(9), 703-706. doi:10.1016/0014-3057(86)90118-7 [百度学术] 

    14

    Miyoshi T.; Mamun A. Critical roles of molecular dynamics in the superior mechanical properties of isotactic-poly(1-butene) elucidated by solid-state NMR. Polym. J., 2012, 44(1), 65-71. doi:10.1038/pj.2011.66 [百度学术] 

    15

    Kopp S.; Wittmann J. C.; Lotz B. Phase II to phase I crystal transformation in polybutene-1 single crystals: a reinvestigation. J. Mater. Sci., 1994, 29(23), 6159-6166. doi:10.1007/bf00354556 [百度学术] 

    16

    Alfonso G. C.; Azzurri F.; Castellano M. Analysis of calorimetric curves detected during the polymorphic transformation of isotactic polybutene-1. J. Therm. Anal. Calorim., 2001, 66(1), 197-207. doi:10.1023/a:1012499918018 [百度学术] 

    更多指标>

    501

    浏览量

    325

    下载量

    1

    CSCD

    文章被引用时,请邮件提醒。
    提交
    工具集
    下载
    参考文献导出
    分享
    收藏
    添加至我的专辑

    相关文章

    暂无数据

    相关作者

    暂无数据

    相关机构

    暂无数据
    0