浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
[ "刘小孔,男,1985年生. 现任吉林大学化学学院/超分子结构与材料国家重点实验室教授、博士生导师;分别于2005和2010年在吉林大学化学学院获得学士和博士学位,师从孙俊奇教授;在攻读博士学位期间和博士毕业后,分别在德国马普胶体与界面研究所、澳大利亚南澳大学、加拿大阿尔伯塔大学从事研究工作;2017年入选国家高层次青年人才计划并受聘吉林大学教授,主要研究方向包括超分子聚合物材料、柔性电子材料与器件、自清洁涂层涂料等." ]
纸质出版日期:2023-09-20,
网络出版日期:2023-06-04,
收稿日期:2023-03-19,
录用日期:2023-04-18
扫 描 看 全 文
王振宇,牛文文,张卓强等.氢键交联超分子聚合物材料:从结构性能到功能应用[J].高分子学报,2023,54(09):1272-1289.
Wang Zhen-yu,Niu Wen-wen,Zhang Zhuo-qiang,et al.Hydrogen-bonded Supramolecular Polymeric Materials: From Structure and Performance to Functionality and Application[J].ACTA POLYMERICA SINICA,2023,54(09):1272-1289.
王振宇,牛文文,张卓强等.氢键交联超分子聚合物材料:从结构性能到功能应用[J].高分子学报,2023,54(09):1272-1289. DOI: 10.11777/j.issn1000-3304.2023.23064.
Wang Zhen-yu,Niu Wen-wen,Zhang Zhuo-qiang,et al.Hydrogen-bonded Supramolecular Polymeric Materials: From Structure and Performance to Functionality and Application[J].ACTA POLYMERICA SINICA,2023,54(09):1272-1289. DOI: 10.11777/j.issn1000-3304.2023.23064.
高分子材料的大量消耗与持续积累已经在全球范围内造成了严重的环境污染与资源浪费. 发展可修复、可循环、可降解和可回收的新一代高分子材料是解决上述挑战的根本途径. 基于动态可逆的非共价键将聚合物链段进行交联可以有效地构建这些材料. 本专论系统总结了我们课题组在氢键交联超分子聚合物材料方面的系列研究进展. 基于多重氢键的协同性与动态性、氢键与动态共价键的协同,以及材料微相结构的调控,发展了系列兼具高强度与高韧性的超分子聚合物材料,实现了材料的修复、循环、降解与回收;不仅突破了非共价交联高分子材料力学性能弱的瓶颈,而且化解了高分子材料强度与韧性的矛盾. 相关研究为发展传统高分子材料的可持续替代品提供了新的思路. 同时,发展了系列基于氢键交联的功能超分子聚合物材料,展示了其在柔性电子、固态锂电池及水下黏合剂等方面的应用.
The huge consumption of polymeric materials in the world has led to a dramatic increase in plastic waste
which has caused pervasive environmental pollution and severe waste of material resources. Crosslinking the polymer segments by noncovalent bonds is an effective method for developing healable
degradable
and recyclable polymeric materials
which could be a fundamental solution to the global plastic waste crisis. However
the noncovalently crosslinked polymeric materials usually exhibit low mechanical robustness
hindering their practical applications. In this feature article
we summarized the recent research progress of our group on hydrogen-bonded supramolecular polymeric materials with high mechanical robustness and various functionalities. Based on the synergistic effect of high-density hydrogen bonds
the cooperation of hydrogen bonds and dynamic covalent bonds
and the regulation of the microstructures of the polymeric materials
we have developed a series of healable
degradable
and recyclable supramolecular polymer materials that simultaneously possess high strength and high toughness. Our results not only break the bottleneck of poor mechanical properties of noncovalently crosslinked polymeric materials
but also reconcile the mutual exclusiveness between the strength and toughness of polymer materials. These studies provide new ideas for the development of the high-performance sustainable alternatives to traditional polymer materials. Moreover
we have developed a series of hydrogen-bonded functional supramolecular polymeric materials
and their applications in flexible electronic devices
solid-state lithium batteries
and underwater adhesives are also introduced in this feature article.
超分子高分子材料氢键力学性能可持续发展
Supramolecular materialsPolymeric materialsHydrogen bondsMechanical propertiesSustainability
Staudinger, H. Über polymerisation. Ber. Dtsch. Chem. Ges. A/B, 1920, 53(6), 1073-1085. doi:10.1002/cber.19200530627http://dx.doi.org/10.1002/cber.19200530627
Liu X. K.; Li Y. X.; Fang X.; Zhang Z. Q.; Li S. H.; Sun J. Q. Healable and recyclable polymeric materials with high mechanical robustness. ACS Mater. Lett., 2022, 4(4), 554-571. doi:10.1021/acsmaterialslett.1c00795http://dx.doi.org/10.1021/acsmaterialslett.1c00795
Jin Y. H.; Lei Z. P.; Taynton P.; Huang S. F.; Zhang W. Malleable and recyclable thermosets: the next generation of plastics. Matter, 2019, 1(6), 1456-1493. doi:10.1016/j.matt.2019.09.004http://dx.doi.org/10.1016/j.matt.2019.09.004
Qin B.; Zhang S.; Sun P.; Tang B. H.; Yin Z. H.; Cao X.; Chen Q.; Xu J. F.; Zhang X. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains. Adv. Mater., 2020, 32(36), e2000096. doi:10.1002/adma.202000096http://dx.doi.org/10.1002/adma.202000096
Geyer R.; Jambeck J. R.; Law K. L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782. doi:10.1126/sciadv.1700782http://dx.doi.org/10.1126/sciadv.1700782
MacLeod M.; Arp H. P. H.; Tekman M. B.; Jahnke A. The global threat from plastic pollution. Science, 2021, 373(6550), 61-65. doi:10.1126/science.abg5433http://dx.doi.org/10.1126/science.abg5433
Borrelle S. B.; Ringma J.; Law K. L.; Monnahan C. C.; Lebreton L.; McGivern A.; Murphy E.; Jambeck J.; Leonard G. H.; Hilleary M. A.; Eriksen M.; Possingham H. P.; de Frond H.; Gerber L. R.; Polidoro B.; Tahir A.; Bernard M.; Mallos N.; Barnes M.; Rochman C. M. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 2020, 369(6510), 1515-1518. doi:10.1126/science.aba3656http://dx.doi.org/10.1126/science.aba3656
Zhu Y. Q.; Romain C.; Williams C. K. Sustainable polymers from renewable resources. Nature, 2016, 540(7633), 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Cordier P.; Tournilhac F.; Soulié-Ziakovic C.; Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451(7181), 977-980. doi:10.1038/nature06669http://dx.doi.org/10.1038/nature06669
Ciesielski A.; Stefankiewicz A. R.; Hanke F.; Persson M.; Lehn J. M.; Samorì P. Rigid dimers formed through strong interdigitated H-bonds yield compact 1D supramolecular helical polymers. Small, 2011, 7(3), 342-350. doi:10.1002/smll.201001419http://dx.doi.org/10.1002/smll.201001419
Zhao P. J.; Wang L. L.; Xie L. F.; Wang W. Y.; Wang L. L.; Zhang C. Q.; Li L.; Feng S. Y. Mechanically strong, autonomous self-healing, and fully recyclable silicone coordination elastomers with unique photoluminescent properties. Macromol. Rapid Commun., 2021, 42(24), 2100519. doi:10.1002/marc.202100519http://dx.doi.org/10.1002/marc.202100519
Li C. H.; Zuo J. L. Self-healing polymers based on coordination bonds. Adv. Mater., 2019, 1903762. doi:10.1002/adma.201903762http://dx.doi.org/10.1002/adma.201903762
Liu J.; Tan C. S. Y.; Yu Z. Y.; Li N.; Abell C.; Scherman O. A. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater., 2017, 29(22), 1605325. doi:10.1002/adma.201605325http://dx.doi.org/10.1002/adma.201605325
Huang H. Q.; Wang Y. G.; Wang X. J.; Rehfeldt F.; Zhang K. Robust heterogeneous hydrogels with dynamic nanocrystal-polymer interface. Macromol. Rapid Commun., 2017, 38(12), 1600810. doi:10.1002/marc.201600810http://dx.doi.org/10.1002/marc.201600810
Srivastava S.; Levi A. E.; Goldfeld D. J.; Tirrell M. V. Structure, morphology, and rheology of polyelectrolyte complex hydrogels formed by self-assembly of oppositely charged triblock polyelectrolytes. Macromolecules, 2020, 53(14), 5763-5774. doi:10.1021/acs.macromol.0c00847http://dx.doi.org/10.1021/acs.macromol.0c00847
Luo F.; Sun T. L.; Nakajima T.; Kurokawa T.; Zhao Y.; Sato K.; Bin Ihsan A.; Li X. F.; Guo H. L.; Gong J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater., 2015, 27(17), 2722-2727. doi:10.1002/adma.201500140http://dx.doi.org/10.1002/adma.201500140
徐江飞, 张希. 中国超分子聚合物的研究与动态. 高分子学报, 2017, (1), 37-49. doi:10.11777/j.issn1000-3304.2017.16262http://dx.doi.org/10.11777/j.issn1000-3304.2017.16262
Fouquey C.; Lehn J. M.; Levelut A. M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater., 1990, 2(5), 254-257. doi:10.1002/adma.19900020506http://dx.doi.org/10.1002/adma.19900020506
Sijbesma R. P.; Beijer F. H.; Brunsveld L.; Folmer B. J. B.; Hirschberg J. H. K. K.; Lange R. F. M.; Lowe J. K. L.; Meijer E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science, 1997, 278(5343), 1601-1604. doi:10.1126/science.278.5343.1601http://dx.doi.org/10.1126/science.278.5343.1601
Sun P.; Qin B.; Xu J. F.; Zhang X. Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Prog. Polym. Sci., 2022, 124, 101486. doi:10.1016/j.progpolymsci.2021.101486http://dx.doi.org/10.1016/j.progpolymsci.2021.101486
Song Q.; Xu J. F.; Zhang X. Polymerization of supramonomers: a new way for fabricating supramolecular polymers and materials. J. Polym. Sci. A, 2017, 55, 604-609. doi:10.1002/pola.28404http://dx.doi.org/10.1002/pola.28404
徐江飞, 张希. 超分子聚合物制备新方法: 超分子单体的共价聚合. 高分子学报, 2017, (1), 3-8. doi:10.11777/j.issn1000-3304.2017.16235http://dx.doi.org/10.11777/j.issn1000-3304.2017.16235
Yan X. Z.; Wang F.; Zheng B.; Huang F. H. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev., 2012, 41(18), 6042-6065. doi:10.1039/c2cs35091bhttp://dx.doi.org/10.1039/c2cs35091b
Liu K.; Kang Y. T.; Wang Z. Q.; Zhang X. Reversible and adaptive functional supramolecular materials: "noncovalent interaction" matters. Adv. Mater., 2013, 25(39), 5530-5548. doi:10.1002/adma201302015http://dx.doi.org/10.1002/adma201302015
Sun F. Y.; Xu J. H.; Liu T.; Li F. F.; Poo Y.; Zhang Y. N.; Xiong R. H.; Huang C. B.; Fu J. J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horiz., 2021, 8(12), 3356-3367. doi:10.1039/d1mh01199ehttp://dx.doi.org/10.1039/d1mh01199e
Li C. H.; Wang C.; Keplinger C.; Zuo J. L.; Jin L. H.; Sun Y.; Zheng P.; Cao Y.; Lissel F.; Linder C.; You X. Z.; Bao Z. N. A highly stretchable autonomous self-healing elastomer. Nat. Chem., 2016, 8(6), 618-624. doi:10.1038/nchem.2492http://dx.doi.org/10.1038/nchem.2492
Lai J. C.; Jia X. Y.; Wang D. P.; Deng Y. B.; Zheng P.; Li C. H.; Zuo J. L.; Bao Z. N. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun., 2019, 10, 1164. doi:10.1038/s41467-019-09130-zhttp://dx.doi.org/10.1038/s41467-019-09130-z
张照明, 赵骏, 颜徐州. 协同的共价-超分子聚合物. 高分子学报, 2022, 53(7), 691-706. doi:10.11777/j.issn1000-3304.2022.22049http://dx.doi.org/10.11777/j.issn1000-3304.2022.22049
Deng Y. X.; Zhang Q.; Qu D. H. Emerging hydrogen-bond design for high-performance dynamic polymeric materials. ACS Mater. Lett., 2023, 5(2), 480-490. doi:10.1021/acsmaterialslett.2c00865http://dx.doi.org/10.1021/acsmaterialslett.2c00865
Kushner A. M.; Guan Z. B. Modular design in natural and biomimetic soft materials. Angew. Chem. Int. Ed., 2011, 50(39), 9026-9057. doi:10.1002/anie.201006496http://dx.doi.org/10.1002/anie.201006496
Wegst U. G. K.; Bai H.; Saiz E.; Tomsia A. P.; Ritchie R. O. Bioinspired structural materials. Nat. Mater., 2015, 14(1), 23-36. doi:10.1038/nmat4089http://dx.doi.org/10.1038/nmat4089
Chen J. S.; Zeng H. B. Mussel-inspired reversible molecular adhesion for fabricating self-healing materials. Langmuir, 2022, 38(43), 12999-13008. doi:10.1021/acs.langmuir.2c02372http://dx.doi.org/10.1021/acs.langmuir.2c02372
Xu Q. A.; Xu M.; Lin C. Y.; Zhao Q. A.; Zhang R.; Dong X. X.; Zhang Y. D.; Tian S. C.; Tian Y.; Xia Z. H. Metal coordination-mediated functional grading and self-healing in mussel byssus cuticle. Adv. Sci., 2019, 6(23), 1902043. doi:10.1002/advs.201902043http://dx.doi.org/10.1002/advs.201902043
Shi C. Y.; He D. D.; Zhang Q.; Tong F.; Shi Z. T.; Tian H.; Qu D. H. Robust and dynamic underwater adhesives enabled by catechol-functionalized poly(disulfides) network. Natl. Sci. Rev., 2023, 10(2), nwac139. doi:10.1093/nsr/nwac139http://dx.doi.org/10.1093/nsr/nwac139
Zhang C.; Wu B. H.; Zhou Y. S.; Zhou F.; Liu W. M.; Wang Z. K. Mussel-inspired hydrogels: from design principles to promising applications. Chem. Soc. Rev., 2020, 49(11), 3605-3637. doi:10.1039/c9cs00849ghttp://dx.doi.org/10.1039/c9cs00849g
Keten S.; Xu Z. P.; Ihle B.; Buehler M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater., 2010, 9(4), 359-367. doi:10.1038/nmat2704http://dx.doi.org/10.1038/nmat2704
Keten S.; Buehler M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett., 2008, 8(2), 743-748. doi:10.1021/nl0731670http://dx.doi.org/10.1021/nl0731670
Lee S. M.; Pippel E.; Gösele U.; Dresbach C.; Qin Y.; Chandran C. V.; Bräuniger T.; Hause G.; Knez M. Greatly increased toughness of infiltrated spider silk. Science, 2009, 324(5926), 488-492. doi:10.1126/science.1168162http://dx.doi.org/10.1126/science.1168162
Du N.; Liu X. Y.; Narayanan J.; Li L.; Lim M. L. M.; Li D. Q. Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J., 2006, 91(12), 4528-4535. doi:10.1529/biophysj.106.089144http://dx.doi.org/10.1529/biophysj.106.089144
Liu X. K.; Sun J. Q. Polymeric materials reinforced by noncovalent aggregates of polymer chains. Aggregate, 2021, 2(5), e109. doi:10.1002/agt2.109http://dx.doi.org/10.1002/agt2.109
Liu D.; Yu Q.; Kabra S.; Jiang M.; Forna-Kreutzer P.; Zhang R. P.; Payne M.; Walsh F.; Gludovatz B.; Asta M.; Minor A. M.; George E. P.; Ritchie R. O. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science, 2022, 378(6623), 978-983. doi:10.1126/science.abp8070http://dx.doi.org/10.1126/science.abp8070
何曼君, 张红东, 陈维孝. 高分子物理. 第3版. 上海: 复旦大学出版社, 2008.
Ritchie R. O. The conflicts between strength and toughness. Nat. Mater., 2011, 10(11), 817-822. doi:10.1038/nmat3115http://dx.doi.org/10.1038/nmat3115
Filippidi E.; Cristiani T.; Eisenbach C.; Waite J.; Israelachvili J.; Ahn B. K.; Valentine M. Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 2017, 358, 502-505. doi:10.1126/science.aao0350http://dx.doi.org/10.1126/science.aao0350
Song P. G.; Wang H. High-performance polymeric materials through hydrogen-bond cross-linking. Adv. Mater., 2020, 32(18), 1901244. doi:10.1002/adma.201901244http://dx.doi.org/10.1002/adma.201901244
Stubbins A.; Law K. L.; Muñoz S. E.; Bianchi T. S.; Zhu L. X. Plastics in the earth system. Science, 2021, 373(6550), 51-55. doi:10.1126/science.abb0354http://dx.doi.org/10.1126/science.abb0354
Niu W. W.; Zhu Y. L.; Wang R.; Lu Z. Y.; Liu X. K.; Sun J. Q. Remalleable, healable, and highly sustainable supramolecular polymeric materials combining superhigh strength and ultrahigh toughness. ACS Appl. Mater. Interfaces, 2020, 12(27), 30805-30814. doi:10.1021/acsami.0c06995http://dx.doi.org/10.1021/acsami.0c06995
Sun H. X.; Fang X.; Zhu Y. L.; Yu Z. C.; Lu X. Y.; Sun J. Q. Highly tough, degradable, and water-resistant bio-based supramolecular plastics comprised of cellulose and tannic acid. J. Mater. Chem. A, 2023, 11(13), 7193-7200. doi:10.1039/d3ta00351ehttp://dx.doi.org/10.1039/d3ta00351e
Fang X.; Qing Y. N.; Lou Y.; Gao X.; Wang H.; Wang X. Y.; Li Y. X.; Qin Y. G.; Sun J. Q. Degradable, recyclable, water-resistant, and eco-friendly poly(vinyl alcohol)-based supramolecular plastics. ACS Mater. Lett., 2022, 4(6), 1132-1138. doi:10.1021/acsmaterialslett.2c00283http://dx.doi.org/10.1021/acsmaterialslett.2c00283
Li Y. X.; Li S. H.; Sun J. Q. Degradable poly(vinyl alcohol)-based supramolecular plastics with high mechanical strength in a watery environment. Adv. Mater., 2021, 33(13), 2007371. doi:10.1002/adma.202007371http://dx.doi.org/10.1002/adma.202007371
Markvicka E. J.; Bartlett M. D.; Huang X. N.; Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater., 2018, 17(7), 618-624. doi:10.1038/s41563-018-0084-7http://dx.doi.org/10.1038/s41563-018-0084-7
Kang J.; Son D.; Wang G.J N.; Liu Y. X.; Lopez J.; Kim Y.; Oh J. Y.; Katsumata T.; Mun J.; Lee Y.; Jin L. H.; Tok J. B. H.; Bao Z. N.Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater., 2018, 30(13), 1706846. doi:10.1002/adma.201706846http://dx.doi.org/10.1002/adma.201706846
Khatib M.; Zohar O.; Saliba W.; Srebnik S.; Haick H. Highly efficient and water-insensitive self-healing elastomer for wet and underwater electronics. Adv. Funct. Mater., 2020, 30(22), 1910196. doi:10.1002/adfm.201910196http://dx.doi.org/10.1002/adfm.201910196
Li Z. Q.; Zhu Y. L.; Niu W. W.; Yang X. A.; Jiang Z. Y.; Lu Z. Y.; Liu X. K.; Sun J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater., 2021, 33(27), 2101498. doi:10.1002/adma.202101498http://dx.doi.org/10.1002/adma.202101498
Zhang Z. P.; Rong M. Z.; Zhang M. Q. Mechanically robust, self-healable, and highly stretchable "living" crosslinked polyurethane based on a reversible C―C bond. Adv. Funct. Mater., 2018, 28(11), 1706050. doi:10.1002/adfm.201706050http://dx.doi.org/10.1002/adfm.201706050
Noack M.; Merindol R.; Zhu B. L.; Benitez A.; Hackelbusch S.; Beckert F.; Seiffert S.; Mülhaupt R.; Walther A. Light-fueled, spatiotemporal modulation of mechanical properties and rapid self-healing of graphene-doped supramolecular elastomers. Adv. Funct. Mater., 2017, 27(25), 1700767. doi:10.1002/adfm.201700767http://dx.doi.org/10.1002/adfm.201700767
An N.; Wang X. H.; Li Y. X.; Zhang L.; Lu Z. Y.; Sun J. Q. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv. Mater., 2019, 31(41), 1904882. doi:10.1002/adma.201904882http://dx.doi.org/10.1002/adma.201904882
Yanagisawa Y.; Nan Y. L.; Okuro K.; Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science, 2018, 359, 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Zhu J. J.; Chen G. Y.; Yu L.; Xu H. L.; Liu X. K.; Sun J. Q. Mechanically strong and highly stiff supramolecular polymer composites repairable at ambient conditions. CCS Chem., 2020, 2(4), 280-292. doi:10.31635/ccschem.020.201900118http://dx.doi.org/10.31635/ccschem.020.201900118
Wang Y. C.; Li M. S.; Chen J. L.; Tao Y. H.; Wang X. H. O-to-S substitution enables dovetailing conflicting cyclizability, polymerizability, and recyclability: dithiolactone vs. dilactone. Angew. Chem. Int. Ed., 2021, 60(41), 22547-22553. doi:10.1002/anie.202109767http://dx.doi.org/10.1002/anie.202109767
Sathe D.; Zhou J. F.; Chen H. L.; Su H. W.; Xie W.; Hsu T. G.; Schrage B. R.; Smith T.; Ziegler C. J.; Wang J. P. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem., 2021, 13(8), 743-750. doi:10.1038/s41557-021-00748-5http://dx.doi.org/10.1038/s41557-021-00748-5
Cywar R. M.; Rorrer N. A.; Mayes H. B.; Maurya A. K.; Tassone C. J.; Beckham G. T.; Chen E. Y. X. Redesigned hybrid nylons with optical clarity and chemical recyclability. J. Am. Chem. Soc., 2022, 144(12), 5366-5376. doi:10.1021/jacs.1c12611http://dx.doi.org/10.1021/jacs.1c12611
Abel B. A.; Snyder R. L.; Coates G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science, 2021, 373(6556), 783-789. doi:10.1126/science.abh0626http://dx.doi.org/10.1126/science.abh0626
Christensen P. R.; Scheuermann A. M.; Loeffler K. E.; Helms B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem., 2019, 11(5), 442-448. doi:10.1038/s41557-019-0249-2http://dx.doi.org/10.1038/s41557-019-0249-2
Neal J. A.; Mozhdehi D.; Guan Z. B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc., 2015, 137(14), 4846-4850. doi:10.1021/jacs.5b01601http://dx.doi.org/10.1021/jacs.5b01601
Song H. B.; Baranek A.; Worrell B. T.; Cook W. D.; Bowman C. N. Photopolymerized triazole-based glassy polymer networks with superior tensile toughness. Adv. Funct. Mater., 2018, 28(22), 1801095. doi:10.1002/adfm.201801095http://dx.doi.org/10.1002/adfm.201801095
Liu Y. J.; Tang Z. H.; Wu S. W.; Guo B. C. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers. ACS Macro Lett., 2019, 8(2), 193-199. doi:10.1021/acsmacrolett.9b00012http://dx.doi.org/10.1021/acsmacrolett.9b00012
Zhang Z. Q.; Lei D.; Zhang C. X.; Wang Z. Y.; Jin Y. H.; Zhang W.; Liu X. K.; Sun J. Q. Strong and tough supramolecular covalent adaptable networks with room-temperature closed-loop recyclability. Adv. Mater., 2023, 35(7), 2208619. doi:10.1002/adma.202208619http://dx.doi.org/10.1002/adma.202208619
Wang B. S.; Zhang Q.; Wang Z. Q.; Shi C. Y.; Gong X. Q.; Tian H.; Qu D. H. Acid-catalyzed disulfide-mediated reversible polymerization for recyclable dynamic covalent materials. Angew. Chem. Int. Ed., 2023, 62(11) , e202215329. doi:10.1002/anie.202215329http://dx.doi.org/10.1002/anie.202215329
Shi C. Y.; Zhang Q.; Wang B. S.; He D. D.; Tian H.; Qu D. H. Highly ordered supramolecular assembled networks tailored by bioinspired H-bonding confinement for recyclable ion-transport materials. CCS Chem., 2022, Doi: 10.31635/ccschem.022.202202158.http://dx.doi.org/10.31635/ccschem.022.202202158.
Shi C. Y.; He D. D.; Wang B. S.; Zhang Q.; Tian H.; Qu D. H. A dynamic supramolecular H-bonding network with orthogonally tunable clusteroluminescence. Angew. Chem. Int. Ed., 2023, 62(3) , e202214422. doi:10.1002/anie.202214422http://dx.doi.org/10.1002/anie.202214422
Lessard J. J.; Garcia L. F.; Easterling C. P.; Sims M. B.; Bentz K. C.; Arencibia S.; Savin D. A.; Sumerlin B. S. Catalyst-free vitrimers from vinyl polymers. Macromolecules, 2019, 52(5), 2105-2111. doi:10.1021/acs.macromol.8b02477http://dx.doi.org/10.1021/acs.macromol.8b02477
Yu H. T.; Feng Y. Y.; Gao L.; Chen C.; Zhang Z. X.; Feng W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules, 2020, 53(16), 7161-7170. doi:10.1021/acs.macromol.9b02544http://dx.doi.org/10.1021/acs.macromol.9b02544
Montarnal D.; Capelot M.; Tournilhac F.; Leibler L. Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058), 965-968. doi:10.1126/science.1212648http://dx.doi.org/10.1126/science.1212648
Wang X. H.; Li Y. X.; Qian Y. H.; Qi H.; Li J. A.; Sun J. Q. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv. Mater., 2018, 30(36), 1803854. doi:10.1002/adma.201803854http://dx.doi.org/10.1002/adma.201803854
Wang X. H.; Wang Y. L.; Yang X. A.; Lu Z. Y.; Men Y. F.; Sun J. Q. Skin-inspired healable conductive elastomers with exceptional strain-adaptive stiffening and damage tolerance. Macromolecules, 2021, 54(23), 10767-10775. doi:10.1021/acs.macromol.1c01976http://dx.doi.org/10.1021/acs.macromol.1c01976
Guo Y. F.; Yang L.; Zhang L. Z.; Chen S.; Sun L. J.; Gu S. J.; You Z. W. A dynamically hybrid crosslinked elastomer for room-temperature recyclable flexible electronic devices. Adv. Funct. Mater., 2021, 31(50), 2106281. doi:10.1002/adfm.202106281http://dx.doi.org/10.1002/adfm.202106281
Zou Z. N.; Zhu C. P.; Li Y.; Lei X. F.; Zhang W.; Xiao J. L. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv., 2018, 4(2), eaaq0508. doi:10.1126/sciadv.aaq0508http://dx.doi.org/10.1126/sciadv.aaq0508
Yang Y.; Terentjev E. M.; Zhang Y. B.; Chen Q. M.; Zhao Y. A.; Wei Y.; Ji Y. Reprocessable thermoset soft actuators. Angew. Chem. Int. Ed., 2019, 58(48), 17474-17479. doi:10.1002/anie.201911612http://dx.doi.org/10.1002/anie.201911612
Li T. Q.; Wang Y. T.; Li S. H.; Liu X. K.; Sun J. Q. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater., 2020, 32(32), 2002706. doi:10.1002/adma.202002706http://dx.doi.org/10.1002/adma.202002706
DeNardis, L. The Internet in Everything. New Haven: Yale University Press, 2020. 3-24. doi:10.12987/yale/9780300233070.003.0001http://dx.doi.org/10.12987/yale/9780300233070.003.0001
Zhang X. H.; Sheng N. N.; Wang L. N.; Tan Y. Q.; Liu C. Z.; Xia Y. Z.; Nie Z. H.; Sui K. Y. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz., 2019, 6(2), 326-333. doi:10.1039/c8mh01188ehttp://dx.doi.org/10.1039/c8mh01188e
Liu K.; Jiang Y. W.; Bao Z. N.; Yan X. Z. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem., 2019, 1(4), 431-447. doi:10.31635/ccschem.019.20190048http://dx.doi.org/10.31635/ccschem.019.20190048
Niu W. W.; Liu X. K. Stretchable ionic conductors for soft electronics. Macromol. Rapid Commun., 2022, 43(23), 2200512. doi:10.1002/marc.202200512http://dx.doi.org/10.1002/marc.202200512
Qu X. X.; Niu W. W.; Wang R.; Li Z. Q.; Guo Y. E.; Liu X. K.; Sun J. Q. Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Mater. Horiz., 2020, 7(11), 2994-3004. doi:10.1039/d0mh01230khttp://dx.doi.org/10.1039/d0mh01230k
Zhang X. Y.; Wang A. X.; Liu X. J.; Luo J. Y. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res., 2019, 52(11), 3223-3232. doi:10.1021/acs.accounts.9b00437http://dx.doi.org/10.1021/acs.accounts.9b00437
Lopez J.; Mackanic D.; Cui Y.; Bao Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater., 2019, 4, 312-330. doi:10.1038/s41578-019-0103-6http://dx.doi.org/10.1038/s41578-019-0103-6
Zhang Y.; Zuo T. T.; Popovic J.; Lim K.; Yin Y. X.; Maier J.; Guo Y. G. Towards better Li metal anodes: challenges and strategies. Mater. Today, 2020, 33, 56-74. doi:10.1016/j.mattod.2019.09.018http://dx.doi.org/10.1016/j.mattod.2019.09.018
Liu H.; Cheng X. B.; Huang J. Q.; Yuan H.; Lu Y.; Yan C.; Zhu G. L.; Xu R.; Zhao C. Z.; Hou L. P.; He C.; Kaskel S.; Zhang Q. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett., 2020, 5(3), 833-843. doi:10.1021/acsenergylett.9b02660http://dx.doi.org/10.1021/acsenergylett.9b02660
Wu F.; Zhang K.; Liu Y. R.; Gao H. C.; Bai Y.; Wang X. R.; Wu C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater., 2020, 33, 26-54. doi:10.1016/j.ensm.2020.08.002http://dx.doi.org/10.1016/j.ensm.2020.08.002
Kim K. J.; Balaish M.; Wadaguchi M.; Kong L. P.; Rupp J. L. M. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater., 2021, 11(1), 2002689. doi:10.1002/aenm.202002689http://dx.doi.org/10.1002/aenm.202002689
Guo Y. E.; Qu X. X.; Hu Z. Y.; Zhu J. J.; Niu W. W.; Liu X. K. Highly elastic and mechanically robust polymer electrolytes with high ionic conductivity and adhesiveness for high-performance lithium metal batteries. J. Mater. Chem. A, 2021, 9(23), 13597-13607. doi:10.1039/d1ta02579ahttp://dx.doi.org/10.1039/d1ta02579a
Webster I. Recent developments in pressure-sensitive adhesives for medical applications. Int. J. Adhesion Adhesives, 1997, 17(1), 69-73. doi:10.1016/s0143-7496(96)00024-3http://dx.doi.org/10.1016/s0143-7496(96)00024-3
Wang Y. J.; He Y.; Zheng S. Y.; Xu Z. Y.; Li J. A.; Zhao Y. P.; Chen L.; Liu W. G. Polymer pressure-sensitive adhesive with a temperature-insensitive loss factor operating under water and oil. Adv. Funct. Mater., 2021, 31(48), 2104296. doi:10.1002/adfm.202104296http://dx.doi.org/10.1002/adfm.202104296
Li M.; Li W. J.; Guan Q. W.; Dai X. L.; Lv J.; Xia Z. H.; Ong W. J.; Saiz E.; Hou X. A tough reversible biomimetic transparent adhesive tape with pressure-sensitive and wet-cleaning properties. ACS Nano, 2021, 15(12), 19194-19201. doi:10.1021/acsnano.1c03882http://dx.doi.org/10.1021/acsnano.1c03882
Tiu B. D. B.; Delparastan P.; Ney M. R.; Gerst M.; Messersmith P. B. Cooperativity of catechols and amines in high-performance dry/wet adhesives. Angew. Chem. Int. Ed., 2020, 59(38), 16616-16624. doi:10.1002/anie.202005946http://dx.doi.org/10.1002/anie.202005946
White J. D.; Wilker J. J. Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules, 2011, 44(13), 5085-5088. doi:10.1021/ma201044xhttp://dx.doi.org/10.1021/ma201044x
Xie C. M.; Wang X. A.; He H. A.; Ding Y. H.; Lu X. Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater., 2020, 30(25), 1909954. doi:10.1002/adfm.201909954http://dx.doi.org/10.1002/adfm.201909954
Lee B. P.; Messersmith P. B.; Israelachvili J. N.; Waite J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res., 2011, 41, 99-132. doi:10.1146/annurev-matsci-062910-100429http://dx.doi.org/10.1146/annurev-matsci-062910-100429
Heinzmann C.; Weder C.; de Espinosa L. M. Supramolecular polymer adhesives: advanced materials inspired by nature. Chem. Soc. Rev., 2016, 45(2), 342-358. doi:10.1039/c5cs00477bhttp://dx.doi.org/10.1039/c5cs00477b
Han L.; Wang M. H.; Prieto-López L. O.; Deng X.; Cui J. X. Self-hydrophobization in a dynamic hydrogel for creating nonspecific repeatable underwater adhesion. Adv. Funct. Mater., 2020, 30(7), 1907064. doi:10.1002/adfm.201907064http://dx.doi.org/10.1002/adfm.201907064
Fan H. L.; Wang J. H.; Tao Z.; Huang J. C.; Rao P.; Kurokawa T.; Gong J. P. Adjacent cationic-aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater. Nat. Commun., 2019, 10, 5127. doi:10.1038/s41467-019-13171-9http://dx.doi.org/10.1038/s41467-019-13171-9
Xu L. J.; Gao S.; Guo Q. R.; Wang C.; Qiao Y.; Qiu D. A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater., 2020, 32(52), 2004579. doi:10.1002/adma.202004579http://dx.doi.org/10.1002/adma.202004579
Niu W. W.; Zhu J. J.; Zhang W.; Liu X. K. Simply formulated dry pressure-sensitive adhesives for substrate-independent underwater adhesion. ACS Mater. Lett., 2022, 4(2), 410-417. doi:10.1021/acsmaterialslett.1c00826http://dx.doi.org/10.1021/acsmaterialslett.1c00826
0
浏览量
283
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构