浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 成都 610065
E-mail: shilingying@scu.edu.cn
纸质出版日期:2023-10-20,
网络出版日期:2023-07-11,
收稿日期:2023-03-27,
录用日期:2023-06-02
扫 描 看 全 文
费志雄,翁琳,廖芬等.氢键作用构建含硅嵌段共聚物超分子复合物及其自组装行为研究[J].高分子学报,2023,54(10):1547-1554.
Fei Zhi-xiong,Weng Lin,Liao Fen,et al.Self-assembly of Supramolecular Silicon-containing Block Copolymers Based on Hydrogen Bonding Interaction[J].ACTA POLYMERICA SINICA,2023,54(10):1547-1554.
费志雄,翁琳,廖芬等.氢键作用构建含硅嵌段共聚物超分子复合物及其自组装行为研究[J].高分子学报,2023,54(10):1547-1554. DOI: 10.11777/j.issn1000-3304.2023.23075.
Fei Zhi-xiong,Weng Lin,Liao Fen,et al.Self-assembly of Supramolecular Silicon-containing Block Copolymers Based on Hydrogen Bonding Interaction[J].ACTA POLYMERICA SINICA,2023,54(10):1547-1554. DOI: 10.11777/j.issn1000-3304.2023.23075.
通过聚二甲基硅氧烷-
b
-聚(2-乙烯基吡啶) (PDMS-
b
-P2VP
DV)与4-羟基偶氮苯(Azo)之间的氢键相互作用,构建了具有光响应的含硅嵌段共聚物(DV(Azo)
x
)超分子复合体系,研究了该复合体系的自组装行为. 利用溶液共混法制备了具有不同4-羟基偶氮苯含量的超分子嵌段共聚物. 通过傅里叶红外光谱(FTIR)、示差扫描量热仪(DSC)、小角X射线散射(SAXS)和透射电镜(TEM)等研究了小分子与共聚物之间的相互作用以及小分子含量对该复合体系自组装结构的影响规律. 实验结果表明4-羟基偶氮苯与PDMS-
b
-P2VP中吡啶基团之间能有效形成氢键. Azo的加入会降低P2VP的玻璃化转变温度,提高P2VP嵌段的体积分数,从而导致复合物自组装结构发生层状到六方柱状再到体心立方结构的转变. 而当Azo摩尔比
>
0.5时,Azo自身聚集比较严重,相分离结构变得无序. 后续研究将关注偶氮苯分子构象变化调控薄膜态自组装结构取向行为.
The self-assembly behavior of the supramolecular complex system of polydimethylsiloxane-
b
-poly(2-vinylpyridine) (PDMS-
b
-P2VP
DV) and 4-hydroxyazobenzene (Azo) based on hydrogen bonding interaction was investigated. Supramolecular block copolymer was prepared by solution blending method. The interaction between Azo molecules and PDMS-
b
-P2VP and the effect of Azo molecules content on the self-assembly behavior of the system were investigated by Fourier transform infrared (FTIR) spectroscopy
differential scanning calorimetry (DSC)
small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The results demonstrate that Azo can effectively form hydrogen bond with pyridine group in PDMS-
b
-P2VP. The glass transition temperature of P2VP block decreased with the increase of the molar ratio (
x
) of Azo/2VP. With
x
value changed from 0 to 0.5
the supramolecular block copolymers presented lamellae (LAM)
hexagonally packed cylinder (HEX)
and body centered cubic (BCC) structures. However
when
x
is higher than 0.5
the self-aggregation of Azo occurred and the phase-separated nanostructure becomes disordered. Our future work will focus on the light-responsive structure regulation of these supramolecular block copolymers.
聚二甲基硅氧烷聚(2-乙烯基吡啶)氢键自组装超分子嵌段共聚物
PolydimethylsiloxanePoly(2-vinylpyridine)Hydrogen bondSelf-assemblySupramolecular block copolymer
Valkama S.; Kosonen H.; Ruokolainen J.; Haatainen T.; Torkkeli M.; Serimaa R.; ten Brinke G.; Ikkala O. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nat. Mater., 2004, 3(12), 872-876. doi:10.1038/nmat1254http://dx.doi.org/10.1038/nmat1254
Ikkala O.; ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564), 2407-2409. doi:10.1126/science.1067794http://dx.doi.org/10.1126/science.1067794
Stefik M.; Guldin S.; Vignolini S.; Wiesner U.; Steiner U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev., 2015, 44(15), 5076-5091. doi:10.1039/c4cs00517ahttp://dx.doi.org/10.1039/c4cs00517a
Bates F. S.; Fredrickson G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem., 1990, 41, 525-557. doi:10.1146/annurev.pc.41.100190.002521http://dx.doi.org/10.1146/annurev.pc.41.100190.002521
Bates F. S. Network phases in block copolymer melts. MRS Bull., 2005, 30(7), 525-532. doi:10.1557/mrs2005.145http://dx.doi.org/10.1557/mrs2005.145
Kimishima K.; Koga T.; Hashimoto T. Order-order phase transition between spherical and cylindrical microdomain structures of block copolymer. I. Mechanism of the transition. Macromolecules, 2000, 33(3), 968-977. doi:10.1021/ma991470khttp://dx.doi.org/10.1021/ma991470k
Zha W. B.; Han C. D.; Lee D. H.; Han S. H.; Kim J. K.; Kang J. H.; Park C. Origin of the difference in order-disorder transition temperature between polystyrene-block-poly(2-vinylpyridine) and polystyrene-block-poly(4-vinylpyridine) copolymers. Macromolecules, 2007, 40(6), 2109-2119. doi:10.1021/ma062516uhttp://dx.doi.org/10.1021/ma062516u
Lin S. H.; Ho C. C.; Su W. F. Cylinder-to-gyroid phase transition in a rod-coil diblock copolymer. Soft Matter, 2012, 8(18), 4890-4893. doi:10.1039/c2sm07473ghttp://dx.doi.org/10.1039/c2sm07473g
Sinturel C.; Bates F. S.; Hillmyer M. A. High χ-low N block polymers: How far can we go? ACS Macro Lett., 2015, 4(9), 1044-1050. doi:10.1021/acsmacrolett.5b00472http://dx.doi.org/10.1021/acsmacrolett.5b00472
Aissou K.; Mumtaz M.; Fleury G.; Portale G.; Navarro C.; Cloutet E.; Brochon C.; Ross C. A.; Hadziioannou G. Sub-10 nm features obtained from directed self-assembly of semicrystalline polycarbosilane-based block copolymer thin films. Adv. Mater., 2015, 27(2), 261-265. doi:10.1002/adma.201404077http://dx.doi.org/10.1002/adma.201404077
陶永鑫, 陈蕾蕾, 刘一寰, 胡欣, 朱宁, 郭凯. 面向亚5 nm图案化含硅嵌段共聚物的合成与自组装. 高分子学报, 2022, 53(12), 1445-1458. doi:10.11777/j.issn1000-3304.2022.22133http://dx.doi.org/10.11777/j.issn1000-3304.2022.22133
Naidu S.; Ahn H.; Gong J.; Kim B.; Ryu D. Y. Phase behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) copolymer. Macromolecules, 2011, 44(15), 6085-6093. doi:10.1021/ma200429vhttp://dx.doi.org/10.1021/ma200429v
Huang J. E.; Wang R. Y.; Tong Z. Z.; Xu J. T.; Fan Z. Q. Influence of ionic species on the microphase separation behavior of PCL-b-PEO/salt hybrids. Macromolecules, 2014, 47(23), 8359-8367. doi:10.1021/ma502057qhttp://dx.doi.org/10.1021/ma502057q
Pal J.; Sanwaria S.; Srivastava R.; Nandan B.; Horechyy A.; Stamm M.; Chen H. L. Hairy polymer nanofibers via self-assembly of block copolymers. J. Mater. Chem., 2012, 22(48), 25102-25107. doi:10.1039/c2jm33824fhttp://dx.doi.org/10.1039/c2jm33824f
Sidorenko A.; Tokarev I.; Minko S.; Stamm M. Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. J. Am. Chem. Soc., 2003, 125(40), 12211-12216. doi:10.1021/ja036085whttp://dx.doi.org/10.1021/ja036085w
Kuila B. K.; Chakraborty C.; Malik S. A synergistic coassembly of block copolymer and fluorescent probe in thin film for fine-tuning the block copolymer morphology and luminescence property of the probe molecules. Macromolecules, 2013, 46(2), 484-492. doi:10.1021/ma302041fhttp://dx.doi.org/10.1021/ma302041f
Tokarev I.; Krenek R.; Burkov Y.; Schmeisser D.; Sidorenko A.; Minko S.; Stamm M. Microphase separation in thin films of poly(styrene-block-4-vinylpyridine) copolymer-2-(4'-hydroxybenzeneazo)benzoic acid assembly. Macromolecules, 2005, 38(2), 507-516. doi:10.1021/ma048864ihttp://dx.doi.org/10.1021/ma048864i
Soininen A. J.; Tanionou I.; ten Brummelhuis N.; Schlaad H.; Hadjichristidis N.; Ikkala O.; Raula J.; Mezzenga R.; Ruokolainen J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules, 2012, 45(17), 7091-7097. doi:10.1021/ma300820qhttp://dx.doi.org/10.1021/ma300820q
Naidu S.; Ahn H.; Lee H.; Jung Y. M.; Ryu D. Y. Transition behavior of hydrogen-bonding-mediated block copolymer mixtures. Macromolecules, 2010, 43(14), 6120-6126. doi:10.1021/ma100290vhttp://dx.doi.org/10.1021/ma100290v
Shi L. Y.; Zhou Y.; Fan X. H.; Shen Z. H. Remarkably rich variety of nanostructures and order-order transitions in a rod-coil diblock copolymer. Macromolecules, 2013, 46(13), 5308-5316. doi:10.1021/ma400944zhttp://dx.doi.org/10.1021/ma400944z
Tenneti K. K.; Chen X. F.; Li C. Y.; Shen Z. H.; Wan X. H.; Fan X. H.; Zhou Q. F.; Rong L. X.; Hsiao B. S. Influence of LC content on the phase structures of side-chain liquid crystalline block copolymers with bent-core mesogens. Macromolecules, 2009, 42(10), 3510-3517. doi:10.1021/ma8027563http://dx.doi.org/10.1021/ma8027563
Zhang Z. Y.; Zhang Q. K.; Shen Z. H.; Yu J. P.; Wu Y. X.; Fan X. H. Synthesis and characterization of new liquid crystalline thermoplastic elastomers containing mesogen-jacketed liquid crystalline polymers. Macromolecules, 2016, 49(2), 475-482. doi:10.1021/acs.macromol.5b02630http://dx.doi.org/10.1021/acs.macromol.5b02630
Wang T. J.; Li X. A.; Dong Z. J.; Huang S. A.; Yu H. F. Vertical orientation of nanocylinders in liquid-crystalline block copolymers directed by light. ACS Appl. Mater. Interfaces, 2017, 9(29), 24864-24872. doi:10.1021/acsami.7b06086http://dx.doi.org/10.1021/acsami.7b06086
Cai F.; Song T. F.; Yang B. W.; Lv X. D.; Zhang L. Q.; Yu H. F. Enhancement of solar thermal fuel by microphase separation and nanoconfinement of a block copolymer. Chem. Mater., 2021, 33(24), 9750-9759. doi:10.1021/acs.chemmater.1c03644http://dx.doi.org/10.1021/acs.chemmater.1c03644
Hibi Y.; Oguchi Y.; Shimizu Y.; Hashimoto K.; Kondo K.; Iyoda T. Self-template-assisted micro-phase segregation in blended liquid-crystalline block copolymers films toward three-dimensional structures. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(35), 21070-21078. doi:10.1073/pnas.2010284117http://dx.doi.org/10.1073/pnas.2010284117
Sano M.; Nakamura S.; Hara M.; Nagano S.; Shinohara Y.; Amemiya Y.; Seki T. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films. Macromolecules, 2014, 47(20), 7178-7186. doi:10.1021/ma501803ghttp://dx.doi.org/10.1021/ma501803g
0
浏览量
42
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构