浏览全部资源
扫码关注微信
大连理工大学高分子材料系 大连 116024
E-mail: wqqiao@dlut.edu.cn
纸质出版日期:2023-11-20,
网络出版日期:2023-06-15,
收稿日期:2023-03-28,
录用日期:2023-05-11
扫 描 看 全 文
刘坤,张育林,马玉婷等.含苯胺三聚体结构单元聚醚酰亚胺的合成及其性能研究[J].高分子学报,2023,54(11):1720-1728.
Liu Kun,Zhang Yu-lin,Ma Yu-ting,et al.Synthesis and Properties of Polyetherimide Containing Aniline Trimer Structural Units[J].Acta Polymerica Sinica,2023,54(11):1720-1728.
刘坤,张育林,马玉婷等.含苯胺三聚体结构单元聚醚酰亚胺的合成及其性能研究[J].高分子学报,2023,54(11):1720-1728. DOI: 10.11777/j.issn1000-3304.2023.23080.
Liu Kun,Zhang Yu-lin,Ma Yu-ting,et al.Synthesis and Properties of Polyetherimide Containing Aniline Trimer Structural Units[J].Acta Polymerica Sinica,2023,54(11):1720-1728. DOI: 10.11777/j.issn1000-3304.2023.23080.
以氨基封端苯胺三聚体(TA)、双酚A型二醚二酐、4
4'-二氨基二苯醚为原料,改变投料比制备出TA结构单元含量不同的聚醚酰亚胺(PEI-TA
n
). 为分析将电活性的苯胺三聚体引入到PEI结构中对材料性能的影响,制备出TA含量不同的PEI/TA
n
共混材料. 采用傅里叶变换红外光谱(FTIR)、紫外-可见光吸收光谱(UV-Vis)、核磁共振氢谱(
1
H-NMR)、热重分析(TGA)、示差扫描量热(DSC)、动态力学分析(DMA)等研究了所制备PEI-TA
n
的结构、热稳定性、玻璃化转变温度及动态力学性能. 采用表面/体积电阻率分析仪对比分析了十二烷基苯磺酸掺杂的共聚体系和共混体系的表面电阻率和体积电阻率. 研究发现,合成的PEI-TA
n
的5%热失重温度为417~513 ℃,DMA测得的玻璃化转变温度为237~240 ℃,具有优异的热稳定性;共聚物薄膜的杨氏模量和断裂伸长率分别在1.5~2.3 GPa和3.9%~5.7%范围内,具有良好的机械性能;10 GHz下的介电常数和介电损耗分别在2.7~3.5和0.0068~0.0127范围内,具有良好的介电性能;共聚体系薄膜的表面和体积电阻率均在10
7
~10
9
量级,比分子结构中不含TA结构单元的聚合物降低了7~9个数量级,而共混体系的表面和体积电阻率仅降低了1~2个数量级. 研究结果表明,将电活性的TA引入到PEI的分子结构中,可以获得一类性能优异且电阻率可调的聚醚酰亚胺材料.
A series of polyetherimides (PEI-TA
n
) with different contents of TA structural units were prepared from amino-terminated aniline trimer (TA)
bisphenol A type diethyl dianhydride and 4
4'-diaminodiphenyl ether by changing the feed ratio. In order to analyze the effect of introducing electroactive aniline trimer into PEI on material properties
PEI/TA
n
blends with different TA contents were prepared. The structure
thermal stability
glass transition temperature and dynamic mechanical properties of PEI-TA
n
were studied by Fourier transform infrared spectroscopy (FTIR)
ultraviolet-visible spectroscopy (UV-Vis)
1
H nuclear magnetic resonance (
1
H-NMR)
thermo-gravimetric analysis (TGA)
differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The surface and volume resistivity of the copolymers and blends doped with dodecylbenzene sulfonic acid were compared and analyzed by using a surface/volume resistivity analyzer. It is found that the 5% thermal weight loss temperatures of the PEI-TA
n
are in the range of 417‒513 ℃
and the glass transition temperatures measured by DMA are about 237‒240 ℃
which imply that PEI-TA
n
have excellent thermal stability; The Young's modulus and elongation at break of the PEI-TA
n
films are in the range of 1.5‒2.3 GPa and 3.9%‒5.7% respectively. The dielectric constant and dielectric loss at 10 GHz are in the range of 2.7‒3.5 and 0.007‒0.013 respectively. The surface and volume resistivity of the PEI-TA
n
copolymer films are in the order of 10
7
‒10
9
which is 7‒9 orders of magnitude lower than that of the PEI without TA structural unit
while the surface and volume resistivity of the PEI/TA
n
blend films is only 1‒2 orders of magnitude lower. The results show that polyetherimides with excellent performance and adjustable resistivity can be obtained by introducing electroactive TA units into the molecular structure of PEI.
聚醚酰亚胺苯胺三聚体结构-性能表面电阻率
PolyetherimideAniline trimerStructure-performanceSurface resistance
丁孟贤. 聚酰亚胺——化学、结构与性能的关系及材料. 北京: 科学出版社, 2006. 21-28.
Xu Z.; Croft Z. L.; Guo D.; Cao K.; Liu G. L. Recent development of polyimides: synthesis, processing, and application in gas separation. J. Polym. Sci., 2021, 59(11), 943-962. doi:10.1002/pol.20210001http://dx.doi.org/10.1002/pol.20210001
Pandelidi C, Maconachie T, Bateman S, Piegert S, Leary M, Brandt M. Parametric study on tensile and flexural properties of ULTEM 1010 specimens fabricated via FDM. Rapid Prototyping J., 2021, 27(2), 429-451. doi:10.1108/rpj-10-2019-0274http://dx.doi.org/10.1108/rpj-10-2019-0274
Li Y. H.; Sun G. H.; Zhou Y.; Liu G. M.; Wang J.; Han S. H. Progress in low dielectric polyimide film. Prog. Org. Coat., 2022, 172, 107103. doi:10.1016/j.porgcoat.2022.107103http://dx.doi.org/10.1016/j.porgcoat.2022.107103
Feng Y.; Zhou Y. H.; Zhang T. D.; Zhang C. H.; Zhang Y. Q.; Zhang Y.; Chen Q. G.; Chi Q. G. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater., 2020, 25, 180-192. doi:10.1016/j.ensm.2019.10.016http://dx.doi.org/10.1016/j.ensm.2019.10.016
Sun L.; Shi Z. C.; Wang H. L.; Zhang K.; Dastan D.; Sun K.; Fan R. H. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A, 2020, 8(11), 5750-5757. doi:10.1039/d0ta00903bhttp://dx.doi.org/10.1039/d0ta00903b
Guo M. F.; Jiang J. Y.; Shen Z. H.; Lin Y. H.; Nan C. W.; Shen Y. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: Enhanced breakdown strength and improved discharge efficiency. Mater. Today, 2019, 29, 49-67. doi:10.1016/j.mattod.2019.04.015http://dx.doi.org/10.1016/j.mattod.2019.04.015
Miao W. J.; Chen H. X.; Pan Z. B.; Pei X. L.; Li L.; Li P.; Liu J. J.; Zhai J. W.; Pan H. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Compos. Sci. Technol., 2021, 201, 108501. doi:10.1016/j.compscitech.2020.108501http://dx.doi.org/10.1016/j.compscitech.2020.108501
de Leon A. C. C.; da Silva Í. G. M.; Pangilinan K. D.; Chen Q. Y.; Caldona E. B.; Advincula R. C. High performance polymers for oil and gas applications. React. Funct. Polym., 2021, 162, 104878. doi:10.1016/j.reactfunctpolym.2021.104878http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104878
侯攀, 周科勇, 王明. 抗静电剂在高分子材料中的应用研究进展. 中国塑料, 2011, 25(7), 11-16.
Chen S.; Zhou B.; Ma M.; Shi Y. Q.; Wang X. Permanently antistatic and high transparent PMMA terpolymer: Compatilizer, antistatic agent, and the antistatic mechanism. Polym. Adv. Technol., 2018, 29(6), 1788-1794. doi:10.1002/pat.4285http://dx.doi.org/10.1002/pat.4285
Jiang X. W.; Bin Y. Z.; Matsuo M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer, 2005, 46(18), 7418-7424. doi:10.1016/j.polymer.2005.05.127http://dx.doi.org/10.1016/j.polymer.2005.05.127
Liu Y. D.; Lu S. Y.; Luo J.; Zhao Y. Q.; He J. S.; Liu C. L.; Chen Z. B.; Yu X. Q. Research progress of antistatic-reinforced polymer materials. Polym. Adv. Technol., 2023, 34(4), 1393-1404. doi:10.1002/pat.5978http://dx.doi.org/10.1002/pat.5978
Zhu A. P.; Wang H. S.; Sun S. S.; Zhang C. Q. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Prog. Org. Coat., 2018, 122, 270-279. doi:10.1016/j.porgcoat.2018.06.004http://dx.doi.org/10.1016/j.porgcoat.2018.06.004
Li K. D.; Zhang C.; Du Z. J.; Li H. Q.; Zou W. Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met., 2012, 162(23), 2010-2015. doi:10.1016/j.synthmet.2012.09.014http://dx.doi.org/10.1016/j.synthmet.2012.09.014
Ge J. J.; Zhang D.; Li Q.; Hou H. Q.; Graham M. J.; Dai L. M.; Harris F. W.; Cheng S. Z. D. Multiwalled carbon nanotubes with chemically grafted polyetherimides. J. Am. Chem. Soc., 2005, 127(28), 9984-9985. doi:10.1021/ja050924shttp://dx.doi.org/10.1021/ja050924s
Butnaru I.; Chiriac A. P.; Asandulesa M.; Sava I.; Lisa G.; Damaceanu M. D. Tailoring poly(ether-imide) films features towards high performance flexible substrates. J. Ind. Eng. Chem., 2021, 93, 436-447. doi:10.1016/j.jiec.2020.10.023http://dx.doi.org/10.1016/j.jiec.2020.10.023
石传明, 孟晓宇, 杨礼德, 于安军, 丛川波, 周琼. 聚醚酰亚胺/氧化石墨烯复合材料的制备与性能. 合成材料老化与应用, 2016, 45(1), 24-27. doi:10.3969/j.issn.1671-5381.2016.01.006http://dx.doi.org/10.3969/j.issn.1671-5381.2016.01.006
Cuenca-Bracamonte Q.; Yazdani-Pedram M.; Aguilar-Bolados H. Electrical properties of polyetherimide-based nanocomposites filled with reduced graphene oxide and graphene oxide-Barium titanate-based hybrid nanoparticles. Polymers, 2022, 14(20), 4266. doi:10.3390/polym14204266http://dx.doi.org/10.3390/polym14204266
Aguilar-Bolados H.; Yazdani-Pedram M.; Quinteros-Jara E.; Cuenca-Bracamonte Q.; Quijada R.; Carretero-González J.; Avilés F.; Lopez-Manchado M. A.; Verdejo R. Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polym. Test., 2021, 93, 106986. doi:10.1016/j.polymertesting.2020.106986http://dx.doi.org/10.1016/j.polymertesting.2020.106986
景遐斌, 王利祥, 王献红, 耿延候, 王佛松. 导电聚苯胺的合成、结构、性能和应用. 高分子学报, 2005, (5), 655-663. doi:10.3321/j.issn:1000-3304.2005.05.003http://dx.doi.org/10.3321/j.issn:1000-3304.2005.05.003
Majeed A. H.; Mohammed L. A.; Hammoodi O. G.; Sehgal S.; Alheety M. A.; Saxena K. K.; Dadoosh S. A.; Mohammed I. K.; Jasim M. M.; Salmaan N. U. A review on polyaniline: synthesis, properties, nanocomposites, and electrochemical applications. Int. J. Polym. Sci., 2022, 2022, 1-19. doi:10.1155/2022/9047554http://dx.doi.org/10.1155/2022/9047554
Wang Y.; Tran H. D.; Liao L.; Duan X. F.; Kaner R. B. Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. J. Am. Chem. Soc., 2010, 132(30), 10365-10373. doi:10.1021/ja1014184http://dx.doi.org/10.1021/ja1014184
Guex A. G.; Spicer C. D.; Armgarth A.; Gelmi A.; Humphrey E. J.; Terracciano C. M.; Harding S. E.; Stevens M. M. Electrospun aniline-tetramer-co-polycaprolactone fibers for conductive, biodegradable scaffolds. MRS Commun., 2017, 7(3), 375-382. doi:10.1557/mrc.2017.45http://dx.doi.org/10.1557/mrc.2017.45
Tian X. Z.; Yang R.; Ma J. J.; Ni Y. H.; Deng H. B.; Dai L.; Tan J. J.; Zhang M. Y.; Jiang X. A novel ternary composite of polyurethane/polyaniline/nanosilica with antistatic property and excellent mechanical strength: Preparation and mechanism. Chinese J. Polym. Sci., 2022, 40(7), 789-798. doi:10.1007/s10118-022-2703-7http://dx.doi.org/10.1007/s10118-022-2703-7
陈梁. 苯胺低聚物的分子设计及其性质的研究. 吉林大学博士学位论文, 2005.
Chao D. M.; Cui L. L.; Li Z. C.; Lu X. F.; Mao H.; Zhang W. J.; Wei Y. Electroactive copolymers with oligoanilines in the main chain via oxidative coupling polymerization. Macromol. Chem. Phys., 2006, 207(18), 1691-1696. doi:10.1002/macp.200600280http://dx.doi.org/10.1002/macp.200600280
Venkatesan G.; Dancik Y.; Sinha A.; Bigliardi M.; Srinivas R.; Dawson T.; Valiyaveettil S.; Bigliardi P.; Pastorin G. Facile synthesis of oligo anilines as permanent hair dyes: how chemical modifications impart colour and avoid toxicity. New J. Chem., 2019, 43(41), 16188-16199. doi:10.3760/cma.j.cn371468-20221107-00661http://dx.doi.org/10.3760/cma.j.cn371468-20221107-00661
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构