浏览全部资源
扫码关注微信
北京分子科学国家研究中心 北京大学化学与分子工程学院 高分子化学与物理教育部重点实验室 北京 100871
[ "唐小燕,女,1987年生. 北京大学化学与分子工程学院课题组长、研究员,博士生导师. 2009年于武汉大学化学与分子科学学院获得学士学位,2015年于中国科学院长春应用化学研究所获得博士学位,导师为李悦生研究员. 随后加入美国科罗拉多州立大学Eugene Y.-X. Chen课题组从事博士后研究,担任Research Scientist Ⅱ. 2020年加入北京大学化学与分子工程学院独立开展研究工作. 目前主要从事可循环高分子材料以及相关催化体系的研究工作:建立聚合新方法,精确控制聚合物微结构,合成立体、序列以及拓扑结构可控的新型聚合物材料." ]
纸质出版日期:2023-10-20,
网络出版日期:2023-08-17,
收稿日期:2023-04-07,
录用日期:2023-06-22
扫 描 看 全 文
廖曦,秦娇娇,唐小燕.结晶性生物可降解聚羟基脂肪酸酯的化学合成[J].高分子学报,2023,54(10):1426-1467.
Liao Xi,Qin Jiao-jiao,Tang Xiao-yan.Chemical Synthesis of Crystalline Biodegradable Polyhydroxyalkanoates[J].ACTA POLYMERICA SINICA,2023,54(10):1426-1467.
廖曦,秦娇娇,唐小燕.结晶性生物可降解聚羟基脂肪酸酯的化学合成[J].高分子学报,2023,54(10):1426-1467. DOI: 10.11777/j.issn1000-3304.2023.23095.
Liao Xi,Qin Jiao-jiao,Tang Xiao-yan.Chemical Synthesis of Crystalline Biodegradable Polyhydroxyalkanoates[J].ACTA POLYMERICA SINICA,2023,54(10):1426-1467. DOI: 10.11777/j.issn1000-3304.2023.23095.
天然聚羟基脂肪酸酯(PHAs)是一种源于微生物合成的等规高分子材料,表现出优异的生物相容性和生物可降解性,具有替代石油基高分子材料的潜力. 化学合成PHAs因合成效率高、可控性好以及产品质量易于控制等特点而具有巨大的应用价值. 由于PHAs的立构规整性以及结晶性对其热学性能、机械性能和降解效率等都有很大的影响,因此控制PHAs的立构规整性以及结晶性是合成过程中的一个关键问题,也是一个难点问题. 本综述从单体分类的角度总结了近六十年化学合成立构规整性PHAs的研究进展,包括四元环内酯单体(
β
-丁内酯(
β
-BL)及其衍生物(BPL和MLA),以及其他不同
α
-、
β
-和
α
β
-取代的
β
-丙内酯(
β
-PL)),八元环和十二元环内酯单体(即
β
-BL的二、三聚体(8DL,TBL))以及环氧烷烃/CO等立体选择性开环(共)聚合,重点关注和评述了不同催化剂体系对立构选择性的影响,总结了相应聚合物的机械性能和热力学性能,最后对PHAs的降解回收策略做概述,并对立构规整PHAs的合成策略进行了展望.
Recently
biodegradable polymer materials have drawn much attention due to their environmental friendliness. Among them
natural polyhydroxyalkanoates (PHAs)
a type of isotactic polyesters produced by microorganisms
exhibit excellent biocompatibility and biodegradability
and thus are promising alternatives to petroleum-based plastics. Chemical synthesis of PHAs possesses enormous application value due to their high synthesis efficiency
great controllability and easy control of product quality. Since the stereoregularity and crystallinity of PHAs strongly affects their thermal and mechanical properties as well as degradation rates
controlling the stereoregularity and/or crystalline PHAs is a key and also challenging issue in their synthesis process. This review provides a comprehensive overview of the advancements in the chemical synthesis of stereoregular and/or crystalline PHAs in the last 60 years from the perspective of monomer classification. It covers the stereoselective ring-opening (co-)polymerization of four-membered lactones (
e.g.
β
-butyrolactone (
β
-BL) and its derivatives (BPL
MLA)
β
-propiolactones with different
α
-
β
-
and
α
β
-substitutions)
eight-membered lactones (
β
-BL's dimer
8DL)
twelve-membered lactone (
β
-BL's trimer
TBL) and epoxides/CO. The review places particular emphasis on the effects of different catalyst systems on stereoselectivity
and summarizes the mechanical and thermal properties of the resulting polymers. Furthermore
it briefly touches upon the degradation and recycling strategies of PHAs
followed by an outlook on the approaches for achieving stereoselective controlled synthesis of PHAs.
生物可降解聚合物聚羟基脂肪酸酯结晶性聚合物立构选择性聚合开环聚合
Biodegradable polymersPolyhydroxyalkanoatesCrystalline polymersStereoselective polymerizationRing-opening polymerization
Ellen MacArthur Foundation 2017. https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action. 2017https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action.2017. doi:10.1023/a:1010650624155http://dx.doi.org/10.1023/a:1010650624155
Plastics-he Facts 2022. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022. 2022https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022.2022. doi:10.1023/a:1010650624155http://dx.doi.org/10.1023/a:1010650624155
Geyer R.; Jambeck J. R.; Law K. L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782. doi:10.1126/sciadv.1700782http://dx.doi.org/10.1126/sciadv.1700782
Steinbüchel A.; Valentin H. E. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett., 1995, 128(3), 219-228. doi:10.1016/0378-1097(95)00125-ohttp://dx.doi.org/10.1016/0378-1097(95)00125-o
Steinbüchel A.; Füchtenbusch B. Bacterial and other biological systems for polyester production. Trends Biotechnol., 1998, 16(10), 419-427. doi:10.1016/s0167-7799(98)01194-9http://dx.doi.org/10.1016/s0167-7799(98)01194-9
Doudoroff M.; Stanier R. Y. Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature, 1959, 183(4673), 1440-1442. doi:10.1038/1831440a0http://dx.doi.org/10.1038/1831440a0
Müller, H. M.; Seebach, D. Poly(hydroxyalkanoates): a fifth class of physiologically important organic biopolymers? Angew. Chem. Int. Ed., 1993, 32(4), 477-502. doi:10.1002/anie.199304771http://dx.doi.org/10.1002/anie.199304771
Muhammadi, Shabina, Afzal M.; Hameed S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev., 2015, 8(3-4), 56-77. doi:10.1080/17518253.2015.1109715http://dx.doi.org/10.1080/17518253.2015.1109715
Możejko-Ciesielska J.; Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol. Res., 2016, 192, 271-282. doi:10.1016/j.micres.2016.07.010http://dx.doi.org/10.1016/j.micres.2016.07.010
Akinmulewo, A. B.; Nwinyi, O. C. Polyhydroxyalkanoate: a biodegradable polymer (a mini review). J. Phys.: Conf. Ser., 2019, 1378(4), 042007. doi:10.1088/1742-6596/1378/4/042007http://dx.doi.org/10.1088/1742-6596/1378/4/042007
Shimao M. Biodegradation of plastics. Curr. Opin. Biotechnol., 2001, 12(3), 242-247. doi:10.1016/s0958-1669(00)00206-8http://dx.doi.org/10.1016/s0958-1669(00)00206-8
Shrivastav A.; Mishra S. K.; Pancha I.; Jain D.; Bhattacharya S.; Patel S.; Mishra S. Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel byproduct as a substrate. World J. Microbiol. Biotechnol., 2011, 27(7), 1531-1541. doi:10.1007/s11274-010-0605-2http://dx.doi.org/10.1007/s11274-010-0605-2
Fernandes M.; Salvador A.; Alves M. M.; Vicente A. A. Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym. Degrad. Stab., 2020, 182, 109408. doi:10.1016/j.polymdegradstab.2020.109408http://dx.doi.org/10.1016/j.polymdegradstab.2020.109408
Seebach D.; Müller H. M.; Bürger H. M.; Plattner D. A. The triolide of (R)-3-hydroxybutyric acid—direct preparation from polyhydroxybutyrate and formation of a crown estercarbonyl complex with Na ions. Angew. Chem. Int. Ed., 1992, 31(4), 434-435. doi:10.1002/anie.199204341http://dx.doi.org/10.1002/anie.199204341
Melchiors M.; Keul H.; Höcker H. Depolymerization of poly[(R)-3-hydroxybutyrate] to cyclic oligomers and polymerization of the cyclic trimer: an example of thermodynamic recycling. Macromolecules, 1996, 29(20), 6442-6451. doi:10.1021/ma9604350http://dx.doi.org/10.1021/ma9604350
Melchiors M.; Keul H.; Höcker H. Synthesis of highly isotactic poly[(R)-3-hydroxybutyrate] by ring-opening polymerization of (R,R,R)-4,8,12-trimethyl-1,5,9-trioxacyclododeca-2,6,10-trione. Macromol. Rapid Commun., 1994, 15(6), 497-506. doi:10.1002/marc.1994.030150608http://dx.doi.org/10.1002/marc.1994.030150608
Findlay R. H.; White D. C. Polymeric β-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl. Environ. Microbiol., 1983, 45(1), 71-78. doi:10.1128/aem.45.1.71-78.1983http://dx.doi.org/10.1128/aem.45.1.71-78.1983
Khatami K.; Perez-Zabaleta M.; Owusu-Agyeman I.; Cetecioglu Z. Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Manag., 2021, 119, 374-388. doi:10.1016/j.wasman.2020.10.008http://dx.doi.org/10.1016/j.wasman.2020.10.008
Worch J. C.; Prydderch H.; Jimaja S.; Bexis P.; Becker M. L.; Dove A. P. Stereochemical enhancement of polymer properties. Nat. Rev. Chem., 2019, 3(9), 514-535. doi:10.1038/s41570-019-0117-zhttp://dx.doi.org/10.1038/s41570-019-0117-z
Hori Y.; Suzuki M.; Yamaguchi A.; Nishishita T. Ring-opening polymerization of optically active β-butyrolactone using distannoxane catalysts: synthesis of high-molecular-weight poly(3-hydroxybutyrate). Macromolecules, 1993, 26(20), 5533-5534. doi:10.1021/ma00072a037http://dx.doi.org/10.1021/ma00072a037
Ajellal N.; Thomas C. M.; Aubry T.; Grohens Y.; Carpentier J. F. Encapsulation and controlled release of L-leuprolide from poly(β-hydroxyalkanoate)s: impact of microstructure and chemical functionalities. New J. Chem., 2011, 35(4), 876-880. doi:10.1039/c0nj00998ahttp://dx.doi.org/10.1039/c0nj00998a
Inoue S.; Tomoi Y.; Tsuruta T.; Furukawa J. Organometallic-catalyzed polymerization of propiolactone. Die Makromol. Chem., 1961, 48(1), 229-233. doi:10.1002/macp.1961.020480121http://dx.doi.org/10.1002/macp.1961.020480121
Ligny R.; Hänninen M. M.; Guillaume S. M.; Carpentier J. F. Steric vs. electronic stereocontrol in syndio- or iso-selective ROP of functional chiral β-lactones mediated by achiral yttrium-bisphenolate complexes. Chem. Commun., 2018, 54(58), 8024-8031. doi:10.1039/c8cc03842bhttp://dx.doi.org/10.1039/c8cc03842b
Carpentier J. F. Rare-earth complexes supported by tripodal tetradentate bis(phenolate) ligands: a privileged class of catalysts for ring-opening polymerization of cyclic esters. Organometallics, 2015, 34(17), 4175-4189. doi:10.1021/acs.organomet.5b00540http://dx.doi.org/10.1021/acs.organomet.5b00540
Tang X.; Westlie A. H.; Watson E. M.; Chen E. Y. X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science, 2019, 366(6466), 754-758. doi:10.1126/science.aax8466http://dx.doi.org/10.1126/science.aax8466
Dunn E. W.; Coates G. W. Carbonylative polymerization of propylene oxide: a multicatalytic approach to the synthesis of poly(3-hydroxybutyrate). J. Am. Chem. Soc., 2010, 132(33), 11412-11413. doi:10.1021/ja1049862http://dx.doi.org/10.1021/ja1049862
Yang J. C.; Yang J.; Li W. B.; Lu X. B.; Liu Y. Carbonylative polymerization of epoxides mediated by tri-metallic complexes: a dual catalysis strategy for synthesis of biodegradable polyhydroxyalkanoates. Angew. Chem. Int. Ed., 2022, 61(9), e202116208. doi:10.1002/anie.202116208http://dx.doi.org/10.1002/anie.202116208
Lenz R. W.; Marchessault R. H. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 2005, 6(1), 1-8. doi:10.1021/bm049700chttp://dx.doi.org/10.1021/bm049700c
Aldor I. S.; Keasling J. D. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol., 2003, 14(5), 475-483. doi:10.1016/j.copbio.2003.09.002http://dx.doi.org/10.1016/j.copbio.2003.09.002
Sharma V.; Sehgal R.; Gupta R. Polyhydroxyalkanoate (PHA): properties and modifications. Polymer, 2021, 212, 123161. doi:10.1016/j.polymer.2020.123161http://dx.doi.org/10.1016/j.polymer.2020.123161
Winnacker, M. Polyhydroxyalkanoates: recent advances in their synthesis and applications. Eur. J. Lipid Sci. Technol., 2019, 121(11), 1900101. doi:10.1002/ejlt.201900101http://dx.doi.org/10.1002/ejlt.201900101
Tang X.; Chen E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem, 2019, 5(2), 284-312. doi:10.1016/j.chempr.2018.10.011http://dx.doi.org/10.1016/j.chempr.2018.10.011
Thomas C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev., 2010, 39(1), 165-173. doi:10.1039/b810065ahttp://dx.doi.org/10.1039/b810065a
Carpentier J. F. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol. Rapid Commun., 2010, 31(19), 1696-1705. doi:10.1002/marc.201000114http://dx.doi.org/10.1002/marc.201000114
Liao X.; Su Y.; Tang X. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci. China Chem., 2022, 65(11), 2096-2121. doi:10.1007/s11426-022-1377-5http://dx.doi.org/10.1007/s11426-022-1377-5
Westlie A. H.; Quinn E. C.; Parker C. R.; Chen E. Y. X. Synthetic biodegradable polyhydroxyalkanoates (PHAs): recent advances and future challenges. Prog. Polym. Sci., 2022, 134, 101608. doi:10.1016/j.progpolymsci.2022.101608http://dx.doi.org/10.1016/j.progpolymsci.2022.101608
Tang X. Chemical synthesis of polyhydroxyalkanoates via metal-catalyzed ring-opening polymerization of cyclic esters. Advances in Polymer Science. Berlin, Heidelberg: Springer, 2022. 1-21. doi:10.1007/12_2022_119http://dx.doi.org/10.1007/12_2022_119
Zhang Y.; Gross R. A.; Lenz R. W. Stereochemistry of the ring-opening polymerization of (S)-β-butyrolactone. Macromolecules, 1990, 23(13), 3206-3212. doi:10.1021/ma00215a002http://dx.doi.org/10.1021/ma00215a002
Lavallee C.; Grenier D.; Prud'homme R. E.; Leborgne A.; Spassky N. Synthesis and properties of racemic and optically active substituted poly(β-propiolactones). CulbertsonB. M., McGrathJ. E. Advances in Polymer Synthesis. Boston, MA: Springer, 1985. 441-460. doi:10.1007/978-1-4613-2121-7_22http://dx.doi.org/10.1007/978-1-4613-2121-7_22
Jedlinski Z.; Kurcok P.; Kowalczuk M. Polymerization of β-lactones initiated by potassium solutions. Macromolecules, 1985, 18(12), 2679-2683. doi:10.1021/ma00154a052http://dx.doi.org/10.1021/ma00154a052
Shelton J. R.; Agostini D. E.; Lando J. B. Synthesis and characterization of poly-β-hydroxybutyrate. Ⅱ. Synthesis of D-poly-β-hydroxybutyrate and the mechanism of ring-opening polymerization of β-butyrolactone. J. Polym. Sci. Part A 1, 1971, 9(10), 2789-2799. doi:10.1002/pol.1971.150091004http://dx.doi.org/10.1002/pol.1971.150091004
Tanahashi N.; Doi Y. Thermal properties and stereoregularity of poly(3-hydroxybutyrate) prepared from optically active β-butyrolactone with a zinc-based catalyst. Macromolecules, 1991, 24(20), 5732-5733. doi:10.1021/ma00020a039http://dx.doi.org/10.1021/ma00020a039
Brochu S.; Prud'homme R. E. Synthesis and characterization of racemic and isotactic poly(β-alkyl-β-propiolactone)s. Macromolecules, 1998, 31(11), 3478-3488. doi:10.1021/ma971840+http://dx.doi.org/10.1021/ma971840+
Kobayashi T.; Yamaguchi A.; Hagiwara T.; Hori Y. Synthesis of poly(3-hydroxyalkanoate)s by ring-opening copolymerization of (R)-β-butyrolactone with other four-membered lactones using a distannoxane complex as a catalyst. Polymer, 1995, 36(24), 4707-4710. doi:10.1016/0032-3861(95)96839-zhttp://dx.doi.org/10.1016/0032-3861(95)96839-z
Rieth L. R.; Moore D. R.; Lobkovsky E. B.; Coates G. W. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxyalkanoates). J. Am. Chem. Soc., 2002, 124(51), 15239-15248. doi:10.1021/ja020978rhttp://dx.doi.org/10.1021/ja020978r
Kramer J. W.; Treitler D. S.; Dunn E. W.; Castro P. M.; Roisnel T.; Thomas C. M.; Coates G. W. Polymerization of enantiopure monomers using syndiospecific catalysts: a new approach to sequence control in polymer synthesis. J. Am. Chem. Soc., 2009, 131(44), 16042-16044. doi:10.1021/ja9075327http://dx.doi.org/10.1021/ja9075327
Jedliński Z.; Kowalczuk M.; Kurcok P.; Adamus G.; Matuszowicz A.; Sikorska W.; Gross R. A.; Xu J.; Lenz R. W. Stereochemical control in the anionic polymerization of β-butyrolactone initiated with alkali-metal alkoxides. Macromolecules, 1996, 29(11), 3773-3777. doi:10.1021/ma951888shttp://dx.doi.org/10.1021/ma951888s
Jedliński Z.; Kurcok P.; Lenz R. W. First facile synthesis of biomimetic poly-(R)-3-hydroxybutyrate via regioselective anionic polymerization of (S)-β-butyrolactone. Macromolecules, 1998, 31(19), 6718-6720. doi:10.1021/ma980663phttp://dx.doi.org/10.1021/ma980663p
Kurcok P.; Śmiga M.; Jedliński Z. β-Butyrolactone polymerization initiated with tetrabutylammonium carboxylates: a novel approach to biomimetic polyester synthesis. J. Polym. Sci. A, 2002, 40(13), 2184-2189. doi:10.1002/pola.10285http://dx.doi.org/10.1002/pola.10285
Bates R. W.; Fernandez-Moro R.; Ley S. V. The use of π-allyltricarbonyliron lactone complexes in the synthesis of the β-lactone esterase inhibitor (-)-valilactone. Tetrahedron, 1991, 47(47), 9929-9938. doi:10.1016/s0040-4020(01)80728-6http://dx.doi.org/10.1016/s0040-4020(01)80728-6
Lee J. T.; Thomas P. J.; Alper H. Synthesis of β-lactones by the regioselective, cobalt and lewis acid catalyzed carbonylation of simple and functionalized epoxides. J. Org. Chem., 2001, 66(16), 5424-5426. doi:10.1021/jo010295ehttp://dx.doi.org/10.1021/jo010295e
Getzler Y. D. Y. L.; Mahadevan V.; Lobkovsky E. B.; Coates G. W. Synthesis of β-lactones: a highly active and selective catalyst for epoxide carbonylation. J. Am. Chem. Soc., 2002, 124(7), 1174-1175. doi:10.1021/ja017434uhttp://dx.doi.org/10.1021/ja017434u
Agostini D. E.; Lando J. B.; Shelton J. R. Synthesis and characterization of poly-β-hydroxybutyrate. I. Synthesis of crystalline DL-poly-β-hydroxybutyrate from DL-β-butyrolactone. J. Polym. Sci. Part A 1, 1971, 9(10), 2775-2787. doi:10.1002/pol.1971.150091003http://dx.doi.org/10.1002/pol.1971.150091003
Tani H.; Yamashita S.; Teranishi K. Stereospecific polymerization of β-methyl-β-propiolactone. Polym. J., 1972, 3(3), 417-418. doi:10.1295/polymj.3.417http://dx.doi.org/10.1295/polymj.3.417
Bloembergen S.; Holden D. A.; Bluhm T. L.; Hamer G. K.; Marchessault R. H. Stereoregularity in synthetic β-hydroxybutyrate and β-hydroxyvalerate homopolyesters. Macromolecules, 1989, 22(4), 1656-1663. doi:10.1021/ma00194a027http://dx.doi.org/10.1021/ma00194a027
Teranishi K.; Iida M.; Araki T.; Yamashita S.; Tani H. Stereospecific polymerization of β-alkyl-β-propiolactone. Macromolecules, 1974, 7(4), 421-427. doi:10.1021/ma60040a005http://dx.doi.org/10.1021/ma60040a005
Iida M.; Araki T.; Teranishi K.; Tani H. Effect of substituents on stereospecific polymerization of β-alkyl- and β-chloroalkyl-β-propiolactones. Macromolecules, 1977, 10(2), 275-284. doi:10.1021/ma60056a012http://dx.doi.org/10.1021/ma60056a012
Iida, M.; Hayase, S.; Araki, T. 13C-NMR spectroscopy of poly(β-substituted β-propiolactone)s. tacticity recognition in 1,5-substituted polymer system and stereospecific contact of shift reagent. Macromolecules, 1978, 11(3), 490-493. doi:10.1021/ma60063a012http://dx.doi.org/10.1021/ma60063a012
Gross R. A.; Zhang Y.; Konrad G.; Lenz R. W. Polymerization of β-monosubstituted-β-propiolactones using trialkylaluminum-water catalytic systems and polymer characterization. Macromolecules, 1988, 21(9), 2657-2668. doi:10.1021/ma00187a002http://dx.doi.org/10.1021/ma00187a002
Hocking P. J.; Marchessault R. H. Syndiotactic poly[(S)-β-hydroxybutyrateR]isolated from methylaluminoxane-catalyzed polymerization. Polym. Bull., 1993, 30(2), 163-170. doi:10.1007/bf00296845http://dx.doi.org/10.1007/bf00296845
Benvenuti M.; Lenz R. W. Polymerization and copolymerization of β-butyrolactone and benzyl-β-malolactonate by aluminoxane catalysts. J. Polym. Sci. A, 1991, 29(6), 793-805. doi:10.1002/pola.1991.080290602http://dx.doi.org/10.1002/pola.1991.080290602
Pajerski A. D.; Lenz R. W. Stereoregular polymerization of β-butyrolactone by aluminoxane catalysts. Makromol. Chem. Macromol. Symp., 1993, 73(1), 7-26. doi:10.1002/masy.19930730104http://dx.doi.org/10.1002/masy.19930730104
Wu B.; Lenz R. W. Stereoregular polymerization of [R,S]-3-butyrolactone catalyzed by alumoxane-monomer adducts. Macromolecules, 1998, 31(11), 3473-3477. doi:10.1021/ma9717698http://dx.doi.org/10.1021/ma9717698
Lenz R. W.; Yang J.; Wu B.; Harlan C. J.; Barron A. R. Chemical synthesis of poly(β-hydroxybutyrate) by the polymerization of (R, S)-β-butyrolactone with aluminoxane catalysts. Can. J. Microbiol., 1995, 41(13), 274-281. doi:10.1139/m95-197http://dx.doi.org/10.1139/m95-197
Jaimes C.; Arcana M.; Brethon A.; Mathieu A.; Schue F.; Desimone J. M. Structure and morphology of poly([R, S]-β-butyrolactone) synthesized from aluminoxane catalyst. Eur. Polym. J., 1998, 34(2), 175-185.
Guillaume C.; Carpentier J. F.; Guillaume S. M. Immortal ring-opening polymerization of β-butyrolactone with zinc catalysts: catalytic approach to poly(3-hydroxyalkanoate). Polymer, 2009, 50(25), 5909-5917. doi:10.1016/j.polymer.2009.10.014http://dx.doi.org/10.1016/j.polymer.2009.10.014
Zintl M.; Molnar F.; Urban T.; Bernhart V.; Preishuber-Pflügl P.; Rieger B. Variably isotactic poly(hydroxybutyrate) from racemic β-butyrolactone: microstructure control by achiral chromium(Ⅲ) salophen complexes. Angew. Chem. Int. Ed., 2008, 47(18), 3458-3460. doi:10.1002/anie.200703859http://dx.doi.org/10.1002/anie.200703859
Reichardt R.; Vagin S.; Reithmeier R.; Ott A. K.; Rieger B. Factors influencing the ring-opening polymerization of racemic β-butyrolactone using CrⅢ (salphen). Macromolecules, 2010, 43(22), 9311-9317. doi:10.1021/ma101407rhttp://dx.doi.org/10.1021/ma101407r
Amgoune A.; Thomas C. M.; Ilinca S.; Roisnel T.; Carpentier J. F. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β-butyrolactone. Angew. Chem. Int. Ed., 2006, 45(17), 2782-2784. doi:10.1002/anie.200600058http://dx.doi.org/10.1002/anie.200600058
Ajellal N.; Durieux G.; Delevoye L.; Tricot G.; Dujardin C.; Thomas C. M.; Gauvin R. M. Polymerization of racemic β-butyrolactone using supported catalysts: a simple access to isotactic polymers. Chem. Commun., 2010, 46(7), 1032-1034. doi:10.1039/b923546ahttp://dx.doi.org/10.1039/b923546a
Guillaume S. M.; Annunziata L.; del Rosal I.; Iftner C.; Maron L.; Roesky P. W.; Schmid M. Ring-opening polymerization of racemic β-butyrolactone promoted by rare earth trisborohydride complexes towards a PHB-diol: an experimental and DFT study. Polym. Chem., 2013, 4(10), 3077-3087. doi:10.1039/c3py00056ghttp://dx.doi.org/10.1039/c3py00056g
Terrier M.; Brulé E.; Vitorino M. J.; Ajellal N.; Robert C.; Gauvin R. M.; Thomas C. M. Supported neodymium catalysts for isoprene and rac-β-butyrolactone polymerization: modulation of reactivity by controlled grafting. Macromol. Rapid Commun., 2011, 32(2), 215-219. doi:10.1002/marc.201000653http://dx.doi.org/10.1002/marc.201000653
Zhuo Z.; Zhang C.; Luo Y.; Wang Y.; Yao Y.; Yuan D.; Cui D. Stereo-selectivity switchable ROP of rac-β-butyrolactone initiated by salan-ligated rare-earth metal amide complexes: the key role of the substituents on ligand frameworks. Chem. Commun., 2018, 54(85), 11998-12001. doi:10.1039/c8cc05469jhttp://dx.doi.org/10.1039/c8cc05469j
Tian T.; Feng C.; Wang Y.; Zhu X.; Yuan D.; Yao Y. Synthesis of N-methyl-o-phenylenediamine-bridged bis(phenolato) lanthanide alkoxides and their catalytic performance for the (co)polymerization of rac-butyrolactone and L-lactide. Inorg. Chem., 2022, 61(26), 9918-9929. doi:10.1021/acs.inorgchem.2c00582http://dx.doi.org/10.1021/acs.inorgchem.2c00582
Dong X.; Robinson J. R. The role of neutral donor ligands in the isoselective ring-opening polymerization of rac-β-butyrolactone. Chem. Sci., 2020, 11(31), 8184-8195. doi:10.1039/d0sc03507fhttp://dx.doi.org/10.1039/d0sc03507f
Dong X.; Brown A. M.; Woodside A. J.; Robinson J. R. N-Oxides amplify catalyst reactivity and isoselectivity in the ring-opening polymerization of rac-β-butyrolactone. Chem. Commun., 2022, 58(17), 2854-2857. doi:10.1039/d1cc05127jhttp://dx.doi.org/10.1039/d1cc05127j
Takeichi T.; Hieda Y.; Takayama Y. Asymmetric selective polymerization of β-butyrolactone catalyzed by optically active cobalt complex/triethylaluminum system. Polym. J., 1988, 20(2), 159-162. doi:10.1295/polymj.20.159http://dx.doi.org/10.1295/polymj.20.159
Le Borgne A.; Spassky N. Stereoelective polymerization of β-butyrolactone. Polymer, 1989, 30(12), 2312-2319. doi:10.1016/0032-3861(89)90267-xhttp://dx.doi.org/10.1016/0032-3861(89)90267-x
Spassky N.; Pluta C.; Simic V.; Thiam M.; Wisniewski M. Stereochemical aspects of the controlled ring-opening polymerization of chiral cyclic esters. Macromol. Symp., 1998, 128(1), 39-51. doi:10.1002/masy.19981280106http://dx.doi.org/10.1002/masy.19981280106
Kricheldorf H. R.; Berl M.; Scharnagl N. Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules, 1988, 21(2), 286-293. doi:10.1021/ma00180a002http://dx.doi.org/10.1021/ma00180a002
Kemnitzer J. E.; McCarthy S. P.; Gross R. A. Preparation of predominantly syndiotactic poly(β-hydroxybutyrate) by the tributyltin methoxide catalyzed ring-opening polymerization of racemic β-butyrolactone. Macromolecules, 1993, 26(6), 1221-1229. doi:10.1021/ma00058a004http://dx.doi.org/10.1021/ma00058a004
Kemnitzer J. E.; McCarthy S. P.; Gross R. A. Syndiospecific ring-opening polymerization of β-butyrolactone to form predominantly syndiotactic poly(β-hydroxybutyrate) using tin(IV) catalysts. Macromolecules, 1993, 26(23), 6143-6150. doi:10.1021/ma00075a001http://dx.doi.org/10.1021/ma00075a001
Kricheldorf H. R.; Lee S. R.; Scharnagl N. Polylactones. 28. Poly(β-dsyndiotactic, L-hydroxybutyrate) by ring-opening polymerization of β-D, L-butyrolactone with butyltin methoxides. Macromolecules, 1994, 27(12), 3139-3146. doi:10.1021/ma00090a005http://dx.doi.org/10.1021/ma00090a005
Kricheldorf H. R.; Lee, S. R. Polylactones, 29. Preferentially syndiotactic poly(β-(R,S)-butyrolactone) obtained by ring-opening polymerization with triphenyltin methoxide or diphenyltin dimethoxide. Macromol. Chem. Phys., 1994, 195(7), 2299-2306. doi:10.1002/macp.1994.021950702http://dx.doi.org/10.1002/macp.1994.021950702
Kricheldorf, H. R.; Eggerstedt, S. Polylactones. 41. Polymerizations of β-D,L-butyrolactone with dialkyltinoxides as initiators. Macromolecules, 1997, 30(19), 5693-5697. doi:10.1021/ma970244chttp://dx.doi.org/10.1021/ma970244c
Abe H.; Matsubara I.; Doi Y.; Hori Y.; Yamaguchi A. Physical properties and enzymic degradability of poly(3-hydroxybutyrate) stereoisomers with different stereoregularities. Macromolecules, 1994, 27(21), 6018-6025. doi:10.1021/ma00099a013http://dx.doi.org/10.1021/ma00099a013
Hori Y.; Hagiwara T. Ring-opening polymerisation of β-butyrolactone catalysed by distannoxane complexes: study of the mechanism. Int. J. Biol. Macromol., 1999, 25(1-3), 237-245. doi:10.1016/s0141-8130(99)00038-0http://dx.doi.org/10.1016/s0141-8130(99)00038-0
Le Borgne A.; Pluta C.; Spassky N. Highly reactive yttrium alkoxide as new initiator for the polymerization of β-butyrolactone. Macromol. Rapid Commun., 1994, 15(12), 955-960. doi:10.1002/marc.1994.030151208http://dx.doi.org/10.1002/marc.1994.030151208
Alaaeddine A.; Amgoune A.; Thomas C. M.; Dagorne S.; Bellemin-Laponnaz S.; Carpentier J. F. Bis[bis(oxazolinato)] complexes of yttrium and lanthanum: molecular structure and use in polymerization of DL-lactide and DL-β-butyrolactone. Eur. J. Inorg. Chem., 2006, 2006(18), 3652-3658. doi:10.1002/ejic.200600437http://dx.doi.org/10.1002/ejic.200600437
Ajellal N.; Bouyahyi M.; Amgoune A.; Thomas C. M.; Bondon A.; Pillin I.; Grohens Y.; Carpentier J. F. Syndiotactic-enriched poly(3-hydroxybutyrate)s via stereoselective ring-opening polymerization of racemic β-butyrolactone with discrete yttrium catalysts. Macromolecules, 2009, 42(4), 987-993. doi:10.1021/ma8022734http://dx.doi.org/10.1021/ma8022734
Bouyahyi M.; Ajellal N.; Kirillov E.; Thomas C. M.; Carpentier J. F. Exploring electronic versus steric effects in stereoselective ring-opening polymerization of lactide and β-butyrolactone with amino-alkoxy-bis(phenolate)-yttrium complexes. Chem. Eur. J., 2011, 17(6), 1872-1883. doi:10.1002/chem.201002779http://dx.doi.org/10.1002/chem.201002779
Chapurina Y.; Klitzke J.; de L Casagrande O. Jr, Awada, M.; Dorcet, V.; Kirillov, E.; Carpentier, J. F. Scandium versus yttrium{amino-alkoxy-bis(phenolate)} complexes for the stereoselective ring-opening polymerization of racemic lactide and β-butyrolactone. Dalton Trans., 2014, 43(38), 14322-14333. doi:10.1039/c4dt01206bhttp://dx.doi.org/10.1039/c4dt01206b
Altenbuchner P. T.; Kronast A.; Kissling S.; Vagin S. I.; Herdtweck E.; Pöthig A.; Deglmann P.; Loos R.; Rieger B. Mechanistic investigations of the stereoselective rare earth metal-mediated ring-opening polymerization of β-butyrolactone. Chem. Eur. J., 2015, 21(39), 13609-13617. doi:10.1002/chem.201501156http://dx.doi.org/10.1002/chem.201501156
Jeffery B. J.; Whitelaw E. L.; Garcia-Vivo D.; Stewart J. A.; Mahon M. F.; Davidson M. G.; Jones M. D. Group 4 initiators for the stereoselective ROP of rac-β-butyrolactone and its copolymerization with rac-lactide. Chem. Commun., 2011, 47(45), 12328-12330. doi:10.1039/c1cc15265chttp://dx.doi.org/10.1039/c1cc15265c
Nie K.; Fang L.; Yao Y. M.; Zhang Y.; Shen Q.; Wang Y. R. Synthesis and characterization of amine-bridged bis(phenolate)lanthanide alkoxides and their application in the controlled polymerization of rac-lactide and rac-β-butyrolactone. Inorg. Chem., 2012, 51(20), 11133-11143. doi:10.1021/ic301746chttp://dx.doi.org/10.1021/ic301746c
Nie K.; Feng T.; Song F. K.; Zhang Y.; Sun H. M.; Yuan D.; Yao Y. M.; Shen Q. Bimetallic amine-bridged bis(phenolate) lanthanide aryloxides and alkoxides: synthesis, characterization, and application in the ring-opening polymerization of rac-lactide and rac-β-butyrolactone. Sci. China Chem., 2014, 57(8), 1106-1116. doi:10.1007/s11426-014-5142-7http://dx.doi.org/10.1007/s11426-014-5142-7
Zeng T. H.; Qian Q. Q.; Zhao B.; Yuan D.; Yao Y. M.; Shen Q. Synthesis and characterization of rare-earth metal guanidinates stabilized by amine-bridged bis(phenolate) ligands and their application in the controlled polymerization of rac-lactide and rac-β-butyrolactone. RSC Adv., 2015, 5(65), 53161-53171. doi:10.1039/c5ra10151dhttp://dx.doi.org/10.1039/c5ra10151d
Ajellal N.; Lyubov D.; Sinenkov M.; Fukin G.; Cherkasov A.; Thomas C.; Carpentier J. F.; Trifonov A. Bis(guanidinate) alkoxide complexes of lanthanides: synthesis, structures and use in immortal and stereoselective ring-opening polymerization of cyclic esters. Chem. Eur. J., 2008, 14(18), 5440-5448. doi:10.1002/chem.200800288http://dx.doi.org/10.1002/chem.200800288
Grunova E.; Kirillov E.; Roisnel T.; Carpentier J. F. Group 3 metal complexes supported by tridentate pyridine- and thiophene-linked bis(naphtholate) ligands: synthesis, structure, and use in stereoselective ring-opening polymerization of racemic lactide and β-butyrolactone. Dalton Trans., 2010, 39(29), 6739-6752. doi:10.1039/b920283hhttp://dx.doi.org/10.1039/b920283h
Klitzke J. S.; Roisnel T.; Kirillov E.; de L Casagrande O. Jr, Carpentier, J. F. Yttrium—and aluminum—bis(phenolate)pyridine complexes: catalysts and model compounds of the intermediates for the stereoselective ring-opening polymerization of racemic lactide and β-butyrolactone. Organometallics, 2014, 33(1), 309-321. doi:10.1021/om401047rhttp://dx.doi.org/10.1021/om401047r
Wang H. B.; Guo J. S.; Yang Y.; Ma H. Y. Diastereoselective synthesis of chiral aminophenolate magnesium complexes and their application in the stereoselective polymerization of rac-lactide and rac-β-butyrolactone. Dalton Trans., 2016, 45(27), 10942-10953. doi:10.1039/c6dt01126hhttp://dx.doi.org/10.1039/c6dt01126h
Ebrahimi T.; Aluthge D. C.; Hatzikiriakos S. G.; Mehrkhodavandi P. Highly active chiral zinc catalysts for immortal polymerization of β-butyrolactone form melt processable syndio-rich poly(hydroxybutyrate). Macromolecules, 2016, 49(23), 8812-8824. doi:10.1021/acs.macromol.6b01908http://dx.doi.org/10.1021/acs.macromol.6b01908
Saha T. K.; Rajashekhar B.; Gowda R. R.; Ramkumar V.; Chakraborty D. Bis(imino)phenoxide complexes of zirconium: synthesis, structural characterization and solvent-free ring-opening polymerization of cyclic esters and lactides. Dalton Trans., 2010, 39(21), 5091-5093. doi:10.1039/c002875dhttp://dx.doi.org/10.1039/c002875d
Fang, J.; Tschan, M. J. L; Roisnel, T.; Trivelli, X.; Gauvin, R. M.; Thomas, C. M.; Maron, L. Yttrium catalysts for syndioselective β-butyrolactone polymerization: on the origin of ligand-induced stereoselectivity. Polym. Chem., 2013, 4(2), 360-367. doi:10.1039/c2py20590dhttp://dx.doi.org/10.1039/c2py20590d
Pappalardo D.; Bruno M.; Lamberti M.; Pellecchia C. Ring-opening polymerization of racemic β-butyrolactone promoted by salan- and salen-type yttrium amido complexes. Macromol. Chem. Phys., 2013, 214(17), 1965-1972. doi:10.1002/macp.201200737http://dx.doi.org/10.1002/macp.201200737
Liu H.; Shi X. C. Phosphasalalen rare-earth complexes for the polymerization of rac-lactide and rac-β-butyrolactone. Inorg. Chem., 2021, 60(2), 705-717. doi:10.1021/acs.inorgchem.0c02741http://dx.doi.org/10.1021/acs.inorgchem.0c02741
Nie K.; Gu W. K.; Yao Y. M.; Zhang Y.; Shen Q. Synthesis and characterization of salalen lanthanide complexes and their application in the polymerization of rac-lactide. Organometallics, 2013, 32(9), 2608-2617. doi:10.1021/om4001023http://dx.doi.org/10.1021/om4001023
Guerin P.; Vert M.; Braud C.; Lenz R. W. Optically active poly(β-malic-acid). Polym. Bull., 1985, 14(2), 187-192. doi:10.1007/bf00708479http://dx.doi.org/10.1007/bf00708479
Guerin P.; Francillette J.; Braud C.; Vert M. Benzyl esters of optically active malic acid stereocopolymers as obtained by ring-opening polymerization of (R)-(+) and (S)-(-)-benzyl malolactonates. Makromol. Chem. Macromol. Symp., 1986, 6(1), 305-314. doi:10.1002/masy.19860060129http://dx.doi.org/10.1002/masy.19860060129
Arnold S. C.; Lenz R. W. Synthesis of stereoregular poly(alkyl malolactonates). Makromol. Chem. Macromol. Symp., 1986, 6(1), 285-303. doi:10.1002/masy.19860060128http://dx.doi.org/10.1002/masy.19860060128
Jaffredo C. G.; Schmid M.; del Rosal I.; Mevel T.; Roesky P. W.; Maron L.; Guillaume S. M. PMLABe diol synthesized by ring-opening polymerization of racemic benzyl β-malolactonate initiated by rare-earth trisborohydride complexes: an experimental and DFT study. Chem. Eur. J., 2014, 20(44), 14387-14402. doi:10.1002/chem.201403545http://dx.doi.org/10.1002/chem.201403545
Jaffredo C. G.; Chapurina Y.; Guillaume S. M.; Carpentier J. F. From syndiotactic homopolymers to chemically tunable alternating copolymers: highly active yttrium complexes for stereoselective ring-opening polymerization of β-malolactonates. Angew. Chem. Int. Ed., 2014, 53(10), 2687-2691. doi:10.1002/anie.201310523http://dx.doi.org/10.1002/anie.201310523
Jaffredo C. G.; Chapurina Y.; Kirillov E.; Carpentier J. F.; Guillaume S. M. Highly stereocontrolled ring-opening polymerization of racemic alkyl β-malolactonates mediated by yttrium[amino-alkoxy-bis(phenolate)] complexes. Chem. Eur. J., 2016, 22(22), 7629-7641. doi:10.1002/chem.201600223http://dx.doi.org/10.1002/chem.201600223
Ligny R.; Hänninen M. M.; Guillaume S. M.; Carpentier J. F. Highly syndiotactic or isotactic polyhydroxyalkanoates by ligand-controlled yttrium-catalyzed stereoselective ring-opening polymerization of functional racemic β-lactones. Angew. Chem. Int. Ed., 2017, 56(35), 10388-10393. doi:10.1002/anie.201704283http://dx.doi.org/10.1002/anie.201704283
Ligny R.; Guillaume S. M.; Carpentier J. F. Yttrium-mediated ring-opening copolymerization of oppositely configurated 4-alkoxymethylene-β-propiolactones: effective access to highly alternated isotactic functional PHAs. Chem. Eur. J., 2019, 25(25), 6412-6424. doi:10.1002/chem.201900413http://dx.doi.org/10.1002/chem.201900413
Shakaroun R. M.; Dhaini A.; Ligny R.; Alaaeddine A.; Guillaume S. M.; Carpentier J. F. Stereo-electronic contributions in yttrium-mediated stereoselective ring-opening polymerization of functional racemic β-lactones: ROP of 4-alkoxymethylene-β-propiolactones with bulky exocyclic chains. Polym. Chem., 2023, 14(6), 720-727. doi:10.1039/d2py01573khttp://dx.doi.org/10.1039/d2py01573k
Gresham T. L.; Jansen J. E.; Shaver F. W. β-Propiolactone. I. Polymerization reactions. J. Am. Chem. Soc., 1948, 70(3), 998-999. doi:10.1021/ja01183a030http://dx.doi.org/10.1021/ja01183a030
Thiebaut, R T, Fisher, N, Etienne, Y, Coste, J. Nouveaux polyerters a partir de β-lactones substituees. Ind. Plastique. Mod., 1962, 2, 13-19.
Hall, H. K.Jr. The nucleophile-initiated polymerization of α,α-disubstituted β-lactones. Macromolecules, 1969, 2(5), 488-497. doi:10.1021/ma60011a008http://dx.doi.org/10.1021/ma60011a008
Eisenbach C. D.; Lenz R. W. Solvent and counterion effects in the anionic polymerization of α,α-disubstituted β-propiolactones. Die Makromol. Chem., 1976, 177(8), 2539-2545. doi:10.1002/macp.1976.021770822http://dx.doi.org/10.1002/macp.1976.021770822
Bigdeli, E.; Lenz, R. W. Polymerization of α,α-disubstituted β-propiolactones and lactams. 14. Substituent, solvent, and counterion effects in the anionic polymerization of lactones. Macromolecules, 1978, 11(3), 493-496. doi:10.1021/ma60063a013http://dx.doi.org/10.1021/ma60063a013
Lenz R. W. The synthesis of stereoregular polymers by vinyl, ring-opening, and condensation polymerization reactions. Die Makromol. Chem., 1981, 4(S19811), 47-59. doi:10.1002/macp.1981.020041981104http://dx.doi.org/10.1002/macp.1981.020041981104
Hmamouchi M.; Prud'homme R. E. Synthesis and polymerization of racemic and optically active substituted β-propiolactones. V. α-methyl β-propiolactone. J. Polym. Sci. A, 1988, 26(6), 1593-1607. doi:10.1002/pola.1988.080260610http://dx.doi.org/10.1002/pola.1988.080260610
Hmamouchi M.; Prud'Homme R. E. Synthesis and polymerization of racemic and optically active substituted β-propiolactones. VI. α-phenyl β-propiolactone. J. Polym. Sci. A, 1991, 29(9), 1281-1291. doi:10.1002/pola.1991.080290907http://dx.doi.org/10.1002/pola.1991.080290907
Marchessault R. H.; St-Pierre J.; Duval M.; Perez S. Helical conformation of poly(D,L-α-methyl-α-n-propyl-β-propiolactone). Macromolecules, 1978, 11(6), 1281-1283. doi:10.1021/ma60066a042http://dx.doi.org/10.1021/ma60066a042
Cornibert J.; Marchessault R. H. Conformational isomorphism. A general 21 helical conformation for poly(β-alkanoates). Macromolecules, 1975, 8(3), 296-305. doi:10.1021/ma60045a011http://dx.doi.org/10.1021/ma60045a011
Allegrezza Jr A. E.; Lenz R. W.; Cornibert J.; Marchessault R. H. Polymerization of α,α-disubstituted-β-propiolactones and lactams. 10. structureCrystalline, thermal and mechanical studies of statistical and block copolymers of pivalolactone and α-methyl-α-propyl-β-propiolactone. J. Polym. Sci., 1978, 16(10), 2617-2629. doi:10.1002/pol.1978.170161016http://dx.doi.org/10.1002/pol.1978.170161016
Noah J.; Prud'homme R. E. Evidence of a crystal-crystal transition in poly(α,α-diethyl-β-propiolactone). Eur. Polym. J., 1980, 16(10), 1027-1029. doi:10.1016/0014-3057(80)90187-1http://dx.doi.org/10.1016/0014-3057(80)90187-1
Duchesne D.; Prud'homme R. E. Preparation and properties of poly(α-methyl-α-ethyl-β-propriolactone). Polymer, 1979, 20(10), 1199-1203. doi:10.1016/0032-3861(79)90143-5http://dx.doi.org/10.1016/0032-3861(79)90143-5
Grenier D.; Prud'Homme R. E.; Leborgne A.; Spassky N. Preparation, characterization, and porperties of optically active poly(α-methyl-α-ethyl-β-propiolactones). J. Polym. Sci., 1981, 19(7), 1781-1793. doi:10.1002/pol.1981.170190717http://dx.doi.org/10.1002/pol.1981.170190717
Leborgne A.; Grenier D.; Prud'homme R. E.; Spassky N. Preparation of optically active poly-β-propiolactones—Ⅱ. Preparation of optically active poly-α-methyl-α-ethyl-β-propiolactones. Eur. Polym. J., 1981, 17(10), 1103-1106. doi:10.1016/0014-3057(81)90035-5http://dx.doi.org/10.1016/0014-3057(81)90035-5
Cornibert J.; Marchessault R. H.; Allegrezza A. E.; Lenz R. W. Crystalline, thermal, and mechanical properties of the polyester of α-methyl-α-n-propyl-β-propiolactone. Macromolecules, 1973, 6(5), 676-681. doi:10.1021/ma60035a006http://dx.doi.org/10.1021/ma60035a006
Spassky N.; Leborgne A.; Reix M.; Prud'homme R. E.; Bigdeli E.; Lenz R. W. Preparation and properties of optically active poly(α-methyl-α-n-propyl-β-propiolactone). Macromolecules, 1978, 11(4), 716-719. doi:10.1021/ma60064a019http://dx.doi.org/10.1021/ma60064a019
Leborgne A.; Spassky N.; Sigwalt P. Preparation of optically active poly β-propiolactones. Polym. Bull., 1979, 1(12), 825-832. doi:10.1007/bf00283215http://dx.doi.org/10.1007/bf00283215
Noah J.; Prud'homme R. E. Mechanical properties of racemic poly(α-methyl-α-n-propyl-β-propiolactone). Macromolecules, 1979, 12(4), 721-726. doi:10.1021/ma60070a037http://dx.doi.org/10.1021/ma60070a037
D’Hondt C. G.; Lenz, R. W. Polymerization of α,α-disubstituted β-propiolactones and lactams. VII. Stereoregular polymers from optically active lactones. J. Polym. Sci., 1978, 16(1), 261-274. doi:10.1002/pol.1978.170160124http://dx.doi.org/10.1002/pol.1978.170160124
Carrière F. J.; Eisenbach C. D. Preparation and investigation of optically active polyesters from α-ethyl-α-phenyl-β-propiolactone, 1. Die Makromol. Chem., 1981, 182(2), 325-335. doi:10.1002/macp.1981.021820205http://dx.doi.org/10.1002/macp.1981.021820205
Carrière F. J.; Blottiau R.; Sekiguchi H. α-ethyl-α-benzyl-β-propiolactone—I. Synthesis of (R)-, (S)- and (RS)-monomer, polymerization and some properties of polyesters. Eur. Polym. J., 1986, 22(4), 285-291. doi:10.1016/0014-3057(86)90193-xhttp://dx.doi.org/10.1016/0014-3057(86)90193-x
Carrière, F. J.; Blottiau, R. (RS)-, (R)- and (S)-3-benzyl-3-ethyl 2-oxetanone polymerization with chiral and achiral initiators. J. Therm. Anal., 1992, 38(3), 303-311. doi:10.1007/bf01915495http://dx.doi.org/10.1007/bf01915495
Zhou L.; Zhang Z.; Shi C.; Scoti M.; Barange D. K.; Gowda R. R.; Chen E. Y. X. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science, 2023, 380(6640), 64-69. doi:10.1126/science.adg4520http://dx.doi.org/10.1126/science.adg4520
Ciaperoni A.; Gechele G. B.; Mariani L. Polymerization of β-isovalerolactone. J. Polym. Sci. Part A 1, 1967, 5(4), 891-901. doi:10.1002/pol.1967.150050415http://dx.doi.org/10.1002/pol.1967.150050415
Lavallée C.; Leborgne A.; Spassky N.; Prud'homme R. E. Synthesis and polymerization of racemic and optically active β-substituted β-propiolactones. Ⅱ: β-monosubstituted and β-disubstituted monomers and polymers with different optical purities. J. Polym. Sci. A, 1987, 25(5), 1315-1328. doi:10.1002/pola.1987.080250510http://dx.doi.org/10.1002/pola.1987.080250510
Füchtenbusch B.; Fabritius D.; Steinbüchel A. Incorporation of 2-methyl-3-hydroxybutyric acid into polyhydroxyalkanoic acids by axenic cultures in defined media. FEMS Microbiol. Lett., 1996, 138(2-3), 153-160. doi:10.1016/0378-1097(96)00094-8http://dx.doi.org/10.1016/0378-1097(96)00094-8
Zhou Z.; LaPointe A. M.; Shaffer T. D.; Coates G. W. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat. Chem., 2023, 15(6), 856-861. doi:10.1038/s41557-023-01187-0http://dx.doi.org/10.1038/s41557-023-01187-0
Furutate S.; Kamoi J.; Nomura C. T.; Taguchi S.; Abe H.; Tsuge T. Superior thermal stability and fast crystallization behavior of a novel, biodegradable α-methylated bacterial polyester. NPG Asia Mater., 2021, 13, 31. doi:10.1038/s41427-021-00296-xhttp://dx.doi.org/10.1038/s41427-021-00296-x
Li Y. T.; Yu H. Y.; Li W. B.; Liu Y.; Lu X. B. Recyclable polyhydroxyalkanoates via a regioselective ring-opening polymerization of α,β-disubstituted β-lactone monomers. Macromolecules, 2021, 54(10), 4641-4648. doi:10.1021/acs.macromol.1c00097http://dx.doi.org/10.1021/acs.macromol.1c00097
Brestaz M.; Desilles N.; Le G.; Bunel C. Polyester from dimethylketene and acetaldehyde: direct copolymerization and β-lactone ring-opening polymerization. J. Polym. Sci. A, 2011, 49(19), 4129-4138. doi:10.1002/pola.24854http://dx.doi.org/10.1002/pola.24854
Brestaz M.; Desilles N.; Le G.; Bunel C. Polyester obtained from dimethylketene and acetone: synthesis and characterization. J. Polym. Res., 2012, 19(11), 12. doi:10.1007/s10965-012-0012-5http://dx.doi.org/10.1007/s10965-012-0012-5
Tang X.; Chen Y. X. E. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun., 2018, 9, 2345. doi:10.1038/s41467-018-04734-3http://dx.doi.org/10.1038/s41467-018-04734-3
Tang X.; Westlie A. H.; Caporaso L.; Cavallo L.; Falivene L.; Chen E. Y. X. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin-like properties. Angew. Chem. Int. Ed., 2020, 59(20), 7881-7890. doi:10.1002/anie.201916415http://dx.doi.org/10.1002/anie.201916415
Westlie A. H.; Chen E. Y. X. Catalyzed chemical synthesis of unnatural aromatic polyhydroxyalkanoate and aromatic-aliphatic PHAs with record-high glass-transition and decomposition temperatures. Macromolecules, 2020, 53(22), 9906-9915. doi:10.1021/acs.macromol.0c02110http://dx.doi.org/10.1021/acs.macromol.0c02110
Quinn E. C.; Westlie A. H.; Sangroniz A.; Caputo M. R.; Xu S.; Zhang Z.; Urgun-Demirtas M.; Müller A. J.; Chen E. Y. X. Installing controlled stereo-defects yields semicrystalline and biodegradable poly(3-hydroxybutyrate) with high toughness and optical clarity. J. Am. Chem. Soc., 2023, 145(10), 5795-5802. doi:10.1021/jacs.2c12897http://dx.doi.org/10.1021/jacs.2c12897
Zhang Z.; Shi C. X.; Scoti M.; Tang X. Y.; Chen E. Y. X. Alternating isotactic polyhydroxyalkanoates via site- and stereoselective polymerization of unsymmetrical diolides. J. Am. Chem. Soc., 2022, 144(43), 20016-20024. doi:10.1021/jacs.2c08791http://dx.doi.org/10.1021/jacs.2c08791
Furukawa J.; Iseda Y.; Saegusa T.; Fujii H. Copolymerization of carbon monoxide with alkylene oxide. Macromol. Chem. Phys., 1965, 89, 263-268. doi:10.1002/macp.1965.020890120http://dx.doi.org/10.1002/macp.1965.020890120
Allmendinger M.; Eberhardt R.; Luinstra G.; Rieger B. The cobalt-catalyzed alternating copolymerization of epoxides and carbon monoxide: a novel approach to polyesters. J. Am. Chem. Soc., 2002, 124(20), 5646-5647. doi:10.1021/ja0256919http://dx.doi.org/10.1021/ja0256919
Allmendinger M.; Eberhardt R.; Luinstra G. A.; Rieger B. Alternating copolymerization reaction of propylene oxide and CO: variation of polymer stereoregularity and investigation into chain termination. Macromol. Chem. Phys., 2003, 204(4), 564-569. doi:10.1002/macp.200390030http://dx.doi.org/10.1002/macp.200390030
Allmendinger M.; Molnar F.; Zintl M.; Luinstra G. A.; Preishuber-Pflügl P.; Rieger B. Mechanistic aspects of the metal catalyzed alternating copolymerization of epoxides and carbon monoxide. Chem. Eur. J., 2005, 11(18), 5327-5332. doi:10.1002/chem.200401077http://dx.doi.org/10.1002/chem.200401077
Wen Y.; Nie R.; Li B.; Li S. Ligand-promoted bifunctional cobalt-catalyzed carbonylation-polymerization of epoxides: one step to polyhydroxyalkanoates. ACS Catal., 2023, 13(5), 3317-3322. doi:10.1021/acscatal.3c00173http://dx.doi.org/10.1021/acscatal.3c00173
Yang J. C.; Yang J.; Zhang T. Y.; Li X. J.; Lu X. B.; Liu Y. Toughening poly(3-hydroxybutyrate) by using catalytic carbonylative terpolymerization of epoxides. Macromolecules, 2023, 56(2), 510-517. doi:10.1021/acs.macromol.2c02438http://dx.doi.org/10.1021/acs.macromol.2c02438
Yang J.; Yang J. C.; Lu X. B.; Liu Y. Preparation of poly(β-malic acid) via direct carbonylative polymerization of benzyl glycidate. Macromol. Rapid Commun., 2023, 44(4), 2200694. doi:10.1002/marc.202200694http://dx.doi.org/10.1002/marc.202200694
Zhang Y. Y.; Yang L.; Xie R.; Yang G. W.; Wu G. P. Perfectly alternating copolymerization of CO and epoxides to aliphatic polyester oligomers via cooperative organoboron-cobalt complexes. Macromolecules, 2021, 54(20), 9427-9436. doi:10.1021/acs.macromol.1c01324http://dx.doi.org/10.1021/acs.macromol.1c01324
Vu D. H.; Åkesson D.; Taherzadeh M. J.; Ferreira J. A. Recycling strategies for polyhydroxyalkanoate-based waste materials: an overview. Bioresour. Technol., 2020, 298, 122393. doi:10.1016/j.biortech.2019.122393http://dx.doi.org/10.1016/j.biortech.2019.122393
Kumagai Y.; Kanesawa Y.; Doi Y. Enzymatic degradation of microbial poly(3-hydroxybutyrate) films. Macromol. Chem. Phys., 1992, 193, 53-57. doi:10.1002/macp.1992.021930105http://dx.doi.org/10.1002/macp.1992.021930105
Bachmann B. M.; Seebach D. Investigation of the enzymatic cleavage of diastereomeric oligo(3-hydroxybutanoates) containing two to eight HB units. A model for the stereoselectivity of PHB depolymerase from Alcaligenes faecalis T1. Macromolecules, 1999, 32(6), 1777-1784. doi:10.1021/ma981496whttp://dx.doi.org/10.1021/ma981496w
Zhu B.; He Y.; Nishida H.; Yazawa K.; Ishii N.; Kasuya K. I.; Inoue Y. Crystalline-structure-dependent enzymatic degradation of polymorphic poly(3-hydroxypropionate). Biomacromolecules, 2008, 9(4), 1221-1228. doi:10.1021/bm701220xhttp://dx.doi.org/10.1021/bm701220x
Kaihara S.; Osanai Y.; Nishikawa K.; Toshima K.; Doi Y.; Matsumura S. Enzymatic transformation of bacterial polyhydroxyalkanoates into repolymerizable oligomers directed towards chemical recycling. Macromol. Biosci., 2005, 5(7), 644-652. doi:10.1002/mabi.200500030http://dx.doi.org/10.1002/mabi.200500030
Zaverl M.; Seydibeyoğlu M. Ö.; Misra M.; Mohanty A. Studies on recyclability of polyhydroxybutyrate-co-valerate bioplastic: multiple melt processing and performance evaluations. J. Appl. Polym. Sci., 2012, 125(S2), E324-E331. doi:10.1002/app.36840http://dx.doi.org/10.1002/app.36840
Morikawa H.; Marchessault R. H. Pyrolysis of bacterial polyalkanoates. Can. J. Chem., 1981, 59(15), 2306-2313. doi:10.1139/v81-334http://dx.doi.org/10.1139/v81-334
Ariffin H.; Nishida H.; Shirai Y.; Hassan M. A. Highly selective transformation of poly[(R)-3acid-hydroxybutyric] into trans-crotonic acid by catalytic thermal degradation. Polym. Degrad. Stab., 2010, 95(8), 1375-1381. doi:10.1016/j.polymdegradstab.2010.01.018http://dx.doi.org/10.1016/j.polymdegradstab.2010.01.018
Mensah J. B.; Bruijnincx P. C. A. Polyhydroxyalkanoate valorization beyond bioplastics: opportunities as a circular carbon feedstock. Curr. Opin. Green Sustain. Chem., 2022, 37, 100656. doi:10.1016/j.cogsc.2022.100656http://dx.doi.org/10.1016/j.cogsc.2022.100656
Kang S.; Liang J.; Yuan H.; Lin F.; Deng D.; Fu J. Tailored recycling chemicals and fuels from poly-3-hydroxybutyrate: a review. Biofuels Bioprod. Biorefin., 2022, 16(5), 1412-1427. doi:10.1002/bbb.2371http://dx.doi.org/10.1002/bbb.2371
Kang S.; Liang J.; Fu J.; Feng J.; Tan Z.; Huang Z.; Zhang H.; Xu Y. Sustainable production of drop-in butyric acid from bioderived poly(3-hydroxybutyrate). Sustain. Chem. Pharm., 2023, 33, 101078. doi:10.1016/j.scp.2023.101078http://dx.doi.org/10.1016/j.scp.2023.101078
Samorì C.; Martinez G. A.; Bertin L.; Pagliano G.; Parodi A.; Torri C.; Galletti P. PHB into PHB: recycling of polyhydroxybutyrate by a tandem "thermolytic distillation-microbial fermentation" process. Resour. Conserv. Recycl., 2022, 178, 106082. doi:10.1016/j.resconrec.2021.106082http://dx.doi.org/10.1016/j.resconrec.2021.106082
Ariffin, H.; Nishida, H.; Hassan, M. A; Shirai, Y. Chemical recycling of polyhydroxyalkanoates as a method towards sustainable development. Biotechnol. J., 2010, 5(5), 484-492. doi:10.1002/biot.200900293http://dx.doi.org/10.1002/biot.200900293
Li Z.; Zhao D.; Huang B.; Shen Y.; Li Z. Chemical upcycling of poly(3-hydroxybutyrate) (P3HB) toward functional poly(amine-alt-ester) via tandem degradation and ring-opening polymerization. Macromolecules, 2022, 55(21), 9697-9704. doi:10.1021/acs.macromol.2c01548http://dx.doi.org/10.1021/acs.macromol.2c01548
Yu J.; Plackett D.; Chen L. X. L. Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym. Degrad. Stab., 2005, 89(2), 289-299. doi:10.1016/j.polymdegradstab.2004.12.026http://dx.doi.org/10.1016/j.polymdegradstab.2004.12.026
Yang X.; Odelius K.; Hakkarainen M. Microwave-assisted reaction in green solvents recycles PHB to functional chemicals. ACS Sustainable Chem. Eng., 2014, 2(9), 2198-2203. doi:10.1021/sc500397hhttp://dx.doi.org/10.1021/sc500397h
Parodi A.; D'Ambrosio M.; Mazzocchetti L.; Martinez G. A.; Samorì C.; Torri C.; Galletti P. Chemical recycling of polyhydroxybutyrate (PHB) into bio-based solvents and their use in a circular PHB extraction. ACS Sustainable Chem. Eng., 2021, 9(37), 12575-12583. doi:10.1021/acssuschemeng.1c03299http://dx.doi.org/10.1021/acssuschemeng.1c03299
Zoghbi L.; Argeiti C.; Skliros D.; Flemetakis E.; Koutinas A.; Pateraki C.; Ladakis D. Circular PHB production via Paraburkholderia sacchari cultures using degradation monomers from PHB-based post-consumer bioplastics as carbon sources. Biochem. Eng. J., 2023, 191, 108808. doi:10.1016/j.bej.2023.108808http://dx.doi.org/10.1016/j.bej.2023.108808
Li Z.; Shen Y.; Li Z. Chemical upcycling of poly(3-hydroxybutyrate) into bicyclic ether-ester monomers toward value-added, degradable, and recyclable poly(ether ester). ACS Sustainable Chem. Eng., 2022, 10(25), 8228-8238. doi:10.1021/acssuschemeng.2c02124http://dx.doi.org/10.1021/acssuschemeng.2c02124
0
浏览量
59
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构