浏览全部资源
扫码关注微信
中国科学技术大学高分子科学与工程系 合肥 230026
E-mail: chen1215@ustc.edu.cn
changle@ustc.edu.cn
纸质出版日期:2023-11-20,
网络出版日期:2023-09-01,
收稿日期:2023-04-28,
录用日期:2023-06-15
扫 描 看 全 文
王文兵,邹陈,陈昶乐.芘环基二亚胺镍催化剂的合成及其乙烯聚合/共聚的性能研究[J].高分子学报,2023,54(11):1697-1707.
Wang Wen-bing,Zou Chen,Chen Chang-le.Synthesis of Pyrene Based α-Diimide Nickel Catalysts for Ethylene Polymerization/Copolymerization[J].Acta Polymerica Sinica,2023,54(11):1697-1707.
王文兵,邹陈,陈昶乐.芘环基二亚胺镍催化剂的合成及其乙烯聚合/共聚的性能研究[J].高分子学报,2023,54(11):1697-1707. DOI: 10.11777/j.issn1000-3304.2023.23118.
Wang Wen-bing,Zou Chen,Chen Chang-le.Synthesis of Pyrene Based α-Diimide Nickel Catalysts for Ethylene Polymerization/Copolymerization[J].Acta Polymerica Sinica,2023,54(11):1697-1707. DOI: 10.11777/j.issn1000-3304.2023.23118.
选用不同结构的芳香烃基团,可以便捷地设计合成一系列具有不同催化性能的后过渡金属催化剂. 芘环芳香烃的结构特征之一是芘环芳香烃分子之间存在
π
-
π
堆积作用,因而具有调节过渡金属催化剂性能的潜力. 本文设计合成了一系列具有芘环结构的
α
-二亚胺镍催化剂,利用这些芘环基二亚胺镍催化剂的
π
-
π
堆积效应,可使镍催化剂的乙烯聚合活性高达3.12×10
7
g·mol
-1
·h
-1
,制备的聚乙烯的重均相对分子质量高达1.98×10
6
g·mol
-1
. 这些催化剂还可以实现乙烯与10-十一烯酸甲酯的共聚,并对有
π
-
π
堆积效应的10-十一烯酸芘基酯单体共聚性能更佳.
The transition metal catalysts required for coordination polymerization to prepare polyolefins have received high attention from academia and industry with the continuous development of the polyolefin industry. Among them
late transition metal catalysts represented by nickel and palladium have been widely studied in olefin/polar monomer copolymerization reactions due to their low oxygen affinity and high tolerance to polar groups. By selecting aromatic hydrocarbon groups with different structures
a series of late transition metal catalysts with different catalytic properties can be conveniently designed and synthesized. One of the structural characteristics of pyrene ring aromatic hydrocarbons is the
π
-
π
stacking effect between pyrene ring aromatic hydrocarbon molecules
which has the potential to regulate the performance of transition metal catalysts. This article introduced the pyrene ring group into the ligand structure and designed and synthesized a series of
α
-diimine nickel catalysts with pyrene ring structure
and the structures of these ligands and catalysts were characterized in detail by nuclear magnetic resonance spectrometer (NMR)
electrospray ionization mass spectrometry (ESI-MS)
X-ray diffraction (XRD)
etc
. Subsequently
the ethylene polymerization reaction of these catalysts was studied in heptane solvent. Due to the interaction of pyrene ring groups
the
π
-
π
stacking effect may be formed between these nickel complexes. In addition
adding pyrene molecules to the aggregation system may also form the
π
-
π
stacking effect with the complexes. By utilizing the
π
-
π
stacking effect of these pyrene ring based
α
-diimide nickel catalysts
the ethylene polymerization activity of the nickel catalysts was as high as 3.12×10
7
g·mol
-1
·h
-1
with a weight average relative molecular weight of up to 1.98×10
6
g·mol
-1
for the prepared polyethylene
and the branching degree of polyethylene was 4-77 C/1000 C. These catalysts can also achieve copolymerization of ethylene with methyl 10-undecanoate
with a copolymerization activity of up to 3.30×10
5
g·mol
-1
·h
-1
. Moreover
the copolymerization performance of 10-undecylenoic acid pyrene ester monomers with
π
-
π
stacking effect was better
which once again proved the possibility of
π
-
π
stacking effect in this type of catalyst.
镍催化剂芘乙烯聚合共聚合聚乙烯
Nickel catalystPyreneEthylene polymerizationCopolymerizationPolyethylene
Fawcett E. W.; Gibson R. O.; Perrin M. W.; Patton J. G.; Williams E. G. Polymerization of olefins. British patent 471590. 1939-04-11.
Ziegler K.; Holzkamp E.; Breil H.; Martin H. Polymerisation von äthylen und anderen olefinen. Angew. Chem., 1955, 67(16), 426. doi:10.1002/ange.19550671610http://dx.doi.org/10.1002/ange.19550671610
Natta G.; Pino P.; Corradini P.; Danusso F.; Mantica E.; Mazzanti G.; Moraglio G. Crystalline high polymers of α-olefins. J. Am. Chem. Soc., 1955, 77(6), 1708-1710. doi:10.1021/ja01611a109http://dx.doi.org/10.1021/ja01611a109
Galli P.; Vecellio G. Technology: driving force behind innovation and growth of polyolefins. Prog. Polym. Sci., 2001, 26(8), 1287-1336. doi:10.1016/s0079-6700(01)00029-6http://dx.doi.org/10.1016/s0079-6700(01)00029-6
Mu H. L.; Pan L.; Song D. P.; Li Y. S. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev., 2015, 115(22), 12091-12137. doi:10.1021/cr500370fhttp://dx.doi.org/10.1021/cr500370f
Chen C. L. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem., 2018, 2(5), 6-14. doi:10.1038/s41570-018-0003-0http://dx.doi.org/10.1038/s41570-018-0003-0
简忠保. 功能化聚烯烃合成: 从催化剂到极性单体设计. 高分子学报, 2018, (11), 1359-1371. doi:10.11777/j.issn1000-3304.2018.18146http://dx.doi.org/10.11777/j.issn1000-3304.2018.18146
Chen Z.; Brookhart M. Exploring ethylene/polar vinyl monomer copolymerizations using Ni and Pd α-diimine catalysts. Acc. Chem. Res., 2018, 51(8), 1831-1839. doi:10.1021/acs.accounts.8b00225http://dx.doi.org/10.1021/acs.accounts.8b00225
Nakamura A.; Anselment T. M. J.; Claverie J.; Goodall B.; Jordan R. F.; Mecking S.; Rieger B.; Sen A.; van Leeuwen P. W. N. M.; Nozaki K. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc. Chem. Res., 2013, 46(7), 1438-1449. doi:10.1021/ar300256hhttp://dx.doi.org/10.1021/ar300256h
Baur M.; Lin F.; Morgen T. O.; Odenwald L.; Mecking S. Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization. Science, 2021, 374(6567), 604-607. doi:10.1126/science.abi8183http://dx.doi.org/10.1126/science.abi8183
Hong C. W.; Wang Z. H.; Jiang H.; Si G. F.; Song M. P.; Chen C. L. Dual roles of trifluoroborate in nickel-catalyzed ethylene polymerization: electronic perturbation and anchoring for heterogenization. Chin. Chem. Lett., 2023, 34(8), 107918. doi:10.1016/j.cclet.2022.107918http://dx.doi.org/10.1016/j.cclet.2022.107918
陈敏, 陈昶乐. 镍催化剂用于功能化聚烯烃材料的制备. 科学通报, 2022, 67(17), 1881-1894.
Rhinehart J. L.; Brown L. A.; Long B. K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc., 2013, 135(44), 16316-16319. doi:10.1021/ja408905thttp://dx.doi.org/10.1021/ja408905t
Ma Z. S.; Xu M. L.; Zhu N. N.; Tan C.; Chen C. L. Heterogeneous α-diimine nickel catalysts with improved catalytic performance in ethylene polymerization. Chin. J. Chem., 2023, 41(10), 1155-1162. doi:10.1002/cjoc.202200785http://dx.doi.org/10.1002/cjoc.202200785
Contrella N. D.; Sampson J. R.; Jordan R. F. Copolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphine-diethyl phosphonate ancillary ligands. Organometallics, 2014, 33(13), 3546-3555. doi:10.1021/om5004489http://dx.doi.org/10.1021/om5004489
Zhang W.; Waddell P. M.; Tiedemann M. A.; Padilla C. E.; Mei J. J.; Chen L. Y.; Carrow B. P. Electron-rich metal cations enable synthesis of high molecular weight, linear functional polyethylenes. J. Am. Chem. Soc., 2018, 140(28), 8841-8850. doi:10.1021/jacs.8b04712http://dx.doi.org/10.1021/jacs.8b04712
Chen A.; Liao D. H.; Chen C. L. Promoting ethylene (co)polymerization in aliphatic hydrocarbon solvents using tert-butyl substituted nickel catalysts. Chinese J. Chem., 2022, 40(2), 215-222. doi:10.1002/cjoc.202100642http://dx.doi.org/10.1002/cjoc.202100642
Zheng H. D.; Li Y. W.; Du W. B.; Cheung C. S.; Li D. H.; Gao H.; Deng H. Y.; Gao H. Y. Unprecedented Square-planar α-diimine dibromonickel complexes and their ethylene polymerizations modulated by Ni-phenyl interactions. Macromolecules, 2022, 55(9), 3533-3540. doi:10.1021/acs.macromol.2c00360http://dx.doi.org/10.1021/acs.macromol.2c00360
Zhang H.; Zou C.; Zhao H. P.; Cai Z. G.; Chen C. L. Hydrogen-bonding-induced heterogenization of nickel and palladium catalysts for copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed., 2021, 60(32), 17446-17451. doi:10.1002/anie.202106682http://dx.doi.org/10.1002/anie.202106682
Lu Z.; Xu X. W.; Luo Y.; He S. B.; Fan W. G.; Dai S. Y. Unexpected effect of catalyst's structural symmetry on the branching microstructure of polyethylene in late transition metal polymerization catalysis. ACS Catal., 2023, 13(1), 725-734. doi:10.1021/acscatal.2c04525http://dx.doi.org/10.1021/acscatal.2c04525
Chen S. Y.; Pan R. C.; Chen M.; Liu Y.; Chen C. L.; Lu X. B. Synthesis of nonalternating polyketones using cationic diphosphazane monoxide-palladium complexes. J. Am. Chem. Soc., 2021, 143(28), 10743-10750. doi:10.1021/jacs.1c04964http://dx.doi.org/10.1021/jacs.1c04964
Xu M. H.; Chen C. L. A disubstituted-norbornene-based comonomer strategy to address polar monomer problem. Sci. Bull., 2021, 66(14), 1429-1436. doi:10.1016/j.scib.2021.03.012http://dx.doi.org/10.1016/j.scib.2021.03.012
Fu X.; Zhang L. J.; Tanaka R.; Shiono T.; Cai Z. G. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers. Macromolecules, 2017, 50(23), 9216-9221. doi:10.1021/acs.macromol.7b01947http://dx.doi.org/10.1021/acs.macromol.7b01947
阮晶晶, 郑涵斗, 蒋岩, 王力搏, 王斯晗, 高海洋. α-二亚胺镍钯配合物合成及催化混合癸烯低聚研究. 高分子学报, 2021, 52(12), 1603-1610. doi:10.11777/j.issn1000-3304.2021.21147http://dx.doi.org/10.11777/j.issn1000-3304.2021.21147
Behzadi S.; Zou C.; Yang B. P.; Tan C.; Chen C. L. Styrene-containing phosphine-sulfonate ligands for nickel- and palladium-catalyzed ethylene polymerization. Chinese J. Polym. Sci., 2021, 39(4), 447-454. doi:10.1007/s10118-021-2509-zhttp://dx.doi.org/10.1007/s10118-021-2509-z
Tan C.; Chen C. L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew. Chem. Int. Ed., 2019, 58(22), 7192-7200. doi:10.1002/anie.201814634http://dx.doi.org/10.1002/anie.201814634
Tan C.; Zou C.; Chen C. L. An ionic cluster strategy for performance improvements and product morphology control in metal-catalyzed olefin-polar monomer copolymerization. J. Am. Chem. Soc., 2022, 144(5), 2245-2254. doi:10.1021/jacs.1c11817http://dx.doi.org/10.1021/jacs.1c11817
Peng D.; Chen C. L. Photoresponsive palladium and nickel catalysts for ethylene polymerization and copolymerization. Angew. Chem. Int. Ed., 2021, 60(41), 22195-22200. doi:10.1002/anie.202107883http://dx.doi.org/10.1002/anie.202107883
Wang G. H.; Peng D.; Sun Y.; Chen C. L. Interplay of supramolecular chemistry and photochemistry with palladium-catalyzed ethylene polymerization. CCS Chem., 2021, 3(7), 2025-2034. doi:10.31635/ccschem.020.202000414http://dx.doi.org/10.31635/ccschem.020.202000414
Lin F.; Morgen T. O.; Mecking S. Living aqueous microemulsion polymerization of ethylene with robust Ni(II) phosphinophenolato catalysts. J. Am. Chem. Soc. 2021, 143(49), 20605-20608. doi:10.1021/jacs.1c10488http://dx.doi.org/10.1021/jacs.1c10488
Zou C.; Chen C. L. Polar-functionalized crosslinkable, self-healing, and polyolefinsphotoresponsive. Angew. Chem. Int. Ed., 2020, 59(1), 395-402. doi:10.1002/anie.201910002http://dx.doi.org/10.1002/anie.201910002
Zou C.; Zhang H.; Tan C.; Cai Z. G. Polyolefins with intrinsic antimicrobial properties. Macromolecules, 2021, 54(1), 64-70. doi:10.1021/acs.macromol.0c02018http://dx.doi.org/10.1021/acs.macromol.0c02018
Wang W. B.; Chen M.; Pang W. M.; Li Y. G.; Zou C.; Chen C. L. Palladium-catalyzed synthesis of norbornene-based polar-functionalized polyolefin elastomers. Macromolecules, 2021, 54(7), 3197-3203. doi:10.1021/acs.macromol.1c00201http://dx.doi.org/10.1021/acs.macromol.1c00201
Xu M. H.; Chen A.; Li W.; Li Y. G.; Zou C.; Chen C. L. Efficient synthesis of polar functionalized polyolefins with high biomass content. Macromolecules, 2023, 56(4), 1372-1378. doi:10.1021/acs.macromol.3c00086http://dx.doi.org/10.1021/acs.macromol.3c00086
Li J.; Wang Y.; Cai W.; Yang G.; Tian Q. H.; Huang Y. S.; Peng D.; Zou C.; Tan C. Dual-site polymeric heterogeneous α-diimine Ni catalysts with tailored spatial distribution for ethylene polymerization. Macromolecules, 2023, 56(8), 3015-3023. doi:10.1021/acs.macromol.2c02344http://dx.doi.org/10.1021/acs.macromol.2c02344
Tan C.; Zou C.; Chen C. L. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene-polar monomer copolymerization. Macromolecules, 2022, 55(6), 1910-1922. doi:10.1021/acs.macromol.2c00058http://dx.doi.org/10.1021/acs.macromol.2c00058
Xu M. H.; Liu Y. Z.; Pang W. M.; Pan Y.; Chen M.; Zou C.; Tan C. Cocatalyst effects in α-diimine nickel catalyzed ethylene polymerization. Polymer, 2022, 255, 125116. doi:10.1016/j.polymer.2022.125116http://dx.doi.org/10.1016/j.polymer.2022.125116
Wang Q.; Wang W. B.; Qu W. C.; Pang W. M.; Qasim M.; Zou C. Ethylene homo and copolymerization by phosphorus-benzoquinone based homogeneous and heterogeneous nickel catalysts. J. Polym. Sci., 2023, 61(2), 115-122. doi:10.1002/pol.20220381http://dx.doi.org/10.1002/pol.20220381
Chen J. W.; Wang W. B.; Pan Y.; Peng D.; Li Y. G.; Zou C. Palladium-catalyzed synthesis of oil-based functionalized polyolefins. Polym. Chem., 2023, 14(10), 1103-1109. doi:10.1039/d3py00012ehttp://dx.doi.org/10.1039/d3py00012e
Zou C.; Wang Q.; Si G. F.; Chen C. L. A co-anchoring strategy for the synthesis of polar bimodal polyethylene. Nat. Commun., 2023, 14(1), 1442. doi:10.1038/s41467-023-37152-1http://dx.doi.org/10.1038/s41467-023-37152-1
Zou C.; Si G. F.; Chen C. L. A general strategy for heterogenizing olefin polymerization catalysts and the synthesis of polyolefins and composites. Nat. Commun., 2022, 13(1), 1954. doi:10.1038/s41467-022-29533-9http://dx.doi.org/10.1038/s41467-022-29533-9
Johnson L. K.; Killian C. M.; Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and.alpha.-olefins. J. Am. Chem. Soc., 1995, 117(23), 6414-6415. doi:10.1021/ja00128a054http://dx.doi.org/10.1021/ja00128a054
Johnson L. K.; Mecking S.; Brookhart M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc., 1996, 118(1), 267-268. doi:10.1021/ja953247ihttp://dx.doi.org/10.1021/ja953247i
Takeuchi D. Synthesis and thermal properties of poly(oligomethylene-cycloalkylene)s with regulated regio- and stereochemistry. Polym. J., 2018, 50(8), 573-578. doi:10.1038/s41428-018-0073-3http://dx.doi.org/10.1038/s41428-018-0073-3
Wang F. Z.; Chen C. L. A continuing legend: the brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem., 2019, 10(19), 2354-2369. doi:10.1039/c9py00226jhttp://dx.doi.org/10.1039/c9py00226j
Dong Z. M.; Ye Z. B. Hyperbranched polyethylenes by chain walking polymerization: synthesis, properties, functionalization, and applications. Polym. Chem., 2012, 3(2), 286-301. doi:10.1039/c1py00368bhttp://dx.doi.org/10.1039/c1py00368b
Guo L. H.; Chen C. L. (α-Diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers. Sci. China Chem., 2015, 58(11), 1663-1673. doi:10.1007/s11426-015-5433-7http://dx.doi.org/10.1007/s11426-015-5433-7
Kaiser J. M.; Long B. K. Recent developments in redox-active olefin polymerization catalysts. Coord. Chem. Rev., 2018, 372, 141-152. doi:10.1016/j.ccr.2018.06.007http://dx.doi.org/10.1016/j.ccr.2018.06.007
Ma Z. F.; Yang W. H.; Sun W. H. Recent progress on transition metal (Fe, co, Ni, Ti and V) complex catalysts in olefin polymerization with high thermal stability. Chin. J. Chem., 2017, 35(5), 531-540. doi:10.1002/cjoc.201600720http://dx.doi.org/10.1002/cjoc.201600720
Nakamura A.; Ito S.; Nozaki K. Coordination-insertion copolymerization of fundamental polar monomers. Chem. Rev., 2009, 109(11), 5215-5244. doi:10.1021/cr900079rhttp://dx.doi.org/10.1021/cr900079r
Wang H.; Duan G. K.; Fan H. J.; Dai S. Y. Second coordination sphere effect of benzothiophene substituents on chain transfer and chain walking in ethylene insertion polymerization. Polymer, 2022, 245, 124707. doi:10.1016/j.polymer.2022.124707http://dx.doi.org/10.1016/j.polymer.2022.124707
Chen Z.; Mesgar M.; White P. S.; Daugulis O.; Brookhart M. Synthesis of branched ultrahigh-molecular-weight polyethylene using highly active neutral, single-component Ni(II) catalysts. ACS Catal., 2015, 5(2), 631-636. doi:10.1021/cs501948dhttp://dx.doi.org/10.1021/cs501948d
Rhinehart J. L.; Mitchell N. E.; Long B. K. Enhancing α-diimine catalysts for high-temperature ethylene polymerization. ACS Catal., 2014, 4(8), 2501-2504. doi:10.1021/cs500694mhttp://dx.doi.org/10.1021/cs500694m
Zhang D. F.; Nadres E. T.; Brookhart M.; Daugulis O. Synthesis of highly branched polyethylene using "sandwich" (8-p-tolyl naphthyl α-diimine)nickel (II) catalysts. Organometallics, 2013, 32(18), 5136-5143. doi:10.1021/om400704hhttp://dx.doi.org/10.1021/om400704h
Padilla-Vélez O.; O'Connor K. S.; LaPointe A. M.; MacMillan S. N.; Coates G. W. Switchable living nickel(ii) α-diimine catalyst for ethylene polymerisation. Chem. Commun., 2019, 55(53), 7607-7610. doi:10.1039/c9cc03154ehttp://dx.doi.org/10.1039/c9cc03154e
O'Connor K. S.; Watts A.; Vaidya T.; LaPointe A. M.; Hillmyer M. A.; Coates G. W. Controlled chain walking for the synthesis of thermoplastic polyolefin elastomers: synthesis, structure, and properties. Macromolecules, 2016, 49(18), 6743-6751. doi:10.1021/acs.macromol.6b01567http://dx.doi.org/10.1021/acs.macromol.6b01567
Dai S. Y.; Sui X. L.; Chen C. L. Synthesis of high molecular weight polyethylene using iminopyridyl nickel catalysts. Chem. Commun., 2016, 52(58), 9113-9116. doi:10.1039/c6cc00457ahttp://dx.doi.org/10.1039/c6cc00457a
Dai S. Y.; Chen C. L. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed., 2016, 55(42), 13281-13285. doi:10.1002/anie.201607152http://dx.doi.org/10.1002/anie.201607152
Zou C.; Dai S. Y.; Chen C. L. Ethylene polymerization and copolymerization using nickel 2-iminopyridine-N-oxide catalysts: modulation of polymer molecular weights and molecular-weight distributions. Macromolecules, 2018, 51(1), 49-56. doi:10.1021/acs.macromol.7b02156http://dx.doi.org/10.1021/acs.macromol.7b02156
Younkin T. R.; Connor E. F.; Henderson J. I.; Friedrich S. K.; Grubbs R. H.; Bansleben D. A. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science, 2000, 287(5452), 460-462. doi:10.1126/science.287.5452.460http://dx.doi.org/10.1126/science.287.5452.460
Gu J.; Wang X. H.; Zhao W. P.; Zhuang R.; Zhang C. Y.; Zhang X. Q.; Cai Y. H.; Yuan W. B.; Luan B.; Dong B.; Liu H. Synthesis of half-titanocene complexes containing π,π-stacked aryloxide ligands, and their use as catalysts for ethylene (co)polymerizations. Polymers, 2022, 14(7), 1427. doi:10.3390/polym14071427http://dx.doi.org/10.3390/polym14071427
Zhang L. P.; Zhang W. J.; Serp P.; Sun W. H.; Durand J. Ethylene polymerization catalyzed by pyrene-tagged iron complexes: The positive effect of π-conjugation and immobilization on multiwalled carbon nanotubes. ChemCatChem, 2014, 6(5), 1310-1316. doi:10.1002/cctc.201301063http://dx.doi.org/10.1002/cctc.201301063
Wang Q.; Zhang Z.; Zou C.; Chen C. L. A general cocatalyst strategy for performance enhancement in nickel catalyzed ethylene (co)polymerization. Chin. Chem. Lett., 2022, 33(9), 4363-4366. doi:10.1016/j.cclet.2021.12.036http://dx.doi.org/10.1016/j.cclet.2021.12.036
0
浏览量
37
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构