浏览全部资源
扫码关注微信
纤维材料改性国家重点实验室 东华大学先进低维材料中心 材料科学与工程学院 上海 201620
E-mail: shgyang@dhu.edu.cn
纸质出版日期:2023-11-20,
网络出版日期:2023-08-28,
收稿日期:2023-05-05,
录用日期:2023-06-13
扫 描 看 全 文
张彩虹,王伟杰,黄浩等.湿度对高分子氢键复合物纤维力学行为的影响[J].高分子学报,2023,54(11):1772-1783.
Zhang Cai-hong,Wang Wei-jie,Huang Hao,et al.Effect of Humidity on Mechanical Behavior of Polymer Hydrogen-bonding Complex Fibers[J].Acta Polymerica Sinica,2023,54(11):1772-1783.
张彩虹,王伟杰,黄浩等.湿度对高分子氢键复合物纤维力学行为的影响[J].高分子学报,2023,54(11):1772-1783. DOI: 10.11777/j.issn1000-3304.2023.23122.
Zhang Cai-hong,Wang Wei-jie,Huang Hao,et al.Effect of Humidity on Mechanical Behavior of Polymer Hydrogen-bonding Complex Fibers[J].Acta Polymerica Sinica,2023,54(11):1772-1783. DOI: 10.11777/j.issn1000-3304.2023.23122.
高分子复合物具有刺激响应特性,随环境变化表现出结构或性能转变. 以聚丙烯酸(PAA)作为氢键给体,分别以聚乙烯吡咯烷酮(PVPON)、聚2-乙基-2-𫫇唑啉(PEOX)和聚环氧乙烷(PEO)作为受体,制备了3种氢键复合物纤维. 3种纤维的力学性能都随湿度变化而变化,且对湿度的依赖性与高分子氢键复合强度相关. 通过动态力学测试,利用时间-湿度叠加方法构建了高分子氢键复合物纤维的模量-频率主曲线,呈现了较宽时间范围内的力学松弛现象. 为湿度响应的高分子复合物材料的开发及应用提供指导与支持.
Polymer complexes exhibit environmental-responsiveness owing to the integration and assembly of stimuli-sensitive components
leading to the changes in their structure or properties. Humidity is one of the general environmental parameters which can influence the fabrication and application of polymer complexes
and thus it is important to investigate the effect of humidity on the structure and properties of polymer complexes. Herein
three hydrogen-bonding complex fibers were constructed using poly(acrylic acid) (PAA) as a hydrogen-bonding donor
and polyvinylpyrrolidone (PVPON)
poly(2-ethyl-2-oxazoline) (PEOX) and poly(ethylene oxide) (PEO) as the hydrogen-bonding acceptors. Results show that the strength of hydrogen-bonding complexation affects the morphology and glass-transition temperature of the prepared complex fibers. With the increase in humidity
PAA/PVPON fiber stayed in a glassy state while PAA/PEOX fiber presented a glass-transition-like behavior at high humidity. As for PAA/PEO fiber
it showed a rubber-like transition behavior even at low humidity. It is found that the mechanical properties of the complex fibers are different mainly attributed to the different complexation strengthes
chain structures and water contents in the systems. The storage modulus-frequency master curve of polymer complex under humidity field was constructed using time-humidity superposition technique through dynamic mechanical multi-frequency strain test
and the mechanical relaxation in a wide time range was presented. Above all
this work can provide basic guidance for constructing humidity-response materials and analyzing the service capability of polymer complex materials.
高分子复合物氢键复合湿度力学性能时间-湿度叠加
Polymer complexHydrogen-bonding complexHumidityMechanical propertyTime-humidity superposition
Michaels, A. S. Polyelectrolyte complexes. Ind. Eng. Chem., 1965, 57(10), 32-40. doi:10.1021/ie50670a007http://dx.doi.org/10.1021/ie50670a007
Kabanov V. A.; Papisov I. M. Formation of complexes between complementary synthetic polymers and oligomers in dilute solution review. Polym. Sci. U S S R, 1979, 21(2), 261-307. doi:10.1016/0032-3950(79)90245-4http://dx.doi.org/10.1016/0032-3950(79)90245-4
Tsuchida E.; Abe K. Interactions between macromolecules in solution and intermacromolecular complexes. Adv. Polym. Sci., 1982, 45, 1-119. doi:10.1007/bfb0017548http://dx.doi.org/10.1007/bfb0017548
Schmidt M. Polyelectrolytes with Defined Molecular Architecture II. Berlin, Heidelberg: Springer, 2004, 113-171. doi:10.1007/b10951http://dx.doi.org/10.1007/b10951
Srivastava S.; Tirrell M. V. Polyelectrolyte complexation. Adv. Chem. Phys., 2016, 161, 499-544. doi:10.1002/9781119290971.ch7http://dx.doi.org/10.1002/9781119290971.ch7
刘德中, 杨曙光. 多组分高分子复合物纤维的制备与性能调控. 高分子学报, 2021, 52(10), 1353-1363. doi:10.11777/j.issn1000-3304.2021.21060http://dx.doi.org/10.11777/j.issn1000-3304.2021.21060
Nie J.; Wang Z. L.; Li J. F.; Gong Y.; Sun J. X.; Yang S. G. Interface hydrogen-bonded core-shell nanofibers by coaxial electrospinning. Chinese J. Polym. Sci., 2017, 35(8), 1001-1008. doi:10.1007/s10118-017-1984-8http://dx.doi.org/10.1007/s10118-017-1984-8
Zhu L. P.; Yang S. G.; Zhu M. F. Fibers make a better life. Chinese J. Polym. Sci., 2022, 40(4), 331-332. doi:10.1007/s10118-022-2698-0http://dx.doi.org/10.1007/s10118-022-2698-0
Liu Z. X.; Liu D. Z.; Zhang C. H.; Wang W. J.; Huang H.; Yang S. G. Stabilize and reinforce hydrogen-bonded polymer complex elastic fiber by catechol chemistry and coordination. Chinese J. Polym. Sci., 2023, Doi: 10.1007/s10118-023-2992-5http://dx.doi.org/10.1007/s10118-023-2992-5
Lin F.; Zhu L. P.; Yang S. G. Effective optical diffuser based on interfacial hydrogen-bonding polymer complexation. ACS Appl. Polym. Mater., 2020, 2(9), 3805-3812. doi:10.1021/acsapm.0c00470http://dx.doi.org/10.1021/acsapm.0c00470
Kharlampieva E.; Sukhishvili S. A. Hydrogen-bonded layer-by-layer polymer films. J. Macromol. Sci. C, 2006, 46(4), 377-395. doi:10.1080/15583720600945386http://dx.doi.org/10.1080/15583720600945386
Zhou W. J.; Ding P.; Zhang C. L.; Wu B. H.; Guo X. H.; Cohen Stuart M. A.; Zhou X. H.; Wang J. Y. Regulated polyion complex vesicles for efficient photothermal therapy. Adv. Funct. Mater., 2022, 32(17), 2108729. doi:10.1002/adfm.202108729http://dx.doi.org/10.1002/adfm.202108729
Voets I. K.; de Keizer A.; Cohen Stuart M. A. Complex coacervate core micelles. Adv. Colloid Interface Sci., 2009, 147-148, 300-318.
Wang W. J.; Xu X.; Zhang C. H.; Huang H.; Zhu L. P.; Yue K.; Zhu M. F.; Yang S. G. Skeletal muscle fibers inspired polymeric actuator by assembly of triblock polymers. Adv. Sci., 2022, 9(13), 2105764. doi:10.1002/advs.202105764http://dx.doi.org/10.1002/advs.202105764
Liu D. Z.; Zhu L. P.; Huang W. T.; Yue K.; Yang S. G. Polymer complex fiber for linear actuation with high working density and stable catch-state. ACS Macro Lett., 2020, 9(11), 1507-1513. doi:10.1021/acsmacrolett.0c00633http://dx.doi.org/10.1021/acsmacrolett.0c00633
Zhu M. M.; Wang W. J.; Zhang C. H.; Zhu L. P.; Yang S. G. Photo-responsive behaviors of hydrogen-bonded polymer complex fibers containing azobenzene functional groups. Adv. Fiber Mater., 2021, 3(3), 172-179. doi:10.1007/s42765-021-00080-0http://dx.doi.org/10.1007/s42765-021-00080-0
Dompé M.; Cedano-Serrano F. J.; Vahdati M.; van Westerveld L.; Hourdet D.; Creton C.; van der Gucht J.; Kodger T.; Kamperman M. Underwater adhesion of multiresponsive complex coacervates. Adv. Mater. Interfaces, 2020, 7(4), 1901785. doi:10.1002/admi.201901785http://dx.doi.org/10.1002/admi.201901785
陈栋栋, 马莹, 孙俊奇. 智能响应与自修复的层层组装聚合物膜. 高分子学报, 2012, (10), 1047-1054. doi:10.3724/SP.J.1105.2012.12125http://dx.doi.org/10.3724/SP.J.1105.2012.12125
Huang H.; Trentle M.; Liu Z. X.; Xiang K. H.; Higgins W.; Wang Y. B.; Xue B.; Yang S. G. Polymer complex fiber: property, functionality, and applications. ACS Appl. Mater. Interfaces, 2023, 15(6), 7639-7662. doi:10.1021/acsami.2c19583http://dx.doi.org/10.1021/acsami.2c19583
Wang Y.; Xie Y. J.; Xie X. Y.; Wu D.; Wu H. T.; Luo X. Q.; Wu Q.; Zhao L. J.; Wu J. R. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure. Adv. Funct. Mater., 2023, 33(12), 2210224. doi:10.1002/adfm.202210224http://dx.doi.org/10.1002/adfm.202210224
Huang X. Y.; Bolen M. J.; Zacharia N. S. Silver nanoparticle aided self-healing of polyelectrolyte multilayers. Phys. Chem. Chem. Phys., 2014, 16(22), 10267-10273. doi:10.1039/c4cp00349ghttp://dx.doi.org/10.1039/c4cp00349g
Skorb E. V.; Andreeva D. V. Self-healing properties of layer-by-layer assembled multilayers. Polym. Int., 2015, 64(6), 713-723. doi:10.1002/pi.4899http://dx.doi.org/10.1002/pi.4899
Zhang H. A.; Wang C.; Zhu G.; Zacharia N. S. Self-healing of bulk polyelectrolyte complex material as a function of pH and salt. ACS Appl. Mater. Interfaces, 2016, 8(39), 26258-26265. doi:10.1021/acsami.6b06776http://dx.doi.org/10.1021/acsami.6b06776
李懿轩, 孙俊奇. 基于聚合物复合物的自修复与可修复聚合物材料. 高分子学报, 2020, 51(8), 791-803. doi:10.11777/j.issn1000-3304.2020.20062http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
李思衡, 李懿轩, 王钰婷, 孙俊奇. 可修复纤维损伤的防霜和防雾聚合物复合膜. 高分子学报, 2023, 54(5), 697-707. doi:10.11777/j.issn1000-3304.2022.22424http://dx.doi.org/10.11777/j.issn1000-3304.2022.22424
Zhao Q.; Lee D. W.; Ahn B. K.; Seo S.; Kaufman Y.; Israelachvili J. N.; Waite J. H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater., 2016, 15(4), 407-412. doi:10.1038/nmat4539http://dx.doi.org/10.1038/nmat4539
Zuidema P.; Govaert L. E.; Baaijens F. P. T.; Ackermans P. A. J.; Asvadi S. The influence of humidity on the viscoelastic behaviour of human hair. Biorheology, 2003, 40(4), 431-439.
Xiao X. L.; Hu J. L. Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci. Rep., 2016, 6, 26393. doi:10.1038/srep26393http://dx.doi.org/10.1038/srep26393
Luo R.; Hou Q. Development of time-temperature-humidity superposition principle for asphalt mixtures. Mech. Mater., 2021, 156, 103792. doi:10.1016/j.mechmat.2021.103792http://dx.doi.org/10.1016/j.mechmat.2021.103792
刘淑峰, 程小全, 包建文. 湿热环境对树脂基复合材料性能影响的分析. 高分子材料科学与工程, 2014, 30(9), 183-190.
Wang M.; Tian X. L.; Ras R. H. A.; Ikkala O. Sensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuation. Adv. Mater. Interfaces, 2015, 2(7), 1500080. doi:10.1002/admi.201500080http://dx.doi.org/10.1002/admi.201500080
Yu H. T.; Guo Y. T.; Yao C.; Perepichka D. F.; Meng H. A smart polymer with a high sensitivity to temperature and humidity based on polyacrylamide hydrogel doped with polyiodide. J. Mater. Chem. C, 2016, 4(47), 11055-11058. doi:10.1039/c6tc04200ghttp://dx.doi.org/10.1039/c6tc04200g
Irawati N.; Rahman H. A.; Yasin M.; Al-Askari S.; Hamida B. A.; Ahmad H.; Harun S. W. Relative humidity sensing using a PMMA doped agarose gel microfiber. J. Light. Technol., 2017, 35(18), 3940-3944. doi:10.1109/jlt.2017.2698044http://dx.doi.org/10.1109/jlt.2017.2698044
Schoelch S.; Vapaavuori J.; Rollet F. G.; Barrett C. J. The orange side of disperse red 1: humidity-driven color switching in supramolecular azo-polymer materials based on reversible dye aggregation. Macromol. Rapid Commun., 2017, 38(1), 1600582. doi:10.1002/marc.201600582http://dx.doi.org/10.1002/marc.201600582
Ma L. Y.; Wu R. H.; Patil A.; Zhu S. H.; Meng Z. H.; Meng H. Q.; Hou C.; Zhang Y. F.; Liu Q.; Yu R.; Wang J.; Lin N. B.; Liu X. Y. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater., 2019, 29(43), 1904549. doi:10.1002/adfm.201904549http://dx.doi.org/10.1002/adfm.201904549
Dai J. X.; Zhao H. R.; Lin X. Z.; Liu S.; Fei T.; Zhang T. Design strategy for ultrafast-response humidity sensors based on gel polymer electrolytes and application for detecting respiration. Sens. Actuat. B, 2020, 304, 127270. doi:10.1016/j.snb.2019.127270http://dx.doi.org/10.1016/j.snb.2019.127270
Dingler C.; Müller H.; Wieland M.; Fauser D.; Steeb H.; Ludwigs S. From understanding mechanical behavior to curvature prediction of humidity-triggered bilayer actuators. Adv. Mater., 2021, 33(9), 2007982. doi:10.1002/adma.202007982http://dx.doi.org/10.1002/adma.202007982
Wei J.; Ma Y.; Liu C. Y.; Li J. G.; Shen J. D.; Zhang K. Y.; Liu S. J.; Zhao Q. Dynamic tuning of metal-ligand coordination through water molecules to induce multicolor fluorescence variations for humidity monitoring and anti-counterfeiting applications. J. Mater. Chem. C, 2021, 9(18), 5945-5951. doi:10.1039/d1tc00487ehttp://dx.doi.org/10.1039/d1tc00487e
Zhao G. M.; Lin B. Q.; Liu Z. P.; Rojas O. J.; Pan M. Z. Metal ion and ultrasonication assisted assembling chiral nematic coatings towards humidity-responsive and anti-counterfeiting. Compos. Sci. Technol., 2022, 228, 109656. doi:10.1016/j.compscitech.2022.109656http://dx.doi.org/10.1016/j.compscitech.2022.109656
Li Y. X.; Fang X.; Wang Y.; Ma B. H.; Sun J. Q. Highly transparent and water-enabled healable antifogging and frost-resisting films based on poly(vinyl alcohol)-nafion complexes. Chem. Mater., 2016, 28(19), 6975-6984. doi:10.1021/acs.chemmater.6b02684http://dx.doi.org/10.1021/acs.chemmater.6b02684
Bayramov D. F.; Singh P.; Cleary G. W.; Siegel R. A.; Chalykh A. E.; Feldstein M. M. Non-covalently crosslinked hydrogels displaying a unique combination of water-absorbing, elastic and adhesive properties. Polym. Int., 2008, 57(5), 785-790. doi:10.1002/pi.2417http://dx.doi.org/10.1002/pi.2417
Yang S. G.; Zhang Y. J.; Guan Y.; Tan S. X.; Xu J.; Cheng S. J.; Zhang X. L. Water uptake behavior of hydrogen-bonded PVPON-AA LBL film. Soft Matter, 2006, 2(8), 699-704. doi:10.1039/b606923ahttp://dx.doi.org/10.1039/b606923a
王伟杰, 张彩虹, 黄浩, 刘泽新, 简韩鑫, 杨曙光. 微相分离结合氢键复合构筑弹性体. 高分子学报, 2023, 54(4), 487-495. doi:10.11777/j.issn1000-3304.2022.22314http://dx.doi.org/10.11777/j.issn1000-3304.2022.22314
Wang W. J.; Zhang C. H.; Huang H.; Xue B.; Yang S. G. Ambient environment adaptive elastomer constructed by microphase separation and segment complexation of triblock copolymers. ACS Appl. Mater. Interfaces, 2023, 15(18), 22426-22434. doi:10.1021/acsami.3c02931http://dx.doi.org/10.1021/acsami.3c02931
Zhang Y. P.; Li F.; Valenzuela L. D.; Sammalkorpi M.; Lutkenhaus J. L. Effect of water on the thermal transition observed in poly(allylamine hydrochloride)-poly(acrylic acid) complexes. Macromolecules, 2016, 49(19), 7563-7570. doi:10.1021/acs.macromol.6b00742http://dx.doi.org/10.1021/acs.macromol.6b00742
Batys P.; Zhang Y. P.; Lutkenhaus J. L.; Sammalkorpi M. Hydration and temperature response of water mobility in poly(diallyldimethylammonium)-poly(sodium 4-styrenesulfonate) complexes. Macromolecules, 2018, 51(20), 8268-8277. doi:10.1021/acs.macromol.8b01441http://dx.doi.org/10.1021/acs.macromol.8b01441
Suarez-Martinez P. C.; Batys P.; Sammalkorpi M.; Lutkenhaus J. L. Time-temperature and time-water superposition principles applied to poly(allylamine)/poly(acrylic acid) complexes. Macromolecules, 2019, 52(8), 3066-3074. doi:10.1021/acs.macromol.8b02512http://dx.doi.org/10.1021/acs.macromol.8b02512
Huang W. T.; Li J. F.; Liu D. Z.; Tan S. X.; Zhang P. F.; Zhu L. P.; Yang S. G. Polyelectrolyte complex fiber of alginate and poly(diallyldimethylammonium chloride): humidity-induced shape memory and mechanical transition. ACS Appl. Polym. Mater., 2020, 2(6), 2119-2125. doi:10.1021/acsapm.0c00056http://dx.doi.org/10.1021/acsapm.0c00056
Liu D. Z.; Zhu L. P.; Huang W. T.; Yang S. G. Humidity induced relaxation transition of hydrogen-bonded complex fibers. Polymer, 2021, 225, 123794. doi:10.1016/j.polymer.2021.123794http://dx.doi.org/10.1016/j.polymer.2021.123794
Li J. F.; Sun J. X.; Wu D.; Huang W. T.; Zhu M. F.; Reichmanis E.; Yang S. G. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv. Fiber Mater., 2019, 1(1), 71-81. doi:10.1007/s42765-019-0001-0http://dx.doi.org/10.1007/s42765-019-0001-0
李皆富, 杨曙光. 链间氢键调控对聚丙烯酸-聚氧化乙烯复合物薄膜力学性能的影响. 高分子学报, 2019, 50(8), 857-862. doi:10.11777/j.issn1000-3304.2019.19032http://dx.doi.org/10.11777/j.issn1000-3304.2019.19032
Khutoryanskiy V. V. Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Int. J. Pharm., 2007, 334(1-2), 15-26. doi:10.1016/j.ijpharm.2007.01.037http://dx.doi.org/10.1016/j.ijpharm.2007.01.037
Li J. F.; Wang Z. L.; Wen L. G.; Nie J.; Yang S. G.; Xu J.; Cheng S. Z. D. Highly elastic fibers made from hydrogen-bonded polymer complex. ACS Macro Lett., 2016, 5(7), 814-818. doi:10.1021/acsmacrolett.6b00346http://dx.doi.org/10.1021/acsmacrolett.6b00346
Dong J.; Ozaki Y.; Nakashima K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules, 1997, 30(4), 1111-1117. doi:10.1021/ma960693xhttp://dx.doi.org/10.1021/ma960693x
Fox U. T. G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc., 1956, 1(2), 123-135.
何曼君, 张红东, 陈维孝. 高分子物理. 第3版. 上海: 复旦大学出版社, 2007.
Secrist K. E.; Nolte A. J. Humidity swelling/deswelling hysteresis in a polyelectrolyte multilayer film. Macromolecules, 2011, 44(8), 2859-2865. doi:10.1021/ma101983shttp://dx.doi.org/10.1021/ma101983s
0
浏览量
34
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构