浏览全部资源
扫码关注微信
1.北京航空航天大学,化学学院,北京 100191
2.北京航空航天大学,国际交叉科学研究院,北京 100191
[ "刘明杰,男,1982年生. 现任北京航空航天大学化学学院院长、长江学者特聘教授. 2005年于北京化工大学获得学士学位,2010年于中国科学院国家纳米科学中心获得博士学位,2010~2015年于日本理化学研究所从事博士后研究工作,2015年加入北京航空航天大学任教授. 主持包括国家杰出青年科学基金、国家重点研发计划等多项科研项目. 担任国际期刊Giant执行编辑,Polymer、《高分子学报》等多个期刊编委. 主要从事仿生功能力学高分子复合材料的研究." ]
纸质出版日期:2023-11-20,
网络出版日期:2023-08-17,
收稿日期:2023-05-10,
录用日期:2023-06-07
扫 描 看 全 文
周杭生,黄金,赵天艺等.仿生多相限域复合高分子凝胶[J].高分子学报,2023,54(11):1641-1662.
Zhou Hang-sheng,Huang Jin,Zhao Tian-yi,et al.Bioinspired Composite Polymeric Gel with Multiphase Confinement[J].Acta Polymerica Sinica,2023,54(11):1641-1662.
周杭生,黄金,赵天艺等.仿生多相限域复合高分子凝胶[J].高分子学报,2023,54(11):1641-1662. DOI: 10.11777/j.issn1000-3304.2023.23130.
Zhou Hang-sheng,Huang Jin,Zhao Tian-yi,et al.Bioinspired Composite Polymeric Gel with Multiphase Confinement[J].Acta Polymerica Sinica,2023,54(11):1641-1662. DOI: 10.11777/j.issn1000-3304.2023.23130.
自然界中,许多生物软组织中存在多相限域结构的功能凝胶,例如高山生物细胞中的抗冻凝胶和肌肉组织中的力学各向异性凝胶,它们在生物活动中发挥了重要作用. 合成高分子凝胶虽然具有与天然软组织相似的软、湿和弹性特性,但缺乏环境适应性,在复杂外界环境中的应用受限. 天然凝胶材料因其独特的多相限域结构,具备更优的环境适应性. 因此,通过仿生限域结构是开发适应性复合高分子凝胶的有效途径. 本文主要回顾了具有多相限域结构的自适应凝胶材料的设计原则和制备策略,从构筑异质互穿网络、微相分离网络和各向异性网络三个方面出发,介绍了功能高分子凝胶在防冻、形状记忆、表面功能化、力学性能调控和响应性驱动等方面的研究进展. 最后,探讨了仿生多相限域复合高分子凝胶领域当前面临的挑战和前景.
In nature
numerous adaptive polymeric gels with multiphase confined structures exist in biological soft tissues
such as anti-freezing gel in alpine biological cells and mechanical anisotropic gel in muscle tissue
which play an essential role in biological activities. Although synthetic gels have similar soft and wet properties and elastic characteristic to natural soft tissue
its application is limited in external complex environment due to the lack of adaptability. The adaptability of natural gel materials far exceeds that of current synthetic gels due to their special confined structures. Therefore
biomimetic design of heterogeneous confined structure is an effective approach to fabricating polymeric gel with high adaptability under various conditions. In this review
the design criteria and fabrication strategies of adaptive high-performance gels with multiphase confined heterostructures are reviewed. We summarized the research progress of polymeric functional gels in anti-freezing
shape memory
surface functionalization
high mechanical property and responsive actuation from three aspects: heterogeneous interpenetration network
microphase separation network and anisotropic network. Meanwhile
we also discussed the current challenges and prospects in the field of bioinspired confined adaptive polymeric functional gels.
仿生高分子凝胶多相协同限域复合适应性功能
Bioinspired polymeric gelMultiphase syntheticConfined compositeAdaptive function
Gong J. P. Materials both tough and soft. Science, 2014, 344(6180), 161-162. doi:10.1126/science.1252389http://dx.doi.org/10.1126/science.1252389
Cho E. C.; Kim J. W.; Fernandez-Nieves A.; Weitz D. A. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett., 2008, 8(1), 168-172. doi:10.1021/nl072346ehttp://dx.doi.org/10.1021/nl072346e
Zwieniecki M. A.; Melcher P. J.; Michele Holbrook N. Hydrogel control of xylem hydraulic resistance in plants. Science, 2001, 291(5506), 1059-1062. doi:10.1126/science.1057175http://dx.doi.org/10.1126/science.1057175
Duan J. J.; Zhang L. N. Robust and smart hydrogels based on natural polymers. Chinese J. Polym. Sci., 2017, 35(10), 1165-1180. doi:10.1007/s10118-017-1983-9http://dx.doi.org/10.1007/s10118-017-1983-9
Dong L.; Agarwal A. K.; Beebe D. J.; Jiang H. R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 2006, 442(7102), 551-554. doi:10.1038/nature05024http://dx.doi.org/10.1038/nature05024
Wichterle O.; Lím D. Hydrophilic gels for biological use. Nature, 1960, 185(4706), 117-118. doi:10.1038/185117a0http://dx.doi.org/10.1038/185117a0
Dong M. J.; Liu S. L.; Tan L. H.; Cen L.; Fu G. D. Hydrogels of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. Chinese J. Polym. Sci., 2016, 34(5), 637-648. doi:10.1007/s10118-016-1783-7http://dx.doi.org/10.1007/s10118-016-1783-7
Freeman A.; Aharonowitz Y. Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels: Antibiotic production by immobilized streptomyces clavuligerus cells. Biotechnol. Bioeng., 1981, 23(12), 2747-2759. doi:10.1002/bit.260231209http://dx.doi.org/10.1002/bit.260231209
Zhao X. H. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter, 2014, 10(5), 672-687. doi:10.1039/c3sm52272ehttp://dx.doi.org/10.1039/c3sm52272e
Haraguchi K.; Li H. J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew. Chem. Int. Ed., 2005, 44(40), 6500-6504. doi:10.1002/anie.200502004http://dx.doi.org/10.1002/anie.200502004
Sun J. Y.; Zhao X. H.; Illeperuma W. R. K.; Chaudhuri O.; Oh K. H.; Mooney D. J.; Vlassak J. J.; Suo Z. G. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414), 133-136. doi:10.1038/nature11409http://dx.doi.org/10.1038/nature11409
Jia H. Y.; Shi J. Z.; Shao Y.; Liu D. S. DNA hydrogels formed of bended DNA scaffolds and properties study. Chinese J. Polym. Sci., 2017, 35(10), 1307-1314. doi:10.1007/s10118-017-1978-6http://dx.doi.org/10.1007/s10118-017-1978-6
Takashima Y.; Hayashi Y.; Osaki M.; Kaneko F.; Yamaguchi H.; Harada A. A photoresponsive polymeric actuator topologically cross-linked by movable units based on a [2]rotaxane. Macromolecules, 2018, 51(12), 4688-4693. doi:10.1021/acs.macromol.8b00939http://dx.doi.org/10.1021/acs.macromol.8b00939
Rauner N.; Meuris M.; Zoric M.; Tiller J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature, 2017, 543(7645), 407-410. doi:10.1038/nature21392http://dx.doi.org/10.1038/nature21392
Zhao C. X.; Guo M.; Mao J.; Li Y. T.; Wu Y. P.; Guo H.; Xiang D.; Li H. Self-healing, stretchable, temperature-sensitive and strain-sensitive hydrogel-based flexible sensors. Chinese J. Polym. Sci., 2023, 41(3), 334-344. doi:10.1007/s10118-022-2854-6http://dx.doi.org/10.1007/s10118-022-2854-6
Zhang K. J.; Zhao Z. G.; Huang J.; Zhao T. Y.; Fang R. C.; Liu M. J. Self-recoverable semi-crystalline hydrogels with thermomechanics and shape memory performance. Sci. China Mater., 2019, 62(4), 586-596. doi:10.1007/s40843-018-9347-5http://dx.doi.org/10.1007/s40843-018-9347-5
Meng F. D.; Ni Y. X.; Ji S. F.; Fu X. H.; Wei Y. H.; Sun J.; Li Z. B. Dual thermal- and pH-responsive polypeptide-based hydrogels. Chinese J. Polym. Sci., 2017, 35(10), 1243-1252. doi:10.1007/s10118-017-1959-9http://dx.doi.org/10.1007/s10118-017-1959-9
Lin P.; Zhang T. T.; Wang X. L.; Yu B.; Zhou F. Freezing molecular orientation under stretch for high mechanical strength but anisotropic hydrogels. Small, 2016, 12(32), 4386-4392. doi:10.1002/smll.201601893http://dx.doi.org/10.1002/smll.201601893
Zhao Z. G.; Xu Y. C.; Fang R. C.; Liu M. J. Bioinspired adaptive gel materials with synergistic heterostructures. Chinese J. Polym. Sci., 2018, 36(6), 683-696. doi:10.1007/s10118-018-2105-zhttp://dx.doi.org/10.1007/s10118-018-2105-z
Lai S. K.; Wang Y. Y.; Hida K.; Cone R.; Hanes J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl. Acad. Sci. U. S. A, 2010, 107(2), 598-603. doi:10.1073/pnas.0911748107http://dx.doi.org/10.1073/pnas.0911748107
Huang J.; Fang R. C.; Zhao T. Y.; Liu M. J. Bioinspired functional organohydrogels with synergistic multiphases heterostructure. Polymer, 2020, 190, 122214. doi:10.1016/j.polymer.2020.122214http://dx.doi.org/10.1016/j.polymer.2020.122214
Oliva N.; Conde J.; Wang K.; Artzi N. Designing hydrogels for on-demand therapy. Acc. Chem. Res., 2017, 50(4), 669-679. doi:10.1021/acs.accounts.6b00536http://dx.doi.org/10.1021/acs.accounts.6b00536
Zhao Z. G.; Fang R. C.; Rong Q. F.; Liu M. J. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv. Mater., 2017, 29(45), 1703045. doi:10.1002/adma.201703045http://dx.doi.org/10.1002/adma.201703045
Huang J.; Zhou J. J.; Liu M. J. Interphase in polymer nanocomposites. JACS Au, 2022, 2(2), 280-291. doi:10.1021/jacsau.1c00430http://dx.doi.org/10.1021/jacsau.1c00430
Zhao C. Q.; Zhang P. C.; Zhou J. J.; Qi S. H.; Yamauchi Y.; Shi R. R.; Fang R. C.; Ishida Y.; Wang S. T.; Tomsia A. P.; Liu M. J.; Jiang L. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature, 2020, 580(7802), 210-215. doi:10.1038/s41586-020-2161-8http://dx.doi.org/10.1038/s41586-020-2161-8
Zhou T. X.; Zhao C. Q.; Liu Y. H.; Huang J.; Zhou H. S.; Nie Z. D.; Fan M.; Zhao T. Y.; Cheng Q. F.; Liu M. J. Large-area ultrastrong and stiff layered MXene nanocomposites by shear-flow-induced alignment of nanosheets. ACS Nano, 2022, 16(8), 12013-12023. doi:10.1021/acsnano.2c02062http://dx.doi.org/10.1021/acsnano.2c02062
Zhang L. H.; Yan H.; Zhou J. J.; Zhao Z. G.; Huang J.; Chen L.; Ru Y. F.; Liu M. J. High-performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinement. Adv. Mater., 2023, 35(9), 2202193. doi:10.1002/adma.202202193http://dx.doi.org/10.1002/adma.202202193
Storhoff J. J.; Mirkin C. A. Programmed materials synthesis with DNA. Chem. Rev., 1999, 99(7), 1849-1862. doi:10.1021/cr970071phttp://dx.doi.org/10.1021/cr970071p
Stevens M. M.; George J. H. Exploring and engineering the cell surface interface. Science, 2005, 310(5751), 1135-1138. doi:10.1126/science.1106587http://dx.doi.org/10.1126/science.1106587
Thomashow M. F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50, 571-599. doi:10.1146/annurev.arplant.50.1.571http://dx.doi.org/10.1146/annurev.arplant.50.1.571
Moellering E. R.; Muthan B.; Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science, 2010, 330(6001), 226-228. doi:10.1126/science.1191803http://dx.doi.org/10.1126/science.1191803
Xu Y. C.; Rong Q. F.; Zhao T. Y.; Liu M. J. Anti-freezing multiphase gel materials: bioinspired design strategies and applications. Giant, 2020, 2, 100014. doi:10.1016/j.giant.2020.100014http://dx.doi.org/10.1016/j.giant.2020.100014
Montero de Espinosa L.; Meesorn W.; Moatsou D.; Weder C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev., 2017, 117(20), 12851-12892. doi:10.1021/acs.chemrev.7b00168http://dx.doi.org/10.1021/acs.chemrev.7b00168
Jana S.; Levengood S. K. L.; Zhang M. Q. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater., 2016, 28(48), 10588-10612. doi:10.1002/adma.201600240http://dx.doi.org/10.1002/adma.201600240
Wigmore P. M.; Evans D. J. R. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. Int. Rev. Cytol., 2002, 216, 175-232. doi:10.1016/s0074-7696(02)16006-2http://dx.doi.org/10.1016/s0074-7696(02)16006-2
Kerin A. J.; Wisnom M. R.; Adams M. A. The compressive strength of articular cartilage. Proc. Inst. Mech. Eng. Part H, 1998, 212(4), 273-280. doi:10.1243/0954411981534051http://dx.doi.org/10.1243/0954411981534051
Fratzl P.; Weinkamer R. Nature's hierarchical materials. Prog. Mater. Sci., 2007, 52(8), 1263-1334. doi:10.1016/j.pmatsci.2007.06.001http://dx.doi.org/10.1016/j.pmatsci.2007.06.001
Martz F.; Sutinen M. L.; Kiviniemi S.; Palta J. P. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiol, 2006, 26(6), 783-790. doi:10.1093/treephys/26.6.783http://dx.doi.org/10.1093/treephys/26.6.783
Takahashi D.; Uemura M.; Kawamura Y. Freezing tolerance of plant cells: from the aspect of plasma membrane and microdomain. Adv. Exp. Med. Biol., 2018, 1081, 61-79. doi:10.1007/978-981-13-1244-1_4http://dx.doi.org/10.1007/978-981-13-1244-1_4
Gao H. N.; Zhao Z. G.; Cai Y. D.; Zhou J. J.; Hua W. D.; Chen L.; Wang L.; Zhang J. Q.; Han D.; Liu M. J.; Jiang L. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun., 2017, 8, 15911. doi:10.1038/ncomms15911http://dx.doi.org/10.1038/ncomms15911
Rong Q. F.; Lei W. W.; Chen L.; Yin Y. A.; Zhou J. J.; Liu M. J. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed., 2017, 56(45), 14159-14163. doi:10.1002/anie.201708614http://dx.doi.org/10.1002/anie.201708614
Rong Q. F.; Lei W. W.; Huang J.; Liu M. J. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater., 2018, 8(31), 1801967. doi:10.1002/aenm.201801967http://dx.doi.org/10.1002/aenm.201801967
Chen F.; Zhou D.; Wang J. H.; Li T. Z.; Zhou X. H.; Gan T. S.; Handschuh-Wang S.; Zhou X. C. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem. Int. Ed., 2018, 57(22), 6568-6571. doi:10.1002/anie.201803366http://dx.doi.org/10.1002/anie.201803366
Rosso F.; Marino G.; Giordano A.; Barbarisi M.; Parmeggiani D.; Barbarisi A. Smart materials as scaffolds for tissue engineering. J. Cell. Physiol., 2005, 203(3), 465-470. doi:10.1002/jcp.20270http://dx.doi.org/10.1002/jcp.20270
Barnes P. J. Distribution of receptor targets in the lung. Proc. Am. Thorac. Soc., 2004, 1(4), 345-351. doi:10.1513/pats.200409-045mshttp://dx.doi.org/10.1513/pats.200409-045ms
陈帅, 严淑珍, 印杰, 姜学松. 高分子材料图案记忆表面. 高分子学报, 2021, 52(10), 1245-1261. doi:10.11777/j.issn1000-3304.2021.21072http://dx.doi.org/10.11777/j.issn1000-3304.2021.21072
Liu A. P.; Fletcher D. A. Biology under construction: in vitro reconstitution of cellular function. Nat. Rev. Mol. Cell Biol., 2009, 10(9), 644-650. doi:10.1038/nrm2746http://dx.doi.org/10.1038/nrm2746
Zang D. M.; Yi H.; Gu Z. D.; Chen L.; Han D.; Guo X. L.; Wang S. T.; Liu M. J.; Jiang L. Interfacial engineering of hierarchically porous NiTi/hydrogels nanocomposites with exceptional antibiofouling surfaces. Adv. Mater., 2017, 29(2), 1602869. doi:10.1002/adma.201602869http://dx.doi.org/10.1002/adma.201602869
Zhao T. Y.; Wang G. Y.; Hao D. Z.; Chen L.; Liu K. S.; Liu M. J. Macroscopic layered organogel-hydrogel hybrids with controllable wetting and swelling performance. Adv. Funct. Mater., 2018, 28(49), 1800793. doi:10.1002/adfm.201800793http://dx.doi.org/10.1002/adfm.201800793
Chen L.; Gu Z. D.; Li L.; Lei W. W.; Rong Q. F.; Zhao C. Q.; Wu Q. S.; Gu Z.; Jin X.; Jiang L.; Liu M. J. Integration of hydrogels with functional nanoparticles using hydrophobic comb-like polymers as an adhesive layer. J. Mater. Chem. A, 2018, 6(31), 15147-15153. doi:10.1039/c8ta02970ahttp://dx.doi.org/10.1039/c8ta02970a
Ma T. J.; Li T. T.; Zhou L. W.; Ma X. D.; Yin J.; Jiang X. S. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun., 2020, 11, 1811. doi:10.1038/s41467-020-15600-6http://dx.doi.org/10.1038/s41467-020-15600-6
Le X. X.; Shang H.; Wu S. S.; Zhang J. W.; Liu M. J.; Zheng Y. F.; Chen T. Heterogeneous fluorescent organohydrogel enables dynamic anti-counterfeiting. Adv. Funct. Mater., 2021, 31(52), 2108365. doi:10.1002/adfm.202108365http://dx.doi.org/10.1002/adfm.202108365
Chen L.; Yao X.; Gu Z. D.; Zheng K. K.; Zhao C. Q.; Lei W. W.; Rong Q. F.; Lin L.; Wang J. B.; Jiang L.; Liu M. J. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chem. Sci., 2017, 8(3), 2010-2016. doi:10.1039/c6sc04634ghttp://dx.doi.org/10.1039/c6sc04634g
刘玉霞, 陈列, 赵紫光, 房若辰, 刘明杰. 仿生多尺度功能水凝胶的设计与制备: 从二维界面到三维网络. 高分子学报, 2018, (9), 1155-1174. doi:10.11777/j.issn1000-3304.2018.18108http://dx.doi.org/10.11777/j.issn1000-3304.2018.18108
Zhao Q.; Qi H. J.; Xie T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci., 2015, 49-50, 79-120. doi:10.1016/j.progpolymsci.2015.04.001http://dx.doi.org/10.1016/j.progpolymsci.2015.04.001
Xie T. Tunable polymer multi-shape memory effect. Nature, 2010, 464(7286), 267-270. doi:10.1038/nature08863http://dx.doi.org/10.1038/nature08863
Hardy J. G.; Palma M.; Wind S. J.; Biggs M. J. Responsive biomaterials: advances in materials based on shape-memory polymers. Adv. Mater., 2016, 28(27), 5717-5724. doi:10.1002/adma.201505417http://dx.doi.org/10.1002/adma.201505417
Zhao Z. G.; Zhang K. J.; Liu Y. X.; Zhou J. J.; Liu M. J. Highly stretchable, shape memory organohydrogels using phase-transition microinclusions. Adv. Mater., 2017, 29(33), 1701695. doi:10.1002/adma.201701695http://dx.doi.org/10.1002/adma.201701695
Zhao Z. G.; Liu Y. X.; Zhang K. J.; Zhuo S. Y.; Fang R. C.; Zhang J. Q.; Jiang L.; Liu M. J. Biphasic synergistic gel materials with switchable mechanics and self-healing capacity. Angew. Chem. Int. Ed., 2017, 56(43), 13464-13469. doi:10.1002/anie.201707239http://dx.doi.org/10.1002/anie.201707239
Wang M. X.; Zhang P. Y.; Shamsi M.; Thelen J. L.; Qian W.; Truong V. K.; Ma J.; Hu J.; Dickey M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater., 2022, 21(3), 359-365. doi:10.1038/s41563-022-01195-4http://dx.doi.org/10.1038/s41563-022-01195-4
Zhao Z. G.; Zhuo S. Y.; Fang R. C.; Zhang L. H.; Zhou X. T.; Xu Y. C.; Zhang J. Q.; Dong Z. C.; Jiang L.; Liu M. J. Dual-programmable shape-morphing and self-healing organohydrogels through orthogonal supramolecular heteronetworks. Adv. Mater., 2018, 30(51), 1804435. doi:10.1002/adma.201804435http://dx.doi.org/10.1002/adma.201804435
Zhuo S. Y.; Zhao Z. G.; Xie Z. X.; Hao Y. F.; Xu Y. C.; Zhao T. Y.; Li H. J.; Knubben E. M.; Wen L.; Jiang L.; Liu M. J. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Sci. Adv., 2020, 6(5), eaax1464. doi:10.1126/sciadv.aax1464http://dx.doi.org/10.1126/sciadv.aax1464
Chen L.; Zhao C.; Huang J.; Zhou J. J.; Liu M. J. Enormous-stiffness-changing polymer networks by glass transition mediated microphase separation. Nat. Commun., 2022, 13, 6821. doi:10.1038/s41467-022-34677-9http://dx.doi.org/10.1038/s41467-022-34677-9
Cui W.; Zhu R. J.; Zheng Y.; Mu Q. F.; Pi M. H.; Chen Q.; Ran R. Transforming non-adhesive hydrogels to reversible tough adhesives via mixed-solvent-induced phase separation. J. Mater. Chem. A, 2021, 9(15), 9706-9718. doi:10.1039/d1ta00433fhttp://dx.doi.org/10.1039/d1ta00433f
Zhao C.; Chen L.; Ru Y. F.; Zhang L. H.; Liu M. J. Thermoresponsive ionogels with switchable adhesion in air and aqueous environments induced by LCST phase behavior. Soft Matter, 2022, 18(32), 5934-5938. doi:10.1039/d2sm00542ehttp://dx.doi.org/10.1039/d2sm00542e
Chen L. E.; Zhao C.; Duan X. Z.; Zhou J. J.; Liu M. J. Finely tuning the lower critical solution temperature of ionogels by regulating the polarity of polymer networks and ionic liquids. CCS Chem., 2022, 4(4), 1386-1396. doi:10.31635/ccschem.021.202100855http://dx.doi.org/10.31635/ccschem.021.202100855
Kim H. N.; Jiao A.; Hwang N. S.; Kim M. S.; Kang D. H.; Kim D. H.; Suh K. Y. Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev., 2013, 65(4), 536-558. doi:10.1016/j.addr.2012.07.014http://dx.doi.org/10.1016/j.addr.2012.07.014
Keene D. R.; Engvall E.; Glanville R. W. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell Biol., 1988, 107(5), 1995-2006. doi:10.1083/jcb.107.5.1995http://dx.doi.org/10.1083/jcb.107.5.1995
Khuu N.; Kheiri S.; Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. Trends Chem., 2021, 3(12), 1002-1026. doi:10.1016/j.trechm.2021.09.009http://dx.doi.org/10.1016/j.trechm.2021.09.009
Liu M. J.; Ishida Y.; Ebina Y.; Sasaki T.; Hikima T.; Takata M.; Aida T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015, 517(7532), 68-72. doi:10.1038/nature14060http://dx.doi.org/10.1038/nature14060
Chen L.; Wu Q. S.; Zhang J. Q.; Zhao T. Y.; Jin X.; Liu M. J. Anisotropic thermoresponsive hydrogels by mechanical force orientation of clay nanosheets. Polymer, 2020, 192, 122309. doi:10.1016/j.polymer.2020.122309http://dx.doi.org/10.1016/j.polymer.2020.122309
Hua M. T.; Wu S. W.; Ma Y. F.; Zhao Y. S.; Chen Z. L.; Frenkel I.; Strzalka J.; Zhou H.; Zhu X. Y.; He X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature, 2021, 590(7847), 594-599. doi:10.1038/s41586-021-03212-zhttp://dx.doi.org/10.1038/s41586-021-03212-z
Zhang X. J.; Xiang J. X.; Hong Y. L.; Shen L. Recent advances in design strategies of tough hydrogels. Macromol. Rapid Commun., 2022, 43(15), 2200075. doi:10.1002/marc.202200075http://dx.doi.org/10.1002/marc.202200075
Sano K.; Ishida Y.; Aida T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem. Int. Ed., 2018, 57(10), 2532-2543. doi:10.1002/anie.201708196http://dx.doi.org/10.1002/anie.201708196
Ma C. X.; Le X. X.; Tang X. L.; He J.; Xiao P.; Zheng J.; Xiao H.; Lu W.; Zhang J. W.; Huang Y. J.; Chen T. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations. Adv. Funct. Mater., 2016, 26(47), 8670-8676. doi:10.1002/adfm.201603448http://dx.doi.org/10.1002/adfm.201603448
Ma C. X.; Lu W.; Yang X. X.; He J.; Le X. X.; Wang L.; Zhang J. W.; Serpe M. J.; Huang Y. J.; Chen T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater., 2018, 28(7), 1704568. doi:10.1002/adfm.201704568http://dx.doi.org/10.1002/adfm.201704568
Tang P.; Yan H.; Chen L.; Wu Q. S.; Zhao T. Y.; Li S. H.; Gao H. N.; Liu M. J. Anisotropic nanocomposite hydrogels with enhanced actuating performance through aligned polymer networks. Sci. China Mater., 2020, 63(5), 832-841. doi:10.1007/s40843-019-1236-8http://dx.doi.org/10.1007/s40843-019-1236-8
Gladman A. S.; Matsumoto E. A.; Nuzzo R. G.; Mahadevan L.; Lewis J. A. Biomimetic 4D printing. Nat. Mater., 2016, 15(4), 413-418. doi:10.1038/nmat4544http://dx.doi.org/10.1038/nmat4544
Le X. X.; Lu W.; Zhang J. W.; Chen T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci., 2019, 6(5), 1801584. doi:10.1002/advs.201801584http://dx.doi.org/10.1002/advs.201801584
Kim Y. S.; Liu M. J.; Ishida Y.; Ebina Y.; Osada M.; Sasaki T.; Hikima T.; Takata M.; Aida T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater., 2015, 14(10), 1002-1007. doi:10.1038/nmat4363http://dx.doi.org/10.1038/nmat4363
Kong W. Q.; Wang C. W.; Jia C.; Kuang Y. D.; Pastel G.; Chen C. J.; Chen G. G.; He S. M.; Huang H.; Zhang J. H.; Wang S.; Hu L. B. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater., 2018, 30(39), 1801934. doi:10.1002/adma.201801934http://dx.doi.org/10.1002/adma.201801934
Guo W.; Cheng C.; Wu Y. Z.; Jiang Y. N.; Gao J.; Li D.; Jiang L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater., 2013, 25(42), 6064-6068. doi:10.1002/adma.201302441http://dx.doi.org/10.1002/adma.201302441
Wu J. J.; Zhao Q.; Sun J. Z.; Zhou Q. Y. Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter, 2012, 8(13), 3620-3626. doi:10.1039/c2sm07411ghttp://dx.doi.org/10.1039/c2sm07411g
Chen P.; Chen X.; Hepfer R. G.; Damon B. J.; Shi C. C.; Yao J. J.; Coombs M. C.; Kern M. J.; Ye T.; Yao H. A noninvasive fluorescence imaging-based platform measures 3D anisotropic extracellular diffusion. Nat. Commun., 2021, 12, 1913. doi:10.1038/s41467-021-22221-0http://dx.doi.org/10.1038/s41467-021-22221-0
0
浏览量
157
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构