浏览全部资源
扫码关注微信
1.浙江大学高分子科学与工程学系 杭州 310058
2.青岛大学材料科学与工程学院 青岛 266071
[ "吴子良,男,1980年生,浙江大学高分子科学与工程学系研究员. 2003年毕业于浙江大学高分子化工专业,2006年于华东理工大学化学工程系获硕士学位,2010年于北海道大学生物系获博士学位. 2010~2013年分别在多伦多大学、居里研究所、北海道大学从事博士后研究工作,2013年加入浙江大学高分子科学与工程学系. 研究领域为高性能水凝胶材料与器件,包括高强韧水凝胶的合成制备与成形加工、高分子水凝胶可控变形与软驱动器设计." ]
纸质出版日期:2023-12-20,
网络出版日期:2023-10-24,
收稿日期:2023-06-25,
录用日期:2023-08-24
扫 描 看 全 文
胡佳妤,杜聪,张歆宁等.玻璃态水凝胶:从凝胶材料的新状态到高性能[J].高分子学报,2023,54(12):1795-1816.
Hu Jia-yu,Du Cong,Zhang Xin-ning,et al.Glassy Hydrogels: From New State to High Performances of Gel Materials[J].Acta Polymerica Sinica,2023,54(12):1795-1816.
胡佳妤,杜聪,张歆宁等.玻璃态水凝胶:从凝胶材料的新状态到高性能[J].高分子学报,2023,54(12):1795-1816. DOI: 10.11777/j.issn1000-3304.2023.23147.
Hu Jia-yu,Du Cong,Zhang Xin-ning,et al.Glassy Hydrogels: From New State to High Performances of Gel Materials[J].Acta Polymerica Sinica,2023,54(12):1795-1816. DOI: 10.11777/j.issn1000-3304.2023.23147.
高强度水凝胶的出现极大拓展了凝胶材料的应用领域. 虽然一些合成水凝胶的强度、韧性已接近或超过软骨等生物凝胶,但其模量常小于1 MPa,远低于肌腱等缔结组织;其主要原因在于水分子对聚合物网络有极强的水化、塑化作用,导致凝胶处于高弹或黏弹状态. 近期,我们通过分子设计在网络中形成稠密缔合结构,有效降低了链段的运动能力,制备出玻璃态水凝胶,实现了强度、模量、韧性的同步提升. 玻璃态是凝胶材料的新状态,为高性能水凝胶的发展开辟了新途径,拓展了凝胶材料力学、黏弹行为的调控范围和应用领域. 本专论从玻璃态水凝胶的基本特征、分子机制、设计原理、特殊功能等方面,总结并评述了近期玻璃态水凝胶合成制备及结构-性能关系的研究进展. 最后,对玻璃态水凝胶在医学、工程等领域的应用进行了介绍,并对其面临的挑战和发展方向进行了展望.
The rapid development of tough hydrogels has greatly expanded the application scope of gel materials. The strength and toughness of some synthetic hydrogels have surpassed those of soft biotissues
however
the elastic modulus of gels is usually less than 1 MPa
much lower than that of connective tissues such as tendons. One major reason is the water molecules have strong hydration and plasticizing effects on hydrophilic polymer network
resulting in the gels in the elastic or viscoelastic state. In recent years
we have developed high-performance (high strength
high stiffness
high toughness) hydrogels through molecular design to form dense and robust associative interactions within the matrix that effectively reduce the dynamics of the network to afford the gel in a glassy state at room temperature. The glassy state is one new state of gel materials
which opens a new avenue to develop high-performance hydrogels and broadens the tuning range of mechanical and viscoelastic behaviors as well as the application potentials. This account summarizes and reviews the synthesis and structure-property relationship of glassy hydrogels
including the general characters
molecular mechanism
design principles
and unique functions. Finally
we introduce some applications of glassy hydrogels in the fields of biomedicine
engineering
etc.
and give prospects to the challenges and future directions in this area.
水凝胶玻璃态缔合结构力学性能流变行为
HydrogelsGlassy stateAssociative interactionsMechanical propertiesRheological behavior
Liu X. Y.; Liu J.; Lin S. T.; Zhao X. H. Hydrogel machines. Mater. Today, 2020, 36, 102-124. doi:10.1016/j.mattod.2019.12.026http://dx.doi.org/10.1016/j.mattod.2019.12.026
Hao X. P.; Li C. Y.; Zhang C. W.; Du M.; Ying Z. M.; Zheng Q.; Wu Z. L. Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal. Adv. Funct. Mater., 2021, 31(47), 2105481. doi:10.1002/adfm.202105481http://dx.doi.org/10.1002/adfm.202105481
Hao X. P.; Zhang C. W.; Zhang X. N.; Hou L. X.; Hu J.; Dickey M. D.; Zheng Q.; Wu Z. L. Healable, recyclable, and multifunctional soft electronics based on biopolymer hydrogel and patterned liquid metal. Small, 2022, 18(23), 2201643. doi:10.1002/smll.202201643http://dx.doi.org/10.1002/smll.202201643
Yuk H.; Wu J. J.; Zhao X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater., 2022, 7(12), 935-952. doi:10.1038/s41578-022-00483-4http://dx.doi.org/10.1038/s41578-022-00483-4
Guimarães C. F.; Ahmed R.; Marques A. P.; Reis R. L.; Demirci U. Engineering hydrogel-based biomedical photonics: design, fabrication, and applications. Adv. Mater., 2021, 33(23), 2006582. doi:10.1002/adma.202006582http://dx.doi.org/10.1002/adma.202006582
Zuo X. L.; Wang S. F.; Le X. X.; Lu W.; Chen T. Self-healing polymeric hydrogels: toward multifunctional soft smart materials. Chinese J. Polym. Sci., 2021, 39(10), 1262-1280. doi:10.1007/s10118-021-2612-1http://dx.doi.org/10.1007/s10118-021-2612-1
Wu J.; Wu B. H.; Xiong J. Q.; Sun S. T.; Wu P. Y. Entropy-mediated polymer-cluster interactions enable dramatic thermal stiffening hydrogels for mechano-adaptive smart fabrics. Angew. Chem. Int. Ed., 2022, 61(34), e202204960. doi:10.1002/anie.202204960http://dx.doi.org/10.1002/anie.202204960
Wang C. Y.; Sun M.; Fan Z.; Du J. Z. Intestine enzyme-responsive polysaccharide-based hydrogel to open epithelial tight junctions for oral delivery of imatinib against colon cancer. Chinese J. Polym. Sci., 2022, 40(10), 1154-1164. doi:10.1007/s10118-022-2726-0http://dx.doi.org/10.1007/s10118-022-2726-0
Zhao X. H.; Chen X. Y.; Yuk H.; Lin S. T.; Liu X. Y.; Parada G. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev., 2021, 121(8), 4309-4372. doi:10.1021/acs.chemrev.0c01088http://dx.doi.org/10.1021/acs.chemrev.0c01088
Kuang X.; Arıcan M. O.; Zhou T.; Zhao X. H.; Zhang Y. S. Functional tough hydrogels: design, processing, and biomedical applications. Acc. Mater. Res., 2023, 4(2), 101-114. doi:10.1021/accountsmr.2c00026http://dx.doi.org/10.1021/accountsmr.2c00026
Haraguchi K.; Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater., 2002, 14(16), 1120-1124. doi:10.1002/1521-4095(20020816)14:16<1120::aid-adma1120>3.0.co;2-9http://dx.doi.org/10.1002/1521-4095(20020816)14:16<1120::aid-adma1120>3.0.co;2-9
Gong J. P.; Katsuyama Y.; Kurokawa T.; Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater., 2003, 15(14), 1155-1158. doi:10.1002/adma.200304907http://dx.doi.org/10.1002/adma.200304907
Huang T.; Xu H. G.; Jiao K. X.; Zhu L. P.; Brown H. R.; Wang H. L. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater., 2007, 19(12), 1622-1626. doi:10.1002/adma.200602533http://dx.doi.org/10.1002/adma.200602533
Henderson K. J.; Zhou T. C.; Otim K. J.; Shull K. R. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules, 2010, 43(14), 6193-6201. doi:10.1021/ma100963mhttp://dx.doi.org/10.1021/ma100963m
Sun J. Y.; Zhao X. H.; Illeperuma W. R. K.; Chaudhuri O.; Oh K. H.; Mooney D. J.; Vlassak J. J.; Suo Z. G. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414), 133-136. doi:10.1038/nature11409http://dx.doi.org/10.1038/nature11409
Zhao D.; Huang J. C.; Zhong Y.; Li K.; Zhang L. N.; Cai J. High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater., 2016, 26(34), 6279-6287. doi:10.1002/adfm.201601645http://dx.doi.org/10.1002/adfm.201601645
Rauner N.; Meuris M.; Zoric M.; Tiller J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature, 2017, 543(7645), 407-410. doi:10.1038/nature21392http://dx.doi.org/10.1038/nature21392
Hua M. T.; Wu S. W.; Ma Y. F.; Zhao Y. S.; Chen Z. L.; Frenkel I.; Strzalka J.; Zhou H.; Zhu X. Y.; He X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature, 2021, 590(7847), 594-599. doi:10.1038/s41586-021-03212-zhttp://dx.doi.org/10.1038/s41586-021-03212-z
Kim J.; Zhang G. G.; Shi M.; Suo Z. G. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 2021, 374(6564), 212-216. doi:10.1126/science.abg6320http://dx.doi.org/10.1126/science.abg6320
Bin Imran A.; Esaki K.; Gotoh H.; Seki T.; Ito K.; Sakai Y.; Takeoka Y. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun., 2014, 5, 5124. doi:10.1038/ncomms6124http://dx.doi.org/10.1038/ncomms6124
Zheng S. Y.; Liu C.; Jiang L.; Lin J.; Qian J.; Mayumi K.; Wu Z. L.; Ito K.; Zheng Q. A. Slide-ring cross-links mediated tough metallosupramolecular hydrogels with superior self-recoverability. Macromolecules, 2019, 52(17), 6748-6755. doi:10.1021/acs.macromol.9b01281http://dx.doi.org/10.1021/acs.macromol.9b01281
Sakai T.; Matsunaga T.; Yamamoto Y.; Ito C.; Yoshida R.; Suzuki S.; Sasaki N.; Shibayama M.; Chung U. I. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules, 2008, 41(14), 5379-5384. doi:10.1021/ma800476xhttp://dx.doi.org/10.1021/ma800476x
Kamata H.; Akagi Y.; Kayasuga-Kariya Y.; Chung U. I.; Sakai T. "Nonswellable" hydrogel without mechanical hysteresis. Science, 2014, 343(6173), 873-875. doi:10.1126/science.1247811http://dx.doi.org/10.1126/science.1247811
Chen Q.; Zhu L.; Chen H.; Yan H. L.; Huang L. N.; Yang J.; Zheng J. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv. Funct. Mater., 2015, 25(10), 1598-1607. doi:10.1002/adfm.201404357http://dx.doi.org/10.1002/adfm.201404357
Zhao Y.; Xia B. H.; Wang L.; Wang R. J.; Meng D. N.; Liu Y.; Zhou J. W.; Lian H. Q.; Zu L.; Cui X. G.; Liang Y. R.; Zhu M. F. Tough and tear-resistant double-network hydrogels based on a facile strategy: micellar polymerization followed by solution polymerization. Macromol. Mater. Eng., 2018, 303(3), 1700527. doi:10.1002/mame.201700527http://dx.doi.org/10.1002/mame.201700527
Lin P.; Ma S. H.; Wang X. L.; Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater., 2015, 27(12), 2054-2059. doi:10.1002/adma.201405022http://dx.doi.org/10.1002/adma.201405022
Cao J. F.; Li J. H.; Chen Y. M.; Zhang L. N.; Zhou J. P. Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv. Funct. Mater., 2018, 28(23), 1800739. doi:10.1002/adfm.201800739http://dx.doi.org/10.1002/adfm.201800739
Wegst U. G. K.; Ashby M. F. The mechanical efficiency of natural materials. Philos. Mag., 2004, 84(21), 2167-2186. doi:10.1080/14786430410001680935http://dx.doi.org/10.1080/14786430410001680935
Yildirim E.; Zhang Y. P.; Lutkenhaus J. L.; Sammalkorpi M. Thermal transitions in polyelectrolyte assemblies occur via a dehydration mechanism. ACS Macro Lett., 2015, 4(9), 1017-1021. doi:10.1021/acsmacrolett.5b00351http://dx.doi.org/10.1021/acsmacrolett.5b00351
Zhang R.; Zhang Y. P.; Antila H. S.; Lutkenhaus J. L.; Sammalkorpi M. Role of salt and water in the plasticization of PDAC/PSS polyelectrolyte assemblies. J. Phys. Chem. B, 2017, 121(1), 322-333. doi:10.1021/acs.jpcb.6b12315http://dx.doi.org/10.1021/acs.jpcb.6b12315
Xiao R.; Li, H. Glass transition in gels. Phys. Rev. Mater., 2021, 5(6), 065604. doi:10.1103/physrevmaterials.5.065604http://dx.doi.org/10.1103/physrevmaterials.5.065604
Benitez-Duif P. A.; Breisch M.; Kurka D.; Edel K.; Gökcay S.; Stangier D.; Tillmann W.; Hijazi M.; Tiller J. C. Ultrastrong poly(2-oxazoline)/poly(acrylic acid) double-network hydrogels with cartilage-like mechanical properties. Adv. Funct. Mater., 2022, 32(44), 2204837. doi:10.1002/adfm.202204837http://dx.doi.org/10.1002/adfm.202204837
King D. R.; Sun T. L.; Huang Y. W.; Kurokawa T.; Nonoyama T.; Crosby A. J.; Gong J. P. Extremely tough composites from fabric reinforced polyampholyte hydrogels. Mater. Horiz., 2015, 2(6), 584-591. doi:10.1039/c5mh00127ghttp://dx.doi.org/10.1039/c5mh00127g
Huang Y. W.; King D. R.; Sun T. L.; Nonoyama T.; Kurokawa T.; Nakajima T.; Gong J. P. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv. Funct. Mater., 2017, 27(9), 1605350. doi:10.1002/adfm.201605350http://dx.doi.org/10.1002/adfm.201605350
Zhang X. T.; Wu B. H.; Sun S. T.; Wu P. Y. Hybrid materials from ultrahigh-inorganic-content mineral plastic hydrogels: arbitrarily shapeable, strong, and tough. Adv. Funct. Mater., 2020, 30(19), 1910425. doi:10.1002/adfm.201910425http://dx.doi.org/10.1002/adfm.201910425
Xiang H.; Li X. X.; Wu B. H.; Sun S. T.; Wu P. Y. Highly damping and self-healable ionic elastomer from dynamic phase separation of sticky fluorinated polymers. Adv. Mater., 2023, 35(10), 2209581. doi:10.1002/adma.202209581http://dx.doi.org/10.1002/adma.202209581
Huang Y.; Paul D. R. Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes. Ind. Eng. Chem. Res., 2007, 46(8), 2342-2347. doi:10.1021/ie0610804http://dx.doi.org/10.1021/ie0610804
Chen K.; Schweizer K. S. Theory of yielding, strain softening, and steady plastic flow in polymer glasses under constant strain rate deformation. Macromolecules, 2011, 44(10), 3988-4000. doi:10.1021/ma200436whttp://dx.doi.org/10.1021/ma200436w
Wang Y. J.; Li C. Y.; Wang Z. J.; Zhao Y. P.; Chen L.; Wu Z. L.; Zheng Q. Hydrogen bond-reinforced double-network hydrogels with ultrahigh elastic modulus and shape memory property. J. Polym. Sci. B: Poly. Phys., 2018, 56(19), 1281-1286. doi:10.1002/polb.24620http://dx.doi.org/10.1002/polb.24620
Zhang X. N.; Wang Y. J.; Sun S. T.; Hou L.; Wu P. Y.; Wu Z. L.; Zheng Q. A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules, 2018, 51(20), 8136-8146. doi:10.1021/acs.macromol.8b01496http://dx.doi.org/10.1021/acs.macromol.8b01496
Wang Y. J.; Zhang X. N.; Song Y. H.; Zhao Y. P.; Chen L.; Su F. M.; Li L. B.; Wu Z. L.; Zheng Q. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem. Mater., 2019, 31(4), 1430-1440. doi:10.1021/acs.chemmater.8b05262http://dx.doi.org/10.1021/acs.chemmater.8b05262
Yuen H. K.; Tam E. P.; Bulock J. W. Analytical Calorimetry. Boston, MA: Springer US, 1984. 13-24. doi:10.1007/978-1-4613-2699-1_2http://dx.doi.org/10.1007/978-1-4613-2699-1_2
Maurer J. J.; Eustace D. J.; Ratcliffe C. T. Thermal characterization of poly(acrylic acid). Macromolecules, 1987, 20(1), 196-202. doi:10.1021/ma00167a035http://dx.doi.org/10.1021/ma00167a035
Hou X. N.; Chen S.; Koh J. J.; Kong J. H.; Zhang Y. W.; Yeo J. C. C.; Chen H. M.; He C. B. Entropy-driven ultratough blends from brittle polymers. ACS Macro Lett., 2021, 10(4), 406-411. doi:10.1021/acsmacrolett.0c00844http://dx.doi.org/10.1021/acsmacrolett.0c00844
Chen B. H.; Zhang X. N.; Wu Z. L.; Xiao R. Modelling the mechanical behaviours of glassy hydrogels. Europhys. Lett., 2022, 139(2), 26002. doi:10.1209/0295-5075/ac35f6http://dx.doi.org/10.1209/0295-5075/ac35f6
Zhang X. N.; Du C.; Wang Y. J.; Hou L. X.; Du M. A.; Zheng Q. A.; Wu Z. L. Influence of the α-methyl group on elastic-to-glassy transition of supramolecular hydrogels with hydrogen-bond associations. Macromolecules, 2022, 55(17), 7512-7525. doi:10.1021/acs.macromol.2c00829http://dx.doi.org/10.1021/acs.macromol.2c00829
Zhang X. N.; Du C.; Du M.; Zheng Q.; Wu Z. L. Kinetic insights into glassy hydrogels with hydrogen bond complexes as the cross-links. Mater. Today Phys., 2020, 15, 100230. doi:10.1016/j.mtphys.2020.100230http://dx.doi.org/10.1016/j.mtphys.2020.100230
Patrick Royall C.; Williams S. R.; Ohtsuka T.; Tanaka H. Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater., 2008, 7(7), 556-561. doi:10.1038/nmat2219http://dx.doi.org/10.1038/nmat2219
Du C.; Zhang X. N.; Sun T. L.; Du M.; Zheng Q.; Wu Z. L. Hydrogen-bond association-mediated dynamics and viscoelastic properties of tough supramolecular hydrogels. Macromolecules, 2021, 54(9), 4313-4325. doi:10.1021/acs.macromol.1c00152http://dx.doi.org/10.1021/acs.macromol.1c00152
Rubinstein M.; Semenov A. N. Dynamics of entangled solutions of associating polymers. Macromolecules, 2001, 34(4), 1058-1068. doi:10.1021/ma0013049http://dx.doi.org/10.1021/ma0013049
Zheng S. Y.; Ding H. Y.; Qian J.; Yin J.; Wu Z. L.; Song Y. H.; Zheng Q. A. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules, 2016, 49(24), 9637-9646. doi:10.1021/acs.macromol.6b02150http://dx.doi.org/10.1021/acs.macromol.6b02150
Yu H. C.; Zheng S. Y.; Fang L. T.; Ying Z. M.; Du M.; Wang J.; Ren K. F.; Wu Z. L.; Zheng Q. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv. Mater., 2020, 32(49), 2005171. doi:10.1002/adma.202005171http://dx.doi.org/10.1002/adma.202005171
Yu H. C.; Hao X. P.; Zhang C. W.; Zheng S. Y.; Du M.; Liang S. M.; Wu Z. L.; Zheng Q. Engineering tough metallosupramolecular hydrogel films with kirigami structures for compliant soft electronics. Small, 2021, 17(41), 2103836. doi:10.1002/smll.202103836http://dx.doi.org/10.1002/smll.202103836
Wang F.; Weiss R. A. Thermoresponsive supramolecular hydrogels with high fracture toughness. Macromolecules, 2018, 51(18), 7386-7395. doi:10.1021/acs.macromol.8b00490http://dx.doi.org/10.1021/acs.macromol.8b00490
Liao J. X.; Huang J. H.; Yang S. R.; Wang X. L.; Wang T.; Sun W. X.; Tong Z. Ultra-strong and fast response gel by solvent exchange and its shape memory applications. ACS Appl. Polym. Mater., 2019, 1(10), 2703-2712. doi:10.1021/acsapm.9b00654http://dx.doi.org/10.1021/acsapm.9b00654
Wang S. T.; Li S. J.; Gao L. Dispersed association of single-component short-alkyl chains toward thermally programmable and malleable multiple-shape hydrogel. ACS Appl. Mater. Interfaces, 2019, 11(46), 43622-43630. doi:10.1021/acsami.9b16205http://dx.doi.org/10.1021/acsami.9b16205
Lin X. X.; Wang X. L.; Cui H. Y.; Rao P.; Meng Y. Z.; Ouyang G. F.; Guo H. Hydrogels with ultra-highly additive adjustable toughness under quasi-isochoric conditions. Mater. Horiz., 2023, 10(3), 993-1004. doi:10.1039/d2mh01451chttp://dx.doi.org/10.1039/d2mh01451c
Zhang Y. Y.; Gao H. J.; Wang H.; Xu Z. Y.; Chen X. W.; Liu B.; Shi Y.; Lu Y.; Wen L. F.; Li Y.; Li Z. S.; Men Y. F.; Feng X. Q.; Liu W. G. Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries. Adv. Funct. Mater., 2018, 28(9), 1705962. doi:10.1002/adfm.201705962http://dx.doi.org/10.1002/adfm.201705962
Liu B.; Xu Z. Y.; Gao H. J.; Fan C. C.; Ma G. S.; Zhang D. F.; Xiao M.; Zhang B. J.; Yang Y.; Cui C. Y.; Wu T. L.; Feng X. Q.; Liu W. G. Stiffness self-tuned shape memory hydrogels for embolization of aneurysms. Adv. Funct. Mater., 2020, 30(22), 1910197. doi:10.1002/adfm.201910197http://dx.doi.org/10.1002/adfm.201910197
Jiao C.; Chen Y. Y.; Liu T. Q.; Peng X.; Zhao Y. X.; Zhang J. N.; Wu Y. Q.; Wang H. L. Rigid and strong thermoresponsive shape memory hydrogels transformed from poly(vinylpyrrolidone-co-acryloxy acetophenone) organogels. ACS Appl. Mater. Interfaces, 2018, 10(38), 32707-32716. doi:10.1021/acsami.8b11391http://dx.doi.org/10.1021/acsami.8b11391
Mredha M. T. I.; Pathak S. K.; Tran V. T.; Cui J. X.; Jeon I. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic-hydrophilic copolymers. Chem. Eng. J., 2019, 362, 325-338. doi:10.1016/j.cej.2018.12.023http://dx.doi.org/10.1016/j.cej.2018.12.023
Jiang Z.; Tan M. L.; Taheri M.; Yan Q.; Tsuzuki T.; Gardiner M. G.; Diggle B.; Connal L. A. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew. Chem. Int. Ed., 2020, 59(18), 7049-7056. doi:10.1002/anie.201916058http://dx.doi.org/10.1002/anie.201916058
Zhang G. G.; Kim J.; Hassan S.; Suo Z. G. Self-assembled nanocomposites of high water content and load-bearing capacity. Proc. Natl. Acad. Sci. U. S. A., 2022, 119(32), e2203962119. doi:10.1073/pnas.2203962119http://dx.doi.org/10.1073/pnas.2203962119
Hu X. B.; Vatankhah-Varnoosfaderani M.; Zhou J.; Li Q. X.; Sheiko S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater., 2015, 27(43), 6899-6905. doi:10.1002/adma.201503724http://dx.doi.org/10.1002/adma.201503724
Fan C. C.; Liu B.; Xu Z. Y.; Cui C. Y.; Wu T. L.; Yang Y.; Zhang D. F.; Xiao M.; Zhang Z. D.; Liu W. G. Polymerization of N-acryloylsemicarbazide: a facile and versatile strategy to tailor-make highly stiff and tough hydrogels. Mater. Horiz., 2020, 7(4), 1160-1170. doi:10.1039/c9mh01844ahttp://dx.doi.org/10.1039/c9mh01844a
Zhang H. J.; Wang X. Y.; Yang Y. X.; Sun T. L.; Zhang A. K.; You X. Y. Effect of hydrophobic side group on structural heterogeneities and mechanical performance of gelatin-based hydrogen-bonded hydrogel. Macromolecules, 2022, 55(17), 7401-7410. doi:10.1021/acs.macromol.2c01386http://dx.doi.org/10.1021/acs.macromol.2c01386
Qiu Y.; Wu L.; Liu S. J.; Yu W. Impact-protective bicontinuous hydrogel/ultrahigh-molecular weight polyethylene fabric composite with multiscale energy dissipation structures for soft body armor. ACS Appl. Mater. Interfaces, 2023, 15(7), 10053-10063. doi:10.1021/acsami.2c22993http://dx.doi.org/10.1021/acsami.2c22993
Liang R. X.; Yu H. J.; Wang L.; Lin L.; Wang N.; Naveed K. U. R. Highly tough hydrogels with the body temperature-responsive shape memory effect. ACS Appl. Mater. Interfaces, 2019, 11(46), 43563-43572. doi:10.1021/acsami.9b14756http://dx.doi.org/10.1021/acsami.9b14756
Hu X. B.; Zhou J.; Daniel W. F. M.; Vatankhah-Varnoosfaderani M.; Dobrynin A. V.; Sheiko S. S. Dynamics of dual networks: strain rate and temperature effects in hydrogels with reversible H-bonds. Macromolecules, 2017, 50(2), 652-659. doi:10.1021/acs.macromol.6b02422http://dx.doi.org/10.1021/acs.macromol.6b02422
Dai X. Y.; Zhang Y. Y.; Gao L. N.; Bai T.; Wang W.; Cui Y. L.; Liu W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater., 2015, 27(23), 3566-3571. doi:10.1002/adma.201500534http://dx.doi.org/10.1002/adma.201500534
Erkoc C.; Yildirim E.; Yurtsever M.; Okay O. Roadmap to design mechanically robust copolymer hydrogels naturally cross-linked by hydrogen bonds. Macromolecules, 2022, 55(23), 10576-10589. doi:10.1021/acs.macromol.2c01469http://dx.doi.org/10.1021/acs.macromol.2c01469
Mantooth S. M.; Munoz-Robles B. G.; Webber M. J. Dynamic hydrogels from host-guest supramolecular interactions. Macromol. Biosci., 2019, 19(1), 1800281. doi:10.1002/mabi.201800281http://dx.doi.org/10.1002/mabi.201800281
Huang Z. H.; Chen X. Y.; Wu G. L.; Metrangolo P.; Whitaker D.; McCune J. A.; Scherman O. A. Host-enhanced phenyl-perfluorophenyl polar-π interactions. J. Am. Chem. Soc., 2020, 142(16), 7356-7361. doi:10.1021/jacs.0c02275http://dx.doi.org/10.1021/jacs.0c02275
Huang Z. H.; Chen X. Y.; O'Neill S. J. K.; Wu G. L.; Whitaker D. J.; Li J. X.; McCune J. A.; Scherman O. A. Highly compressible glass-like supramolecular polymer networks. Nat. Mater., 2022, 21(1), 103-109. doi:10.1038/s41563-021-01124-xhttp://dx.doi.org/10.1038/s41563-021-01124-x
Sun T. L.; Kurokawa T.; Kuroda S.; Ihsan A. B.; Akasaki T.; Sato K.; Haque M. A.; Nakajima T.; Gong J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater., 2013, 12(10), 932-937. doi:10.1038/nmat3713http://dx.doi.org/10.1038/nmat3713
Luo F.; Sun T. L.; Nakajima T.; King D. R.; Kurokawa T.; Zhao Y.; Bin Ihsan A.; Li X. F.; Guo H. L.; Gong J. P. Strong and tough polyion-complex hydrogels from oppositely charged polyelectrolytes: a comparative study with polyampholyte hydrogels. Macromolecules, 2016, 49(7), 2750-2760. doi:10.1021/acs.macromol.6b00235http://dx.doi.org/10.1021/acs.macromol.6b00235
Huang Y. W.; Xiao L. Y.; Zhou J.; Liu T.; Yan Y. Q.; Long S. J.; Li X. F. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds. Adv. Funct. Mater., 2021, 31(37), 2103917. doi:10.1002/adfm.202103917http://dx.doi.org/10.1002/adfm.202103917
Abou Shaheen S.; Yang M.; Chen B. H.; Schlenoff J. B. Water and ion transport through the glass transition in polyelectrolyte complexes. Chem. Mater., 2020, 32(14), 5994-6002. doi:10.1021/acs.chemmater.0c01217http://dx.doi.org/10.1021/acs.chemmater.0c01217
Yang M.; Digby Z. A.; Schlenoff J. B. Precision doping of polyelectrolyte complexes: insight on the role of ions. Macromolecules, 2020, 53(13), 5465-5474. doi:10.1021/acs.macromol.0c00965http://dx.doi.org/10.1021/acs.macromol.0c00965
Chen Y. H.; Yang M.; Schlenoff J. B. Glass transitions in hydrated polyelectrolyte complexes. Macromolecules, 2021, 54(8), 3822-3831. doi:10.1021/acs.macromol.0c02682http://dx.doi.org/10.1021/acs.macromol.0c02682
Liu X. Y.; Zhong M.; Shi F. K.; Xu H.; Xie X. M. Multi-bond network hydrogels with robust mechanical and self-healable properties. Chin. J. Polym. Sci., 2017, 35(10), 1253-1267. doi:10.1007/s10118-017-1971-0http://dx.doi.org/10.1007/s10118-017-1971-0
Jiao C.; Zhang J. N.; Liu T. Q.; Peng X.; Wang H. L. Mechanically strong, tough, and shape deformable poly(acrylamide-co-vinylimidazole) hydrogels based on Cu2+ complexation. ACS Appl. Mater. Interfaces, 2020, 12(39), 44205-44214. doi:10.1021/acsami.0c13654http://dx.doi.org/10.1021/acsami.0c13654
Sun W. X.; Xue B.; Fan Q. Y.; Tao R. H.; Wang C. X.; Wang X.; Li Y. R.; Qin M.; Wang W.; Chen B.; Cao Y. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Sci. Adv., 2020, 6(16), eaaz9531. doi:10.1126/sciadv.aaz9531http://dx.doi.org/10.1126/sciadv.aaz9531
Wang Y.; Xie Y. J.; Xie X. Y.; Wu D.; Wu H. T.; Luo X. Q.; Wu Q.; Zhao L. J.; Wu J. R. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure. Adv. Funct. Mater., 2023, 33(12), 2210224. doi:10.1002/adfm.202210224http://dx.doi.org/10.1002/adfm.202210224
Zheng S. Y.; Yu H. C.; Yang C.; Zhu F.; Qian J.; Wu Z. L.; Zheng Q. Fracture of tough and stiff metallosupramolecular hydrogels. Mater. Today Phys., 2020, 13, 100202. doi:10.1016/j.mtphys.2020.100202http://dx.doi.org/10.1016/j.mtphys.2020.100202
Hou L. X.; Ju H. Q.; Hao X. P.; Zhang H. K.; Zhang L.; He Z. Y.; Wang J. J.; Zheng Q.; Wu Z. L. Intrinsic anti-freezing and unique phosphorescence of glassy hydrogels with ultrahigh stiffness and toughness at low temperatures. Adv. Mater., 2023, 35(21), 2300244. doi:10.1002/adma.202300244http://dx.doi.org/10.1002/adma.202300244
Bloembergen N.; Purcell E. M.; Pound R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev., 1948, 73(7), 679-712. doi:10.1103/physrev.73.679http://dx.doi.org/10.1103/physrev.73.679
Chen Q.; Bao N. Q.; Wang J. H H.; Tunic, T.; Liang, S. W.; Colby, R. H. Linear viscoelasticity and dielectric spectroscopy of ionomer/plasticizer mixtures: a transition from ionomer to polyelectrolyte. Macromolecules, 2015, 48(22), 8240-8252. doi:10.1021/acs.macromol.5b01958http://dx.doi.org/10.1021/acs.macromol.5b01958
Hancock B. C.; Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res., 1994, 11(4), 471-477. doi:10.1023/a:1018941810744http://dx.doi.org/10.1023/a:1018941810744
Zhang Y. P.; Batys P.; O'Neal J. T.; Li F.; Sammalkorpi M.; Lutkenhaus J. L. Molecular origin of the glass transition in polyelectrolyte assemblies. ACS Cent. Sci., 2018, 4(5), 638-644. doi:10.1021/acscentsci.8b00137http://dx.doi.org/10.1021/acscentsci.8b00137
倪楚君, 谢涛. 可时空编程的超分子形状记忆高分子. 高分子学报, 2022, 53(10), 1161-1172. doi:10.11777/j.issn1000-3304.2022.22170http://dx.doi.org/10.11777/j.issn1000-3304.2022.22170
Zhu C. N.; Bai T. W.; Wang H.; Ling J.; Huang F. H.; Hong W.; Zheng Q.; Wu Z. L. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv. Mater., 2021, 33(29), 2102023. doi:10.1002/adma.202102023http://dx.doi.org/10.1002/adma.202102023
Zhang Z. M.; Liu R. C.; Zepeda H.; Zeng L.; Qiu J. J.; Wang S. R. 3D printing super strong hydrogel for artificial meniscus. ACS Appl. Polym. Mater., 2019, 1(8), 2023-2032. doi:10.1021/acsapm.9b00304http://dx.doi.org/10.1021/acsapm.9b00304
Pan J. G.; Zhang W.; Zhu J.; Tan J. Y.; Huang Y.; Mo K. L.; Tong Y.; Xie Z. H.; Ke Y. B.; Zheng H. D.; Ouyang H.; Shi X. T.; Gao L. Arrested phase separation enables high-performance keratoprostheses. Adv. Mater., 2023, 35(16), 2207750. doi:10.1002/adma.202207750http://dx.doi.org/10.1002/adma.202207750
Ju H. Q.; Zhang H. K.; Hou L. X.; Zuo M.; Du M.; Huang F. H.; Zheng Q.; Wu Z. L. Polymerization-induced crystallization of dopant molecules: an efficient strategy for room-temperature phosphorescence of hydrogels. J. Am. Chem. Soc., 2023, 145(6), 3763-3773. doi:10.1021/jacs.2c13264http://dx.doi.org/10.1021/jacs.2c13264
Milovanovic M.; Isselbaecher N.; Brandt V.; Tiller J. C. Improving the strength of ultrastiff organic-inorganic double-network hydrogels. Chem. Mater., 2021, 33(21), 8312-8322. doi:10.1021/acs.chemmater.1c02525http://dx.doi.org/10.1021/acs.chemmater.1c02525
Chen L.; Zhao C.; Huang J.; Zhou J. J.; Liu M. J. Enormous-stiffness-changing polymer networks by glass transition mediated microphase separation. Nat. Commun., 2022, 13, 6821. doi:10.1038/s41467-022-34677-9http://dx.doi.org/10.1038/s41467-022-34677-9
Wang M. X.; Zhang P. Y.; Shamsi M.; Thelen J. L.; Qian W.; Truong V. K.; Ma J.; Hu J.; Dickey M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater., 2022, 21(3), 359-365. doi:10.1038/s41563-022-01195-4http://dx.doi.org/10.1038/s41563-022-01195-4
Yang H.; Ji M. K.; Yang M.; Shi M.; Pan Y. D.; Zhou Y. F.; Qi H. J.; Suo Z. G.; Tang J. D. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter, 2021, 4(6), 1935-1946. doi:10.1016/j.matt.2021.03.011http://dx.doi.org/10.1016/j.matt.2021.03.011
Dong M.; Han Y.; Hao X. P.; Yu H. C.; Yin J.; Du M.; Zheng Q.; Wu Z. L. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements. Adv. Mater., 2022, 34(34), 2204333. doi:10.1002/adma.202270246http://dx.doi.org/10.1002/adma.202270246
0
浏览量
102
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构